ultralytics 8.3.2__py3-none-any.whl → 8.3.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +10 -0
- ultralytics/engine/trainer.py +2 -2
- ultralytics/hub/utils.py +1 -1
- ultralytics/models/sam/predict.py +1 -0
- ultralytics/solutions/streamlit_inference.py +3 -3
- ultralytics/utils/__init__.py +48 -47
- ultralytics/utils/benchmarks.py +2 -2
- ultralytics/utils/plotting.py +15 -12
- ultralytics/utils/torch_utils.py +3 -1
- {ultralytics-8.3.2.dist-info → ultralytics-8.3.4.dist-info}/METADATA +40 -39
- {ultralytics-8.3.2.dist-info → ultralytics-8.3.4.dist-info}/RECORD +16 -16
- {ultralytics-8.3.2.dist-info → ultralytics-8.3.4.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.2.dist-info → ultralytics-8.3.4.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.2.dist-info → ultralytics-8.3.4.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.2.dist-info → ultralytics-8.3.4.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py
CHANGED
ultralytics/engine/exporter.py
CHANGED
|
@@ -178,6 +178,16 @@ class Exporter:
|
|
|
178
178
|
if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
|
|
179
179
|
fmt = "coreml"
|
|
180
180
|
fmts = tuple(export_formats()["Argument"][1:]) # available export formats
|
|
181
|
+
if fmt not in fmts:
|
|
182
|
+
import difflib
|
|
183
|
+
|
|
184
|
+
# Get the closest match if format is invalid
|
|
185
|
+
matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
|
|
186
|
+
if matches:
|
|
187
|
+
LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
|
|
188
|
+
fmt = matches[0]
|
|
189
|
+
else:
|
|
190
|
+
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
|
|
181
191
|
flags = [x == fmt for x in fmts]
|
|
182
192
|
if sum(flags) != 1:
|
|
183
193
|
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
|
ultralytics/engine/trainer.py
CHANGED
|
@@ -12,7 +12,7 @@ import os
|
|
|
12
12
|
import subprocess
|
|
13
13
|
import time
|
|
14
14
|
import warnings
|
|
15
|
-
from copy import deepcopy
|
|
15
|
+
from copy import copy, deepcopy
|
|
16
16
|
from datetime import datetime, timedelta
|
|
17
17
|
from pathlib import Path
|
|
18
18
|
|
|
@@ -749,7 +749,7 @@ class BaseTrainer:
|
|
|
749
749
|
self.train_loader.dataset.mosaic = False
|
|
750
750
|
if hasattr(self.train_loader.dataset, "close_mosaic"):
|
|
751
751
|
LOGGER.info("Closing dataloader mosaic")
|
|
752
|
-
self.train_loader.dataset.close_mosaic(hyp=self.args)
|
|
752
|
+
self.train_loader.dataset.close_mosaic(hyp=copy(self.args))
|
|
753
753
|
|
|
754
754
|
def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
|
|
755
755
|
"""
|
ultralytics/hub/utils.py
CHANGED
|
@@ -170,7 +170,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos
|
|
|
170
170
|
class Events:
|
|
171
171
|
"""
|
|
172
172
|
A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and
|
|
173
|
-
disabled when sync=False. Run 'yolo settings' to see and update settings
|
|
173
|
+
disabled when sync=False. Run 'yolo settings' to see and update settings.
|
|
174
174
|
|
|
175
175
|
Attributes:
|
|
176
176
|
url (str): The URL to send anonymous events.
