ultralytics 8.3.36__py3-none-any.whl → 8.3.37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.36"
3
+ __version__ = "8.3.37"
4
4
 
5
5
  import os
6
6
 
@@ -83,13 +83,13 @@ SOLUTIONS_HELP_MSG = f"""
83
83
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
84
84
 
85
85
  1. Call object counting solution
86
- yolo solutions count source="path/to/video/file.mp4" region=[(20, 400), (1080, 404), (1080, 360), (20, 360)]
86
+ yolo solutions count source="path/to/video/file.mp4" region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
87
87
 
88
88
  2. Call heatmaps solution
89
89
  yolo solutions heatmap colormap=cv2.COLORMAP_PARAULA model=yolo11n.pt
90
90
 
91
91
  3. Call queue management solution
92
- yolo solutions queue region=[(20, 400), (1080, 404), (1080, 360), (20, 360)] model=yolo11n.pt
92
+ yolo solutions queue region=[(20, 400), (1080, 400), (1080, 360), (20, 360)] model=yolo11n.pt
93
93
 
94
94
  4. Call workouts monitoring solution for push-ups
95
95
  yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
@@ -83,7 +83,7 @@ int8: False # (bool) CoreML/TF INT8 quantization
83
83
  dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
84
84
  simplify: True # (bool) ONNX: simplify model using `onnxslim`
85
85
  opset: # (int, optional) ONNX: opset version
86
- workspace: 4 # (int) TensorRT: workspace size (GB)
86
+ workspace: None # (float, optional) TensorRT: workspace size (GiB), `None` will let TensorRT auto-allocate memory
87
87
  nms: False # (bool) CoreML: add NMS
88
88
 
89
89
  # Hyperparameters ------------------------------------------------------------------------------------------------------
@@ -1591,7 +1591,7 @@ class LetterBox:
1591
1591
  labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
1592
1592
 
1593
1593
  if len(labels):
1594
- labels = self._update_labels(labels, ratio, dw, dh)
1594
+ labels = self._update_labels(labels, ratio, left, top)
1595
1595
  labels["img"] = img
1596
1596
  labels["resized_shape"] = new_shape
1597
1597
  return labels
@@ -781,10 +781,10 @@ class Exporter:
781
781
  # Engine builder
782
782
  builder = trt.Builder(logger)
783
783
  config = builder.create_builder_config()
784
- workspace = int(self.args.workspace * (1 << 30))
785
- if is_trt10:
784
+ workspace = int(self.args.workspace * (1 << 30)) if self.args.workspace is not None else 0
785
+ if is_trt10 and workspace > 0:
786
786
  config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
787
- else: # TensorRT versions 7, 8
787
+ elif workspace > 0 and not is_trt10: # TensorRT versions 7, 8
788
788
  config.max_workspace_size = workspace
789
789
  flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
790
790
  network = builder.create_network(flag)
@@ -823,7 +823,7 @@ class Exporter:
823
823
  LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
824
824
  profile = builder.create_optimization_profile()
825
825
  min_shape = (1, shape[1], 32, 32) # minimum input shape
826
- max_shape = (*shape[:2], *(int(max(1, self.args.workspace) * d) for d in shape[2:])) # max input shape
826
+ max_shape = (*shape[:2], *(int(max(1, workspace) * d) for d in shape[2:])) # max input shape
827
827
  for inp in inputs:
828
828
  profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
829
829
  config.add_optimization_profile(profile)
@@ -1126,3 +1126,20 @@ class Model(nn.Module):
1126
1126
  description of the expected behavior and structure.
1127
1127
  """
1128
1128
  raise NotImplementedError("Please provide task map for your model!")
1129
+
1130
+ def eval(self):
1131
+ """
1132
+ Sets the model to evaluation mode.
1133
+
1134
+ This method changes the model's mode to evaluation, which affects layers like dropout and batch normalization
1135
+ that behave differently during training and evaluation.
1136
+
1137
+ Returns:
1138
+ (Model): The model instance with evaluation mode set.
1139
+
1140
+ Examples:
1141
+ >> model = YOLO("yolo11n.pt")
1142
+ >> model.eval()
1143
+ """
1144
+ self.model.eval()
1145
+ return self
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.36
3
+ Version: 8.3.37
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -238,8 +238,8 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
238
238
  | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
239
239
  | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
240
240
 
241
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
242
- - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
241
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
242
+ - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu`
243
243
 
