ultralytics 8.3.5__py3-none-any.whl → 8.3.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/test_solutions.py +6 -8
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/solutions/default.yaml +4 -0
- ultralytics/data/converter.py +64 -6
- ultralytics/data/explorer/gui/dash.py +4 -17
- ultralytics/engine/exporter.py +3 -4
- ultralytics/engine/model.py +2 -0
- ultralytics/engine/trainer.py +4 -4
- ultralytics/solutions/ai_gym.py +62 -110
- ultralytics/solutions/heatmap.py +63 -219
- ultralytics/solutions/object_counter.py +19 -17
- ultralytics/solutions/solutions.py +9 -4
- ultralytics/utils/__init__.py +47 -46
- ultralytics/utils/autobatch.py +3 -1
- ultralytics/utils/checks.py +36 -20
- ultralytics/utils/plotting.py +50 -70
- ultralytics/utils/torch_utils.py +12 -5
- {ultralytics-8.3.5.dist-info → ultralytics-8.3.7.dist-info}/METADATA +8 -9
- {ultralytics-8.3.5.dist-info → ultralytics-8.3.7.dist-info}/RECORD +23 -23
- {ultralytics-8.3.5.dist-info → ultralytics-8.3.7.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.5.dist-info → ultralytics-8.3.7.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.5.dist-info → ultralytics-8.3.7.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.5.dist-info → ultralytics-8.3.7.dist-info}/top_level.txt +0 -0
tests/test_solutions.py
CHANGED
|
@@ -19,8 +19,8 @@ def test_major_solutions():
|
|
|
19
19
|
cap = cv2.VideoCapture("solutions_ci_demo.mp4")
|
|
20
20
|
assert cap.isOpened(), "Error reading video file"
|
|
21
21
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
|
22
|
-
|
|
23
|
-
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA,
|
|
22
|
+
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False)
|
|
23
|
+
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False)
|
|
24
24
|
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False)
|
|
25
25
|
queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False)
|
|
26
26
|
while cap.isOpened():
|
|
@@ -29,8 +29,8 @@ def test_major_solutions():
|
|
|
29
29
|
break
|
|
30
30
|
original_im0 = im0.copy()
|
|
31
31
|
tracks = model.track(im0, persist=True, show=False)
|
|
32
|
-
|
|
33
|
-
_ = heatmap.generate_heatmap(original_im0.copy()
|
|
32
|
+
_ = counter.count(original_im0.copy())
|
|
33
|
+
_ = heatmap.generate_heatmap(original_im0.copy())
|
|
34
34
|
_ = speed.estimate_speed(original_im0.copy(), tracks)
|
|
35
35
|
_ = queue.process_queue(original_im0.copy(), tracks)
|
|
36
36
|
cap.release()
|
|
@@ -41,16 +41,14 @@ def test_major_solutions():
|
|
|
41
41
|
def test_aigym():
|
|
42
42
|
"""Test the workouts monitoring solution."""
|
|
43
43
|
safe_download(url=WORKOUTS_SOLUTION_DEMO)
|
|
44
|
-
model = YOLO("yolo11n-pose.pt")
|
|
45
44
|
cap = cv2.VideoCapture("solution_ci_pose_demo.mp4")
|
|
46
45
|
assert cap.isOpened(), "Error reading video file"
|
|
47
|
-
|
|
46
|
+
gym = solutions.AIGym(line_width=2, kpts=[5, 11, 13])
|
|
48
47
|
while cap.isOpened():
|
|
49
48
|
success, im0 = cap.read()
|
|
50
49
|
if not success:
|
|
51
50
|
break
|
|
52
|
-
|
|
53
|
-
_ = gym_object.start_counting(im0, results)
|
|
51
|
+
_ = gym.monitor(im0)
|
|
54
52
|
cap.release()
|
|
55
53
|
cv2.destroyAllWindows()
|
|
56
54
|
|
ultralytics/__init__.py
CHANGED
|
@@ -10,3 +10,7 @@ show: True # Flag to control whether to display output image or not
|
|
|
10
10
|
show_in: True # Flag to display objects moving *into* the defined region
|
|
11
11
|
show_out: True # Flag to display objects moving *out of* the defined region
|
|
12
12
|
classes: # To count specific classes
|
|
13
|
+
up_angle: 145.0 # Workouts up_angle for counts, 145.0 is default value
|
|
14
|
+
down_angle: 90 # Workouts down_angle for counts, 90 is default value
|
|
15
|
+
kpts: [6, 8, 10] # Keypoints for workouts monitoring
|
|
16
|
+
colormap: # Colormap for heatmap
|
ultralytics/data/converter.py
CHANGED
|
@@ -1,13 +1,18 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
3
|
import json
|
|
4
|
+
import random
|
|
5
|
+
import shutil
|
|
4
6
|
from collections import defaultdict
|
|
7
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
5
8
|
from pathlib import Path
|
|
6
9
|
|
|
7
10
|
import cv2
|
|
8
11
|
import numpy as np
|
|
12
|
+
from PIL import Image
|
|
9
13
|
|
|
10
|
-
from ultralytics.utils import LOGGER, TQDM
|
|
14
|
+
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM
|
|
15
|
+
from ultralytics.utils.downloads import download
|
|
11
16
|
from ultralytics.utils.files import increment_path
|
|
12
17
|
|
|
13
18
|
|
|
@@ -588,15 +593,13 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
|
|
588
593
|
|
|
589
594
|
- im_dir
|
|
590
595
|
├─ 001.jpg
|
|
591
|
-
├─
|
|
596
|
+
├─ ...
