ultralytics 8.3.38__py3-none-any.whl → 8.3.40__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +9 -7
- ultralytics/engine/model.py +29 -0
- ultralytics/models/yolo/classify/predict.py +1 -1
- ultralytics/models/yolo/detect/train.py +1 -1
- ultralytics/nn/modules/head.py +1 -1
- ultralytics/solutions/__init__.py +2 -0
- ultralytics/solutions/ai_gym.py +1 -1
- ultralytics/solutions/solutions.py +5 -1
- ultralytics/solutions/trackzone.py +68 -0
- ultralytics/utils/ops.py +2 -3
- ultralytics/utils/plotting.py +54 -10
- ultralytics/utils/torch_utils.py +5 -11
- {ultralytics-8.3.38.dist-info → ultralytics-8.3.40.dist-info}/METADATA +13 -9
- {ultralytics-8.3.38.dist-info → ultralytics-8.3.40.dist-info}/RECORD +19 -18
- {ultralytics-8.3.38.dist-info → ultralytics-8.3.40.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.38.dist-info → ultralytics-8.3.40.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.38.dist-info → ultralytics-8.3.40.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.38.dist-info → ultralytics-8.3.40.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
@@ -11,7 +11,6 @@ import cv2
|
|
11
11
|
|
12
12
|
from ultralytics.utils import (
|
13
13
|
ASSETS,
|
14
|
-
ASSETS_URL,
|
15
14
|
DEFAULT_CFG,
|
16
15
|
DEFAULT_CFG_DICT,
|
17
16
|
DEFAULT_CFG_PATH,
|
@@ -42,6 +41,7 @@ SOLUTION_MAP = {
|
|
42
41
|
"speed": ("SpeedEstimator", "estimate_speed"),
|
43
42
|
"workout": ("AIGym", "monitor"),
|
44
43
|
"analytics": ("Analytics", "process_data"),
|
44
|
+
"trackzone": ("TrackZone", "trackzone"),
|
45
45
|
"help": None,
|
46
46
|
}
|
47
47
|
|
@@ -75,13 +75,12 @@ ARGV = sys.argv or ["", ""] # sometimes sys.argv = []
|
|
75
75
|
SOLUTIONS_HELP_MSG = f"""
|
76
76
|
Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo solutions' usage overview:
|
77
77
|
|
78
|
-
yolo
|
79
|
-
|
80
|
-
Where SOLUTIONS (required) is a keyword
|
81
|
-
SOLUTION (optional) is one of {list(SOLUTION_MAP.keys())}
|
82
|
-
ARGS (optional) are any number of custom 'arg=value' pairs like 'show_in=True' that override defaults.
|
83
|
-
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
|
78
|
+
yolo solutions SOLUTION ARGS
|
84
79
|
|
80
|
+
Where SOLUTION (optional) is one of {list(SOLUTION_MAP.keys())}
|
81
|
+
ARGS (optional) are any number of custom 'arg=value' pairs like 'show_in=True' that override defaults
|
82
|
+
at https://docs.ultralytics.com/usage/cfg
|
83
|
+
|
85
84
|
1. Call object counting solution
|
86
85
|
yolo solutions count source="path/to/video/file.mp4" region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
|
87
86
|
|
@@ -96,6 +95,9 @@ SOLUTIONS_HELP_MSG = f"""
|
|
96
95
|
|
97
96
|
5. Generate analytical graphs
|
98
97
|
yolo solutions analytics analytics_type="pie"
|
98
|
+
|
99
|
+
6. Track Objects Within Specific Zones
|
100
|
+
yolo solutions trackzone source="path/to/video/file.mp4" region=[(150, 150), (1130, 150), (1130, 570), (150, 570)]
|
99
101
|
"""
|
100
102
|
CLI_HELP_MSG = f"""
|
101
103
|
Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo' commands use the following syntax:
|
ultralytics/engine/model.py
CHANGED
@@ -144,6 +144,9 @@ class Model(nn.Module):
|
|
144
144
|
else:
|
145
145
|
self._load(model, task=task)
|
146
146
|
|
147
|
+
# Delete super().training for accessing self.model.training
|
148
|
+
del self.training
|
149
|
+
|
147
150
|
def __call__(
|
148
151
|
self,
|
149
152
|
source: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor] = None,
|
@@ -1143,3 +1146,29 @@ class Model(nn.Module):
|
|
1143
1146
|
"""
|
1144
1147
|
self.model.eval()
|
1145
1148
|
return self
|
1149
|
+
|
1150
|
+
def __getattr__(self, name):
|
1151
|
+
"""
|
1152
|
+
Enables accessing model attributes directly through the Model class.