|
|
@@ -196,6 +196,7 @@ class Predictor(BasePredictor):
|
|
|
196
196
|
bboxes = self.prompts.pop("bboxes", bboxes)
|
|
197
197
|
points = self.prompts.pop("points", points)
|
|
198
198
|
masks = self.prompts.pop("masks", masks)
|
|
199
|
+
labels = self.prompts.pop("labels", labels)
|
|
199
200
|
|
|
200
201
|
if all(i is None for i in [bboxes, points, masks]):
|
|
201
202
|
return self.generate(im, *args, **kwargs)
|
|
@@ -23,13 +23,13 @@ def inference(model=None):
|
|
|
23
23
|
# Main title of streamlit application
|
|
24
24
|
main_title_cfg = """<div><h1 style="color:#FF64DA; text-align:center; font-size:40px;
|
|
25
25
|
font-family: 'Archivo', sans-serif; margin-top:-50px;margin-bottom:20px;">
|
|
26
|
-
Ultralytics
|
|
26
|
+
Ultralytics YOLO Streamlit Application
|
|
27
27
|
</h1></div>"""
|
|
28
28
|
|
|
29
29
|
# Subtitle of streamlit application
|
|
30
30
|
sub_title_cfg = """<div><h4 style="color:#042AFF; text-align:center;
|
|
31
31
|
font-family: 'Archivo', sans-serif; margin-top:-15px; margin-bottom:50px;">
|
|
32
|
-
Experience real-time object detection on your webcam with the power of Ultralytics
|
|
32
|
+
Experience real-time object detection on your webcam with the power of Ultralytics YOLO! 🚀</h4>
|
|
33
33
|
</div>"""
|
|
34
34
|
|
|
35
35
|
# Set html page configuration
|
|
@@ -67,7 +67,7 @@ def inference(model=None):
|
|
|
67
67
|
vid_file_name = 0
|
|
68
68
|
|
|
69
69
|
# Add dropdown menu for model selection
|
|
70
|
-
available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("
|
|
70
|
+
available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
|
|
71
71
|
if model:
|
|
72
72
|
available_models.insert(0, model.split(".pt")[0]) # insert model without suffix as *.pt is added later
|
|
73
73
|
|
ultralytics/utils/__init__.py
CHANGED
|
@@ -971,7 +971,7 @@ def threaded(func):
|
|
|
971
971
|
def set_sentry():
|
|
972
972
|
"""
|
|
973
973
|
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
|
|
974
|
-
sync=True in settings. Run 'yolo settings' to see and update settings
|
|
974
|
+
sync=True in settings. Run 'yolo settings' to see and update settings.
|
|
975
975
|
|
|
976
976
|
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
|
|
977
977
|
- sentry_sdk package is installed
|
|
@@ -983,36 +983,11 @@ def set_sentry():
|
|
|
983
983
|
- online environment
|
|
984
984
|
- CLI used to run package (checked with 'yolo' as the name of the main CLI command)
|
|
985
985
|
|
|
986
|
-
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
|
|
987
|
-
|
|
986
|
+
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError exceptions and to exclude
|
|
987
|
+
events with 'out of memory' in their exception message.
|
|
988
988
|
|
|
989
989
|
Additionally, the function sets custom tags and user information for Sentry events.
|
|
990
990
|
"""
|
|
991
|
-
|
|
992
|
-
def before_send(event, hint):
|
|
993
|
-
"""
|
|
994
|
-
Modify the event before sending it to Sentry based on specific exception types and messages.
|
|
995
|
-
|
|
996
|
-
Args:
|
|
997
|
-
event (dict): The event dictionary containing information about the error.
|
|
998
|
-
hint (dict): A dictionary containing additional information about the error.
|
|
999
|
-
|
|
1000
|
-
Returns:
|
|
1001
|
-
dict: The modified event or None if the event should not be sent to Sentry.
|
|
1002
|
-
"""
|
|
1003
|
-
if "exc_info" in hint:
|
|
1004
|
-
exc_type, exc_value, tb = hint["exc_info"]
|
|
1005
|
-
if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
|
|
1006
|
-
return None # do not send event
|
|
1007
|
-
|
|
1008
|
-
event["tags"] = {
|
|
1009
|
-
"sys_argv": ARGV[0],
|
|
1010
|
-
"sys_argv_name": Path(ARGV[0]).name,
|
|
1011
|
-
"install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
|
1012
|
-
"os": ENVIRONMENT,
|
|
1013
|
-
}
|
|
1014
|
-
return event
|
|
1015
|
-
|
|
1016
991
|
if (
|
|
1017
992
|
SETTINGS["sync"]
|
|
1018
993
|
and RANK in {-1, 0}
|
|
@@ -1028,9 +1003,34 @@ def set_sentry():
|
|
|
1028
1003
|
except ImportError:
|
|
1029
1004
|
return
|
|
1030
1005
|
|
|
1006
|
+
def before_send(event, hint):
|
|
1007
|
+
"""
|
|
1008
|
+
Modify the event before sending it to Sentry based on specific exception types and messages.