|
|
592
597
|
└─ NNN.jpg
|
|
593
598
|
- labels
|
|
594
599
|
├─ 001.txt
|
|
595
|
-
├─
|
|
600
|
+
├─ ...
|
|
596
601
|
└─ NNN.txt
|
|
597
602
|
"""
|
|
598
|
-
from tqdm import tqdm
|
|
599
|
-
|
|
600
603
|
from ultralytics import SAM
|
|
601
604
|
from ultralytics.data import YOLODataset
|
|
602
605
|
from ultralytics.utils import LOGGER
|
|
@@ -610,7 +613,7 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
|
|
610
613
|
|
|
611
614
|
LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
|
|
612
615
|
sam_model = SAM(sam_model)
|
|
613
|
-
for label in
|
|
616
|
+
for label in TQDM(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
|
|
614
617
|
h, w = label["shape"]
|
|
615
618
|
boxes = label["bboxes"]
|
|
616
619
|
if len(boxes) == 0: # skip empty labels
|
|
@@ -635,3 +638,58 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
|
|
635
638
|
with open(txt_file, "a") as f:
|
|
636
639
|
f.writelines(text + "\n" for text in texts)
|
|
637
640
|
LOGGER.info(f"Generated segment labels saved in {save_dir}")
|
|
641
|
+
|
|
642
|
+
|
|
643
|
+
def create_synthetic_coco_dataset():
|
|
644
|
+
"""
|
|
645
|
+
Creates a synthetic COCO dataset with random images and existing labels.
|
|
646
|
+
|
|
647
|
+
This function downloads COCO labels, creates synthetic images for train2017 and val2017 subsets, and organizes
|
|
648
|
+
them in the COCO dataset structure. It uses multithreading to generate images efficiently.
|
|
649
|
+
|
|
650
|
+
Examples:
|
|
651
|
+
>>> create_synthetic_coco_dataset()
|
|
652
|
+
|
|
653
|
+
Notes:
|
|
654
|
+
- Requires internet connection to download label files.
|
|
655
|
+
- Generates random RGB images of varying sizes (480x480 to 640x640 pixels).
|
|
656
|
+
- Existing test2017 directory is removed as it's not needed.
|
|
657
|
+
- If label directories don't exist, image creation for that subset is skipped.
|
|
658
|
+
"""
|
|
659
|
+
|
|
660
|
+
def create_synthetic_image(image_file):
|
|
661
|
+
"""Generates synthetic images with random sizes and colors for dataset augmentation or testing purposes."""