|
1153
|
+
|
1154
|
+
This method provides a way to access attributes of the underlying model directly through the Model class
|
1155
|
+
instance. It first checks if the requested attribute is 'model', in which case it returns the model from
|
1156
|
+
the module dictionary. Otherwise, it delegates the attribute lookup to the underlying model.
|
1157
|
+
|
1158
|
+
Args:
|
1159
|
+
name (str): The name of the attribute to retrieve.
|
1160
|
+
|
1161
|
+
Returns:
|
1162
|
+
(Any): The requested attribute value.
|
1163
|
+
|
1164
|
+
Raises:
|
1165
|
+
AttributeError: If the requested attribute does not exist in the model.
|
1166
|
+
|
1167
|
+
Examples:
|
1168
|
+
>>> model = YOLO("yolo11n.pt")
|
1169
|
+
>>> print(model.stride)
|
1170
|
+
>>> print(model.task)
|
1171
|
+
"""
|
1172
|
+
if name == "model":
|
1173
|
+
return self._modules["model"]
|
1174
|
+
return getattr(self.model, name)
|
@@ -54,6 +54,6 @@ class ClassificationPredictor(BasePredictor):
|
|
54
54
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
55
55
|
|
56
56
|
return [
|
57
|
-
Results(orig_img, path=img_path, names=self.model.names, probs=pred)
|
57
|
+
Results(orig_img, path=img_path, names=self.model.names, probs=pred.softmax(0))
|
58
58
|
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
|
59
59
|
]
|
@@ -146,5 +146,5 @@ class DetectionTrainer(BaseTrainer):
|
|
146
146
|
"""Get batch size by calculating memory occupation of model."""
|
147
147
|
train_dataset = self.build_dataset(self.trainset, mode="train", batch=16)
|
148
148
|
# 4 for mosaic augmentation
|
149
|
-
max_num_obj = max(len(
|
149
|
+
max_num_obj = max(len(label["cls"]) for label in train_dataset.labels) * 4
|
150
150
|
return super().auto_batch(max_num_obj)
|
ultralytics/nn/modules/head.py
CHANGED
@@ -10,6 +10,7 @@ from .queue_management import QueueManager
|
|
10
10
|
from .region_counter import RegionCounter
|
11
11
|
from .speed_estimation import SpeedEstimator
|
12
12
|
from .streamlit_inference import inference
|
13
|
+
from .trackzone import TrackZone
|
13
14
|
|
14
15
|
__all__ = (
|
15
16
|
"AIGym",
|
@@ -23,4 +24,5 @@ __all__ = (
|
|
23
24
|
"Analytics",
|
24
25
|
"inference",
|
25
26
|
"RegionCounter",
|
27
|
+
"TrackZone",
|
26
28
|
)
|
ultralytics/solutions/ai_gym.py
CHANGED
@@ -71,7 +71,7 @@ class AIGym(BaseSolution):
|
|
71
71
|
>>> processed_image = gym.monitor(image)
|
72
72
|
"""
|
73
73
|
# Extract tracks
|
74
|
-
tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])[0]
|
74
|
+
tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"], **self.track_add_args)[0]
|
75
75
|
|
76
76
|
if tracks.boxes.id is not None:
|
77
77
|
# Extract and check keypoints
|
@@ -74,6 +74,10 @@ class BaseSolution:
|
|
74
74
|
self.model = YOLO(self.CFG["model"])
|
75
75
|
self.names = self.model.names
|
76
76
|
|
77
|
+
self.track_add_args = { # Tracker additional arguments for advance configuration
|
78
|
+
k: self.CFG[k] for k in ["verbose", "iou", "conf", "device", "max_det", "half", "tracker"]
|
79
|
+
}
|
80
|
+
|
77
81
|
if IS_CLI and self.CFG["source"] is None:
|
78
82
|
d_s = "solutions_ci_demo.mp4" if "-pose" not in self.CFG["model"] else "solution_ci_pose_demo.mp4"
|
79
83
|
LOGGER.warning(f"⚠️ WARNING: source not provided. using default source {ASSETS_URL}/{d_s}")
|
@@ -98,7 +102,7 @@ class BaseSolution:
|
|
98
102
|
>>> frame = cv2.imread("path/to/image.jpg")
|
99
103
|
>>> solution.extract_tracks(frame)