244
244
  </details>
245
245
 
@@ -7,11 +7,11 @@ tests/test_exports.py,sha256=1MvhcQ2qHdbJImHII-bFarcaIcm-kPlEK-OdFLxnj7o,8769
7
7
  tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
8
8
  tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
9
9
  tests/test_solutions.py,sha256=HlDe-XOgBX0k1cLhRTAhhawMHk6p-5dg5xl2AIRjfdk,3790
10
- ultralytics/__init__.py,sha256=8zf8uvs_KTLPV49QQoIaydRNBC_k4H1qsXDKoxjxuy4,681
10
+ ultralytics/__init__.py,sha256=NM4CIHJ4lynh7PfdgUcAhSA5ARVjN0atqhdtd7wE-gY,681
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
- ultralytics/cfg/__init__.py,sha256=ArJow4-pOPN3y6aKOv5KcVXimikI6vAQvQlSRb7IdWE,38743
14
- ultralytics/cfg/default.yaml,sha256=jlSdLkFAngX6HvrzJHdZ9kdi-xO7utyLc4X2M3NWhEI,8342
13
+ ultralytics/cfg/__init__.py,sha256=fStLKsqZ5-qdLLgvgUAjOm73fILkg8yymrgz3PhbKTE,38743
14
+ ultralytics/cfg/default.yaml,sha256=ic-y0UvbVuaSFgacHgus_-OudGF8LlJwDa63nqb4OMM,8405
15
15
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
16
16
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
17
17
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=sxe2P7nY-cCPufH3G1pymnQVtNoGH1y0ETG5CyWfK9g,1165
@@ -91,7 +91,7 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=FDIrZ3hAhRtMfDl654pt1HIexmPqlFQK-3l
91
91
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=rBWY4RjjX6PTO2o6TUJFYHVgXNZHCN5TuBuzwuPYVjA,723
92
92
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
93
93
  ultralytics/data/annotator.py,sha256=JNmS6uELlEABrU5ViVJiPnjt44v-Us7j39Bwoug_73Y,3117
94
- ultralytics/data/augment.py,sha256=1yBz98EO0uVvzVEk6rvuO8YwmxwyYZfe5NV0mNIsHkI,120509
94
+ ultralytics/data/augment.py,sha256=vueJAyJBDNw004ej6scfZ7fIX8TWDzkwaUZBHDYbJdg,120512
95
95
  ultralytics/data/base.py,sha256=ZCIhAyFfxXVp5fVnYD8mwbksNALJTayBKIR5FKGV7ZM,15168
96
96
  ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
97
97
  ultralytics/data/converter.py,sha256=RIfTXNrazwZqmTYOYoJtupDMtNzm8dxsrVp6q2m8gyg,24388
@@ -100,8 +100,8 @@ ultralytics/data/loaders.py,sha256=Fr70Q9p9t7buLW_8R2_lI_nyCMG033gWSxvwy1M-a-U,2
100
100
  ultralytics/data/split_dota.py,sha256=eFafJ7Vg52wj6KDCHFJAf1tKzyPD5YaPB8kM4VX5Aeg,10688
101
101
  ultralytics/data/utils.py,sha256=bmWEIrdogj4kssZQSJdSbIF8QsJU00lo-EY-Mgcqv4M,31073
102
102
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
103
- ultralytics/engine/exporter.py,sha256=hTzJ09-7E0WCehrqws_joG613VBhyIfWZYrRCsnafjQ,66832
104
- ultralytics/engine/model.py,sha256=TfuTczFjNJ3GW0E_qWVH6OaJ_2I-_Srx7i_4GQebDoo,51472
103
+ ultralytics/engine/exporter.py,sha256=pWJJpIBd3jPB9WkE-xpH-g4QxeafPlR-jzUluYIhWY4,66913
104
+ ultralytics/engine/model.py,sha256=VthPB0IK4tsT0VAmu8Jz7q-crWsggCLFH17NwwIxnOo,51962
105
105
  ultralytics/engine/predictor.py,sha256=nO6lzxG75GXyQsUNEimLk5MLfcMwl8AkRAaoYMPwQug,17687
106
106
  ultralytics/engine/results.py,sha256=a1XFZRPwqgKDBOEAibHuT9nP2xefLiWVsMoBJbcr4iA,75058
107
107
  ultralytics/engine/trainer.py,sha256=Cd95QLJ3C4fncoOX1YgauLA9aWVYRd1G6x0Au2xX86k,37335
@@ -229,9 +229,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=IbGQfEltamUKXJt93uSLQFn8c2rYh3DMTg
229
229
  ultralytics/utils/callbacks/raytune.py,sha256=Ck_yFzg7UZXiDWrLHaltjQybzVWSFDfzpdrx9ZYTRfI,700
230
230
  ultralytics/utils/callbacks/tensorboard.py,sha256=SHlE58Fb-sg-uZKtgy-ybIO3SAIfK55aj8kTYGA0Cyg,4167
231
231
  ultralytics/utils/callbacks/wb.py,sha256=sizfTa-xI9k2pnDSP_Q9pHZEFwcl__gSFM0AcneuRpY,7058
232
- ultralytics-8.3.36.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
233
- ultralytics-8.3.36.dist-info/METADATA,sha256=32AcyU2TCZfAUFhgWdjFWJN9FJSCDug98r1IhHOOXOM,35209
234
- ultralytics-8.3.36.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
235
- ultralytics-8.3.36.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
236
- ultralytics-8.3.36.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
237
- ultralytics-8.3.36.dist-info/RECORD,,
232
+ ultralytics-8.3.37.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
233
+ ultralytics-8.3.37.dist-info/METADATA,sha256=YZiFqPJrDNXehS5zpQyUvJk29YrZV2H5zi5G-ZP_kyc,35201
234
+ ultralytics-8.3.37.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
235
+ ultralytics-8.3.37.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
236
+ ultralytics-8.3.37.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
237
+ ultralytics-8.3.37.dist-info/RECORD,,