|
|
662
|
+
if not image_file.exists():
|
|
663
|
+
size = (random.randint(480, 640), random.randint(480, 640))
|
|
664
|
+
Image.new(
|
|
665
|
+
"RGB",
|
|
666
|
+
size=size,
|
|
667
|
+
color=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)),
|
|
668
|
+
).save(image_file)
|
|
669
|
+
|
|
670
|
+
# Download labels
|
|
671
|
+
dir = DATASETS_DIR / "coco"
|
|
672
|
+
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
|
673
|
+
label_zip = "coco2017labels-segments.zip"
|
|
674
|
+
download([url + label_zip], dir=dir.parent)
|
|
675
|
+
|
|
676
|
+
# Create synthetic images
|
|
677
|
+
shutil.rmtree(dir / "labels" / "test2017", ignore_errors=True) # Remove test2017 directory as not needed
|
|
678
|
+
with ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
|
|
679
|
+
for subset in ["train2017", "val2017"]:
|
|
680
|
+
subset_dir = dir / "images" / subset
|
|
681
|
+
subset_dir.mkdir(parents=True, exist_ok=True)
|
|
682
|
+
|
|
683
|
+
label_dir = dir / "labels" / subset
|
|
684
|
+
if label_dir.exists():
|
|
685
|
+
label_files = list(label_dir.glob("*.txt"))
|
|
686
|
+
image_files = [subset_dir / f"{label_file.stem}.jpg" for label_file in label_files]
|
|
687
|
+
|
|
688
|
+
# Submit all tasks
|
|
689
|
+
futures = [executor.submit(create_synthetic_image, image_file) for image_file in image_files]
|
|
690
|
+
for _ in TQDM(as_completed(futures), total=len(futures), desc=f"Generating images for {subset}"):
|
|
691
|
+
pass # The actual work is done in the background
|
|
692
|
+
else:
|
|
693
|
+
print(f"Warning: Label directory {label_dir} does not exist. Skipping image creation for {subset}.")
|
|
694
|
+
|
|
695
|
+
print("Synthetic COCO dataset created successfully.")
|
|
@@ -39,24 +39,11 @@ def init_explorer_form(data=None, model=None):
|
|
|
39
39
|
else:
|
|
40
40
|
ds = [data]
|
|
41
41
|
|
|
42
|
+
prefixes = ["yolov8", "yolo11"]
|
|
43
|
+
sizes = ["n", "s", "m", "l", "x"]
|
|
44
|
+
tasks = ["", "-seg", "-pose"]
|
|
42
45
|
if model is None:
|
|
43
|
-
models = [
|
|
44
|
-
"yolov8n.pt",
|
|
45
|
-
"yolov8s.pt",
|
|
46
|
-
"yolov8m.pt",
|
|
47
|
-
"yolov8l.pt",
|
|
48
|
-
"yolov8x.pt",
|
|
49
|
-
"yolov8n-seg.pt",
|
|
50
|
-
"yolov8s-seg.pt",
|
|
51
|
-
"yolov8m-seg.pt",
|
|
52
|
-
"yolov8l-seg.pt",
|
|
53
|
-
"yolov8x-seg.pt",
|
|
54
|
-
"yolov8n-pose.pt",
|
|
55
|
-
"yolov8s-pose.pt",
|
|
56
|
-
"yolov8m-pose.pt",
|
|
57
|
-
"yolov8l-pose.pt",
|
|
58
|
-
"yolov8x-pose.pt",
|
|
59
|
-
]
|
|
46
|
+
models = [f"{p}{s}{t}" for p in prefixes for s in sizes for t in tasks]
|
|
60
47
|
else:
|
|
61
48
|
models = [model]
|
|
62
49
|
|
ultralytics/engine/exporter.py
CHANGED
|
@@ -183,11 +183,10 @@ class Exporter:
|
|
|
183
183
|
|
|
184
184
|
# Get the closest match if format is invalid
|
|
185
185
|
matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
|
|
186
|
-
if matches:
|
|
187
|
-
LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
|
|
188
|
-
fmt = matches[0]
|
|
189
|
-
else:
|
|
186
|
+
if not matches:
|
|
190
187
|
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
|
|
188
|
+
LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
|
|
189
|
+
fmt = matches[0]
|
|
191
190
|
flags = [x == fmt for x in fmts]
|
|
192
191
|
if sum(flags) != 1:
|
|
193
192
|
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
|
ultralytics/engine/model.py
CHANGED
|
@@ -544,6 +544,8 @@ class Model(nn.Module):
|
|
|
544
544
|
|
|
545
545
|
if not self.predictor:
|
|
546
546
|
self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks)
|
|
547
|
+
if predictor:
|
|
548
|
+
self.predictor.args = get_cfg(self.predictor.args, args)
|
|
547
549
|
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
|
548
550
|
else: # only update args if predictor is already setup
|
|
549
551
|
self.predictor.args = get_cfg(self.predictor.args, args)
|
ultralytics/engine/trainer.py
CHANGED
|
@@ -469,11 +469,11 @@ class BaseTrainer:
|
|
|
469
469
|
|
|
470
470
|
if RANK in {-1, 0}:
|
|
471
471
|
# Do final val with best.pt
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
)
|
|
472
|
+
epochs = epoch - self.start_epoch + 1 # total training epochs
|
|
473
|
+
seconds = time.time() - self.train_time_start # total training seconds
|
|
474
|
+
LOGGER.info(f"\n{epochs} epochs completed in {seconds / 3600:.3f} hours.")