|
100
104
|
"""
|
101
|
-
self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])
|
105
|
+
self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"], **self.track_add_args)
|
102
106
|
|
103
107
|
# Extract tracks for OBB or object detection
|
104
108
|
self.track_data = self.tracks[0].obb or self.tracks[0].boxes
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2
|
+
|
3
|
+
import cv2
|
4
|
+
import numpy as np
|
5
|
+
|
6
|
+
from ultralytics.solutions.solutions import BaseSolution
|
7
|
+
from ultralytics.utils.plotting import Annotator, colors
|
8
|
+
|
9
|
+
|
10
|
+
class TrackZone(BaseSolution):
|
11
|
+
"""
|
12
|
+
A class to manage region-based object tracking in a video stream.
|
13
|
+
|
14
|
+
This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
|
15
|
+
defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization
|
16
|
+
of the region, allowing either a default region or a user-specified polygon.
|
17
|
+
|
18
|
+
Attributes:
|
19
|
+
region (ndarray): The polygonal region for tracking, represented as a convex hull.
|
20
|
+
|
21
|
+
Methods:
|
22
|
+
trackzone: Processes each frame of the video, applying region-based tracking.
|
23
|
+
|
24
|
+
Examples:
|
25
|
+
>>> tracker = TrackZone()
|
26
|
+
>>> frame = cv2.imread("frame.jpg")
|
27
|
+
>>> processed_frame = tracker.trackzone(frame)
|
28
|
+
>>> cv2.imshow("Tracked Frame", processed_frame)
|
29
|
+
"""
|
30
|
+
|
31
|
+
def __init__(self, **kwargs):
|
32
|
+
"""Initializes the TrackZone class for tracking objects within a defined region in video streams."""
|
33
|
+
super().__init__(**kwargs)
|
34
|
+
default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)]
|
35
|
+
self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))
|
36
|
+
|
37
|
+
def trackzone(self, im0):
|
38
|
+
"""
|
39
|
+
Processes the input frame to track objects within a defined region.
|
40
|
+
|
41
|
+
This method initializes the annotator, creates a mask for the specified region, extracts tracks
|
42
|
+
only from the masked area, and updates tracking information. Objects outside the region are ignored.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
im0 (numpy.ndarray): The input image or frame to be processed.
|
46
|
+
|
47
|
+
Returns:
|
48
|
+
(numpy.ndarray): The processed image with tracking id and bounding boxes annotations.
|
49
|
+
|
50
|
+
Examples:
|
51
|
+
>>> tracker = TrackZone()
|
52
|
+
>>> frame = cv2.imread("path/to/image.jpg")
|
53
|
+
>>> tracker.trackzone(frame)
|
54
|
+
"""
|
55
|
+
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
56
|
+
# Create a mask for the region and extract tracks from the masked image
|
57
|
+
masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255))
|
58
|
+
self.extract_tracks(masked_frame)
|
59
|
+
|
60
|
+
cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)
|
61
|
+
|
62
|
+
# Iterate over boxes, track ids, classes indexes list and draw bounding boxes
|
63
|
+
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
64
|
+
self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True))
|
65
|
+
|
66
|
+
self.display_output(im0) # display output with base class function
|
67
|
+
|
68
|
+
return im0 # return output image for more usage
|
ultralytics/utils/ops.py
CHANGED
@@ -75,9 +75,8 @@ def segment2box(segment, width=640, height=640):
|
|
75
75
|
(np.ndarray): the minimum and maximum x and y values of the segment.