|
|
476
475
|
self.final_eval()
|
|
476
|
+
self.validator.metrics.training = {"epochs": epochs, "seconds": seconds} # add training speed
|
|
477
477
|
if self.args.plots:
|
|
478
478
|
self.plot_metrics()
|
|
479
479
|
self.run_callbacks("on_train_end")
|
ultralytics/solutions/ai_gym.py
CHANGED
|
@@ -1,127 +1,79 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
|
-
import
|
|
4
|
-
|
|
5
|
-
from ultralytics.utils.checks import check_imshow
|
|
3
|
+
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
|
6
4
|
from ultralytics.utils.plotting import Annotator
|
|
7
5
|
|
|
8
6
|
|
|
9
|
-
class AIGym:
|
|
7
|
+
class AIGym(BaseSolution):
|
|
10
8
|
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
|
|
11
9
|
|
|
12
|
-
def __init__(
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
line_thickness=2,
|
|
16
|
-
view_img=False,
|
|
17
|
-
pose_up_angle=145.0,
|
|
18
|
-
pose_down_angle=90.0,
|
|
19
|
-
pose_type="pullup",
|
|
20
|
-
):
|
|
10
|
+
def __init__(self, **kwargs):
|
|
11
|
+
"""Initialization function for AiGYM class, a child class of BaseSolution class, can be used for workouts
|
|
12
|
+
monitoring.
|
|
21
13
|
"""
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
14
|
+
# Check if the model name ends with '-pose'
|
|
15
|
+
if "model" in kwargs and "-pose" not in kwargs["model"]:
|
|
16
|
+
kwargs["model"] = "yolo11n-pose.pt"
|
|
17
|
+
elif "model" not in kwargs:
|
|
18
|
+
kwargs["model"] = "yolo11n-pose.pt"
|
|
19
|
+
|
|
20
|
+
super().__init__(**kwargs)
|
|
21
|
+
self.count = [] # List for counts, necessary where there are multiple objects in frame
|
|
22
|
+
self.angle = [] # List for angle, necessary where there are multiple objects in frame
|
|
23
|
+
self.stage = [] # List for stage, necessary where there are multiple objects in frame
|
|
24
|
+
|
|
25
|
+
# Extract details from CFG single time for usage later
|
|
26
|
+
self.initial_stage = None
|
|
27
|
+
self.up_angle = float(self.CFG["up_angle"]) # Pose up predefined angle to consider up pose
|
|
28
|
+
self.down_angle = float(self.CFG["down_angle"]) # Pose down predefined angle to consider down pose
|
|
29
|
+
self.kpts = self.CFG["kpts"] # User selected kpts of workouts storage for further usage
|
|
30
|
+
self.lw = self.CFG["line_width"] # Store line_width for usage
|
|
31
|
+
|
|
32
|
+
def monitor(self, im0):
|
|
31
33
|
"""
|
|
32
|
-
|
|
33
|
-
self.im0 = None
|
|
34
|
-
self.tf = line_thickness
|
|
35
|
-
|
|
36
|
-
# Keypoints and count information
|
|
37
|
-
self.keypoints = None
|
|
38
|
-
self.poseup_angle = pose_up_angle
|
|
39
|
-
self.posedown_angle = pose_down_angle
|
|
40
|
-
self.threshold = 0.001
|
|
41
|
-
|
|
42
|
-
# Store stage, count and angle information
|
|
43
|
-
self.angle = None
|
|
44
|
-
self.count = None
|
|
45
|
-
self.stage = None
|
|
46
|
-
self.pose_type = pose_type
|
|
47
|
-
self.kpts_to_check = kpts_to_check
|
|
48
|
-
|
|
49
|
-
# Visual Information
|
|
50
|
-
self.view_img = view_img
|
|
51
|
-
self.annotator = None
|
|
52
|
-
|
|
53
|
-
# Check if environment supports imshow
|
|
54
|
-
self.env_check = check_imshow(warn=True)
|
|
55
|
-
self.count = []
|
|
56
|
-
self.angle = []
|
|
57
|
-
self.stage = []
|
|
58
|
-
|
|
59
|
-
def start_counting(self, im0, results):
|
|
60
|
-
"""
|
|
61
|
-
Function used to count the gym steps.