|
76
76
|
"""
|
77
77
|
x, y = segment.T # segment xy
|
78
|
-
|
79
|
-
|
80
|
-
y = y[inside]
|
78
|
+
x = x.clip(0, width)
|
79
|
+
y = y.clip(0, height)
|
81
80
|
return (
|
82
81
|
np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype)
|
83
82
|
if any(x)
|
ultralytics/utils/plotting.py
CHANGED
@@ -238,7 +238,16 @@ class Annotator:
|
|
238
238
|
}
|
239
239
|
|
240
240
|
def get_txt_color(self, color=(128, 128, 128), txt_color=(255, 255, 255)):
|
241
|
-
"""
|
241
|
+
"""
|
242
|
+
Assign text color based on background color.
|
243
|
+
|
244
|
+
Args:
|
245
|
+
color (tuple, optional): The background color of the rectangle for text (B, G, R).
|
246
|
+
txt_color (tuple, optional): The color of the text (R, G, B).
|
247
|
+
|
248
|
+
Returns:
|
249
|
+
txt_color (tuple): Text color for label
|
250
|
+
"""
|
242
251
|
if color in self.dark_colors:
|
243
252
|
return 104, 31, 17
|
244
253
|
elif color in self.light_colors:
|
@@ -544,7 +553,9 @@ class Annotator:
|
|
544
553
|
bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).
|
545
554
|
|
546
555
|
Returns:
|
547
|
-
|
556
|
+
width (float): Width of the bounding box.
|
557
|
+
height (float): Height of the bounding box.
|
558
|
+
area (float): Area enclosed by the bounding box.
|
548
559
|
"""
|
549
560
|
x_min, y_min, x_max, y_max = bbox
|
550
561
|
width = x_max - x_min
|
@@ -791,19 +802,52 @@ class Annotator:
|
|
791
802
|
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
|
792
803
|
text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)
|
793
804
|
|
794
|
-
cv2.rectangle(
|
795
|
-
self.im,
|
796
|
-
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
|
797
|
-
(int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
|
798
|
-
mask_color,
|
799
|
-
-1,
|
800
|
-
)
|
801
|
-
|
802
805
|
if label:
|
806
|
+
cv2.rectangle(
|
807
|
+
self.im,
|
808
|
+
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
|
809
|
+
(int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
|
810
|
+
mask_color,
|
811
|
+
-1,
|
812
|
+
)
|
803
813
|
cv2.putText(
|
804
814
|
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf
|
805
815
|
)
|
806
816
|
|
817
|
+
def sweep_annotator(self, line_x=0, line_y=0, label=None, color=(221, 0, 186), txt_color=(255, 255, 255)):
|
818
|
+
"""
|
819
|
+
Function for drawing a sweep annotation line and an optional label.
|
820
|
+
|
821
|
+
Args:
|
822
|
+
line_x (int): The x-coordinate of the sweep line.
|
823
|
+
line_y (int): The y-coordinate limit of the sweep line.
|
824
|
+
label (str, optional): Text label to be drawn in center of sweep line. If None, no label is drawn.
|
825
|
+
color (tuple): RGB color for the line and label background.
|
826
|
+
txt_color (tuple): RGB color for the label text.
|
827
|
+
"""
|
828
|
+
# Draw the sweep line
|
829
|
+
cv2.line(self.im, (line_x, 0), (line_x, line_y), color, self.tf * 2)
|
830
|
+
|
831
|
+
# Draw label, if provided
|
832
|
+
if label:
|
833
|
+
(text_width, text_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf, self.tf)
|
834
|
+
cv2.rectangle(
|
835
|
+
self.im,
|
836
|
+
(line_x - text_width // 2 - 10, line_y // 2 - text_height // 2 - 10),
|
837
|
+
(line_x + text_width // 2 + 10, line_y // 2 + text_height // 2 + 10),
|
838
|
+
color,
|
839
|
+
-1,
|
840
|
+
)
|
841
|
+
cv2.putText(
|
842
|
+
self.im,
|
843
|
+
label,
|
844
|
+
(line_x - text_width // 2, line_y // 2 + text_height // 2),
|
845
|
+
cv2.FONT_HERSHEY_SIMPLEX,
|
846
|
+
self.sf,
|
847
|
+
txt_color,
|
848
|
+
self.tf,
|
849
|
+
)
|
850
|
+
|
807
851
|
def plot_distance_and_line(
|
808
852
|
self, pixels_distance, centroids, line_color=(104, 31, 17), centroid_color=(255, 0, 255)
|
809
853
|
):
|
ultralytics/utils/torch_utils.py
CHANGED
@@ -301,28 +301,22 @@ def fuse_deconv_and_bn(deconv, bn):
|
|
301
301
|
|
302
302
|
|
303
303
|
def model_info(model, detailed=False, verbose=True, imgsz=640):
|
304
|
-
"""
|
305
|
-
Model information.
|
306
|
-
|
307
|
-
imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].
|
308
|
-
"""
|
304
|
+
"""Print and return detailed model information layer by layer."""
|
309
305
|
if not verbose:
|
310
306
|
return
|
311
307
|
n_p = get_num_params(model) # number of parameters
|
312
308
|
n_g = get_num_gradients(model) # number of gradients
|
313
309
|
n_l = len(list(model.modules())) # number of layers
|
314
310
|
if detailed:
|
315
|
-
LOGGER.info(
|
316
|
-
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}"
|
317
|
-
)
|
311
|
+
LOGGER.info(f"{'layer':>5}{'name':>40}{'gradient':>10}{'parameters':>12}{'shape':>20}{'mu':>10}{'sigma':>10}")
|
318
312
|
for i, (name, p) in enumerate(model.named_parameters()):
|
319
313
|
name = name.replace("module_list.", "")
|
320
314
|
LOGGER.info(
|
321
|
-
"
|
322
|
-
|
315
|
+
f"{i:>5g}{name:>40s}{p.requires_grad!r:>10}{p.numel():>12g}{str(list(p.shape)):>20s}"
|
316
|
+
f"{p.mean():>10.3g}{p.std():>10.3g}{str(p.dtype):>15s}"
|
323
317
|
)
|
324
318
|
|
325
|
-
flops = get_flops(model, imgsz)
|
319
|
+
flops = get_flops(model, imgsz) # imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
|
326
320
|
fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else ""
|
327
321
|
fs = f", {flops:.1f} GFLOPs" if flops else ""
|
328
322
|
yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "")
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.40
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -115,7 +115,9 @@ We hope that the resources here will help you get the most out of YOLO. Please b
|
|
115
115
|
|
116
116
|
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
|
117
117
|
|
118
|
-
<
|
118
|
+
<a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
|
119
|
+
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
|
120
|
+
</a>
|
119
121
|
|
120
122
|
<div align="center">
|
121
123
|
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
|
@@ -166,7 +168,7 @@ YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` comm
|
|
166
168
|
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
167
169
|
```
|
168
170
|
|
169
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments,
|
171
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
170
172
|
|
171
173
|
### Python
|
172
174
|
|
@@ -203,11 +205,13 @@ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more exam
|
|
203
205
|
|
204
206
|
## <div align="center">Models</div>
|
205
207
|
|
206
|
-
YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
208
|
+
YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
207
209
|
|
208
|
-
<
|
209
|
-
|
210
|
-
|
210
|
+
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
211
|
+
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
212
|
+
</a>
|
213
|
+
<br>
|
214
|
+
<br>
|
211
215
|
|
212
216
|
<details open><summary>Detection (COCO)</summary>