|
|
34
|
+
Monitor the workouts using Ultralytics YOLOv8 Pose Model: https://docs.ultralytics.com/tasks/pose/.
|
|
62
35
|
|
|
63
36
|
Args:
|
|
64
|
-
im0 (ndarray):
|
|
65
|
-
|
|
37
|
+
im0 (ndarray): The input image that will be used for processing
|
|
38
|
+
Returns
|
|
39
|
+
im0 (ndarray): The processed image for more usage
|
|
66
40
|
"""
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
self.
|
|
90
|
-
|
|
91
|
-
# Check and update pose stages and counts based on angle
|
|
92
|
-
if self.pose_type in {"abworkout", "pullup"}:
|
|
93
|
-
if self.angle[ind] > self.poseup_angle:
|
|
94
|
-
self.stage[ind] = "down"
|
|
95
|
-
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
|
96
|
-
self.stage[ind] = "up"
|
|
97
|
-
self.count[ind] += 1
|
|
98
|
-
|
|
99
|
-
elif self.pose_type in {"pushup", "squat"}:
|
|
100
|
-
if self.angle[ind] > self.poseup_angle:
|
|
101
|
-
self.stage[ind] = "up"
|
|
102
|
-
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
|
|
103
|
-
self.stage[ind] = "down"
|
|
41
|
+
# Extract tracks
|
|
42
|
+
tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])[0]
|
|
43
|
+
|
|
44
|
+
if tracks.boxes.id is not None:
|
|
45
|
+
# Extract and check keypoints
|
|
46
|
+
if len(tracks) > len(self.count):
|
|
47
|
+
new_human = len(tracks) - len(self.count)
|
|
48
|
+
self.angle += [0] * new_human
|
|
49
|
+
self.count += [0] * new_human
|
|
50
|
+
self.stage += ["-"] * new_human
|
|
51
|
+
|
|
52
|
+
# Initialize annotator
|
|
53
|
+
self.annotator = Annotator(im0, line_width=self.lw)
|
|
54
|
+
|
|
55
|
+
# Enumerate over keypoints
|
|
56
|
+
for ind, k in enumerate(reversed(tracks.keypoints.data)):
|
|
57
|
+
# Get keypoints and estimate the angle
|
|
58
|
+
kpts = [k[int(self.kpts[i])].cpu() for i in range(3)]
|
|
59
|
+
self.angle[ind] = self.annotator.estimate_pose_angle(*kpts)
|
|
60
|
+
im0 = self.annotator.draw_specific_points(k, self.kpts, radius=self.lw * 3)
|
|
61
|
+
|
|
62
|
+
# Determine stage and count logic based on angle thresholds
|
|
63
|
+
if self.angle[ind] < self.down_angle:
|
|
64
|
+
if self.stage[ind] == "up":
|
|
104
65
|
self.count[ind] += 1
|
|
66
|
+
self.stage[ind] = "down"
|
|
67
|
+
elif self.angle[ind] > self.up_angle:
|
|
68
|
+
self.stage[ind] = "up"
|
|
105
69
|
|
|
70
|
+
# Display angle, count, and stage text
|
|
106
71
|
self.annotator.plot_angle_and_count_and_stage(
|
|
107
|
-
angle_text=self.angle[ind],
|
|
108
|
-
count_text=self.count[ind],
|
|
109
|
-
stage_text=self.stage[ind],
|
|
110
|
-
center_kpt=k[int(self.
|
|
72
|
+
angle_text=self.angle[ind], # angle text for display
|
|
73
|
+
count_text=self.count[ind], # count text for workouts
|
|
74
|
+
stage_text=self.stage[ind], # stage position text
|
|
75
|
+
center_kpt=k[int(self.kpts[1])], # center keypoint for display
|
|
111
76
|
)
|
|
112
77
|
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
# Display the image if environment supports it and view_img is True
|
|
117
|
-
if self.env_check and self.view_img:
|
|
118
|
-
cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0)
|
|
119
|
-
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
120
|
-
return
|
|
121
|
-
|
|
122
|
-
return self.im0
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
if __name__ == "__main__":
|
|
126
|
-
kpts_to_check = [0, 1, 2] # example keypoints
|
|
127
|
-
aigym = AIGym(kpts_to_check)
|
|
78
|
+
self.display_output(im0) # Display output image, if environment support display
|
|
79
|
+
return im0 # return an image for writing or further usage
|