|
213
217
|
|
@@ -298,9 +302,9 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
298
302
|
|
299
303
|
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
300
304
|
|
301
|
-
<br>
|
302
305
|
<a href="https://www.ultralytics.com/hub" target="_blank">
|
303
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"
|
306
|
+
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
|
307
|
+
</a>
|
304
308
|
<br>
|
305
309
|
<br>
|
306
310
|
|
@@ -7,10 +7,10 @@ tests/test_exports.py,sha256=1MvhcQ2qHdbJImHII-bFarcaIcm-kPlEK-OdFLxnj7o,8769
|
|
7
7
|
tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
|
8
8
|
tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
|
9
9
|
tests/test_solutions.py,sha256=HlDe-XOgBX0k1cLhRTAhhawMHk6p-5dg5xl2AIRjfdk,3790
|
10
|
-
ultralytics/__init__.py,sha256=
|
10
|
+
ultralytics/__init__.py,sha256=g043TDkiEqdLx6EEsZlBx5SW4RgiiHq5CUtD78wMHIo,681
|
11
11
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
12
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
|
-
ultralytics/cfg/__init__.py,sha256=
|
13
|
+
ultralytics/cfg/__init__.py,sha256=LgTvW_Rd_phZoLzC8p5UEh8o7pIjx9xc67I91Xh5llY,38910
|
14
14
|
ultralytics/cfg/default.yaml,sha256=FcXbvTXXvMpssk9fSwdlnVTtyqfmlYE9gAcHsf0OMf8,8347
|
15
15
|
ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
|
16
16
|
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
|
@@ -101,7 +101,7 @@ ultralytics/data/split_dota.py,sha256=eFafJ7Vg52wj6KDCHFJAf1tKzyPD5YaPB8kM4VX5Ae
|
|
101
101
|
ultralytics/data/utils.py,sha256=bmWEIrdogj4kssZQSJdSbIF8QsJU00lo-EY-Mgcqv4M,31073
|
102
102
|
ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
103
103
|
ultralytics/engine/exporter.py,sha256=137idYe5ct3KuJBpjjjNRUAb6Gx0PeETKm21GZm43Nk,66972
|
104
|
-
ultralytics/engine/model.py,sha256=
|
104
|
+
ultralytics/engine/model.py,sha256=SDlZw6yvbNWHzbPN5VjJYx6qM1v1iZHVKAoa-PgJ8ig,53010
|
105
105
|
ultralytics/engine/predictor.py,sha256=nO6lzxG75GXyQsUNEimLk5MLfcMwl8AkRAaoYMPwQug,17687
|
106
106
|
ultralytics/engine/results.py,sha256=a1XFZRPwqgKDBOEAibHuT9nP2xefLiWVsMoBJbcr4iA,75058
|
107
107
|
ultralytics/engine/trainer.py,sha256=Cd95QLJ3C4fncoOX1YgauLA9aWVYRd1G6x0Au2xX86k,37335
|
@@ -147,12 +147,12 @@ ultralytics/models/utils/ops.py,sha256=aPAPwWMLJLWq-I04wS_YrqJ_Vy_xBXtqQu6Aox15Y
|
|
147
147
|
ultralytics/models/yolo/__init__.py,sha256=e1cZr9pbSbf3Ya2OvkTjGRwD_E2YZpe610xskBM8gEk,247
|
148
148
|
ultralytics/models/yolo/model.py,sha256=E4TuJZZux0L_SG7sC0SDgxrmeBvuZRpxprPrCC26lvs,4233
|
149
149
|
ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
|
150
|
-
ultralytics/models/yolo/classify/predict.py,sha256=
|
150
|
+
ultralytics/models/yolo/classify/predict.py,sha256=ungApAXm_KkLMMlz4MQpmL5IFzAKX69wLYHSliSR7VA,2455
|
151
151
|
ultralytics/models/yolo/classify/train.py,sha256=3aYzLDqX_03xR1xqlTn1TxA4t58cCIGI8RCtWheTrm0,6273
|
152
152
|
ultralytics/models/yolo/classify/val.py,sha256=Tzizhp3ebzPvwJejrE8tb-TuXw4MdkEI9mOANV74eXQ,4909
|
153
153
|
ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
|
154
154
|
ultralytics/models/yolo/detect/predict.py,sha256=-uZFLutxGYZX47RANcaxC-LFStRbv0nBv_8-ypadQoI,1471
|
155
|
-
ultralytics/models/yolo/detect/train.py,sha256=
|
155
|
+
ultralytics/models/yolo/detect/train.py,sha256=LKCcQTAsXm3-TPK2zkE1YJhbAcS65qhY2-MSlj-kB4w,6710
|
156
156
|
ultralytics/models/yolo/detect/val.py,sha256=Ydf0W7FPf-nSz_lOCTcIrlDqhG_kOK8Od6eYsGQDx9U,15144
|
157
157
|
ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
|
158
158
|
ultralytics/models/yolo/obb/predict.py,sha256=VxpKCKV5dWnOr0GyV1rJGH5SzzRouCYW_8T26xJ8MU8,2037
|
@@ -176,11 +176,11 @@ ultralytics/nn/modules/__init__.py,sha256=xhW2BennT9U_VaMXVpRu-bdLgp1BXt9L8mkIUB
|
|
176
176
|
ultralytics/nn/modules/activation.py,sha256=chhn469wnRHEs5BMGNBYXwPYZc_7-urspTT8fnBd-xA,895
|
177
177
|
ultralytics/nn/modules/block.py,sha256=Rk9CT23Bpqpo3LYRuQePYML6HAvsM20p2QlFTCaYFH4,41851
|
178
178
|
ultralytics/nn/modules/conv.py,sha256=DPLZCRno_ZOjsuajAXIq-GbJdOh2jp1WayRXfDEd8z8,12724
|
179
|
-
ultralytics/nn/modules/head.py,sha256=
|
179
|
+
ultralytics/nn/modules/head.py,sha256=Bg_WXtvO004fAKF7qExFreywWFrgQoc5Tc3fA9KVoL4,27780
|
180
180
|
ultralytics/nn/modules/transformer.py,sha256=tGiK8NmPfswwW1rbF21r5ILUkkZQ6Nk4s8j16vFBmps,18069
|
181
181
|
ultralytics/nn/modules/utils.py,sha256=a88cKl2wz1nMVSEBiajtvaCbDBQIkESWOKTZ_WAJy90,3195
|
182
|
-
ultralytics/solutions/__init__.py,sha256=
|
183
|
-
ultralytics/solutions/ai_gym.py,sha256=
|
182
|
+
ultralytics/solutions/__init__.py,sha256=lpTOauaJf7dFlymZB9lHiH_feDlS8Vlrp4TC7GuM8SU,761
|
183
|
+
ultralytics/solutions/ai_gym.py,sha256=Jv8ERJqcSjQeFh78zCAH2XnXoTIngCK7X_7XOQ6cPzs,5255
|
184
184
|
ultralytics/solutions/analytics.py,sha256=C57pIghXeKN8hul8QOV7W9YDMpfFfSfPTBb-lE9HeAc,11535
|
185
185
|
ultralytics/solutions/distance_calculation.py,sha256=KN3CC-dm2dTQylj79IrifCJT8ZhE7hc2EweH3KK31mE,5461
|
186
186
|
ultralytics/solutions/heatmap.py,sha256=-1VtMCJRmpHnLqgna0i2HOBsxNoqFernzpKQnICngUM,5449
|
@@ -188,9 +188,10 @@ ultralytics/solutions/object_counter.py,sha256=MuxQG4a22458WwciAB96m5AxVXwH98AIW
|
|
188
188
|
ultralytics/solutions/parking_management.py,sha256=Hh28FTuP_TaO7x5RadYm-JSVJuEu1M2SSgHqgdYYtr8,11198
|
189
189
|
ultralytics/solutions/queue_management.py,sha256=D9TqwJSVrZQFxp_M8O62WfBAxkAuDWWnXe7FFmnp7_w,4881
|
190
190
|
ultralytics/solutions/region_counter.py,sha256=w0c0Sz9XG6rwzr5nA6nb1zFW8IVkTQuatfZNBtOik68,4947
|
191
|
-
ultralytics/solutions/solutions.py,sha256=
|
191
|
+
ultralytics/solutions/solutions.py,sha256=BqkMDAq9A8kqL4TkjHLkMYXrJAdZPK-VAdNSObS1kNQ,7502
|
192
192
|
ultralytics/solutions/speed_estimation.py,sha256=A10DmuZlGkoZUyfHhZWcDRjj1-9GXiDhEjyBbAzfaDs,4936
|
193
193
|
ultralytics/solutions/streamlit_inference.py,sha256=w4dnvSv2FOrpji9W1Ir86phka3OXc7jd_38-OCbQdZw,5701
|
194
|
+
ultralytics/solutions/trackzone.py,sha256=jsSuvW3ExoQl5JyUF-5ZLQMou8h4qbkCGGGP831cHSY,2952
|
194
195
|
ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
|
195
196
|
ultralytics/trackers/basetrack.py,sha256=kPOeAX2ihvANtQJk-zUsN0C7JjhlJbx0UhjaCFk_ovQ,4423
|
196
197
|
ultralytics/trackers/bot_sort.py,sha256=766grVQExvonb087Wy-SB32TSwYYsTEM22yoWeQ_EEo,10494
|
@@ -211,11 +212,11 @@ ultralytics/utils/files.py,sha256=uiXQSVABJRoI5ImnM6ndEBIFbECfksmWNEldBg8GnSo,82
|
|
211
212
|
ultralytics/utils/instance.py,sha256=EnLp3hCihG5-32eGSMmjzspbxZsDvbqEOs-X0kcvxwQ,16252
|
212
213
|
ultralytics/utils/loss.py,sha256=jUCiUcxgF6jGxGdvIcupeMidLoF-gI7s1tcJoQCZbnk,34113
|
213
214
|
ultralytics/utils/metrics.py,sha256=toJlyA0W-xtChqAtIDiHISolxc_30NP33ezxWQ1rnPc,53804
|
214
|
-
ultralytics/utils/ops.py,sha256=
|
215
|
+
ultralytics/utils/ops.py,sha256=ojw9AT7HI1_SgmYIFWrFM7QTs7zvf0QPsSLrMgAq2uI,33051
|
215
216
|
ultralytics/utils/patches.py,sha256=J-iOwIRbfUs-inBZerhnXby5tUKjYcOIyvhLTS352JE,3270
|
216
|
-
ultralytics/utils/plotting.py,sha256=
|
217
|
+
ultralytics/utils/plotting.py,sha256=GmBkN7e1skJK2cZ2hzKBXQCb1gayWTrA9TLHw0q07UM,62948
|
217
218
|
ultralytics/utils/tal.py,sha256=thD_AEhVmhaZqmS5szZMvpKO-RKOeZwfX1BYAhdnA0o,18470
|
218
|
-
ultralytics/utils/torch_utils.py,sha256=
|
219
|
+
ultralytics/utils/torch_utils.py,sha256=ddWR82FkxSiFQqr_uzqxQvir-RACvCxsQbqphKSFTok,32084
|
219
220
|
ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
|
220
221
|
ultralytics/utils/tuner.py,sha256=K09-z5k1E4ZriSKoWdwQrJ2PJ2fY1ez3-b2R6aKPTqM,6198
|
221
222
|
ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
|
@@ -229,9 +230,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=IbGQfEltamUKXJt93uSLQFn8c2rYh3DMTg
|
|
229
230
|
ultralytics/utils/callbacks/raytune.py,sha256=Ck_yFzg7UZXiDWrLHaltjQybzVWSFDfzpdrx9ZYTRfI,700
|
230
231
|
ultralytics/utils/callbacks/tensorboard.py,sha256=SHlE58Fb-sg-uZKtgy-ybIO3SAIfK55aj8kTYGA0Cyg,4167
|
231
232
|
ultralytics/utils/callbacks/wb.py,sha256=sizfTa-xI9k2pnDSP_Q9pHZEFwcl__gSFM0AcneuRpY,7058
|
232
|
-
ultralytics-8.3.
|
233
|
-
ultralytics-8.3.
|
234
|
-
ultralytics-8.3.
|
235
|
-
ultralytics-8.3.
|
236
|
-
ultralytics-8.3.
|
237
|
-
ultralytics-8.3.
|
233
|
+
ultralytics-8.3.40.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
234
|
+
ultralytics-8.3.40.dist-info/METADATA,sha256=765LKLYZ8BHcGLWpKO5pQFPka_hilm8fl_96W_xvp2c,35332
|
235
|
+
ultralytics-8.3.40.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
236
|
+
ultralytics-8.3.40.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
237
|
+
ultralytics-8.3.40.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
238
|
+
ultralytics-8.3.40.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|