|
|
1009
|
+
|
|
1010
|
+
Args:
|
|
1011
|
+
event (dict): The event dictionary containing information about the error.
|
|
1012
|
+
hint (dict): A dictionary containing additional information about the error.
|
|
1013
|
+
|
|
1014
|
+
Returns:
|
|
1015
|
+
dict: The modified event or None if the event should not be sent to Sentry.
|
|
1016
|
+
"""
|
|
1017
|
+
if "exc_info" in hint:
|
|
1018
|
+
exc_type, exc_value, _ = hint["exc_info"]
|
|
1019
|
+
if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
|
|
1020
|
+
return None # do not send event
|
|
1021
|
+
|
|
1022
|
+
event["tags"] = {
|
|
1023
|
+
"sys_argv": ARGV[0],
|
|
1024
|
+
"sys_argv_name": Path(ARGV[0]).name,
|
|
1025
|
+
"install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
|
1026
|
+
"os": ENVIRONMENT,
|
|
1027
|
+
}
|
|
1028
|
+
return event
|
|
1029
|
+
|
|
1031
1030
|
sentry_sdk.init(
|
|
1032
|
-
dsn="https://
|
|
1031
|
+
dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016",
|
|
1033
1032
|
debug=False,
|
|
1033
|
+
auto_enabling_integrations=False,
|
|
1034
1034
|
traces_sample_rate=1.0,
|
|
1035
1035
|
release=__version__,
|
|
1036
1036
|
environment="production", # 'dev' or 'production'
|
|
@@ -1170,25 +1170,26 @@ class SettingsManager(JSONDict):
|
|
|
1170
1170
|
self.file = Path(file)
|
|
1171
1171
|
self.version = version
|
|
1172
1172
|
self.defaults = {
|
|
1173
|
-
"settings_version": version,
|
|
1174
|
-
"datasets_dir": str(datasets_root / "datasets"),
|
|
1175
|
-
"weights_dir": str(root / "weights"),
|
|
1176
|
-
"runs_dir": str(root / "runs"),
|
|
1177
|
-
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
|
|
1178
|
-
"sync": True,
|
|
1179
|
-
"api_key": "",
|
|
1180
|
-
"openai_api_key": "",
|
|
1181
|
-
"clearml": True, #
|
|
1182
|
-
"comet": True,
|
|
1183
|
-
"dvc": True,
|
|
1184
|
-
"hub": True,
|
|
1185
|
-
"mlflow": True,
|
|
1186
|
-
"neptune": True,
|
|
1187
|
-
"raytune": True,
|
|
1188
|
-
"tensorboard": True,
|
|
1189
|
-
"wandb": True,
|
|
1190
|
-
"vscode_msg": True,
|
|
1173
|
+
"settings_version": version, # Settings schema version
|
|
1174
|
+
"datasets_dir": str(datasets_root / "datasets"), # Datasets directory
|
|
1175
|
+
"weights_dir": str(root / "weights"), # Model weights directory
|
|
1176
|
+
"runs_dir": str(root / "runs"), # Experiment runs directory
|
|
1177
|
+
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash
|
|
1178
|
+
"sync": True, # Enable synchronization
|
|
1179
|
+
"api_key": "", # Ultralytics API Key
|
|
1180
|
+
"openai_api_key": "", # OpenAI API Key
|
|
1181
|
+
"clearml": True, # ClearML integration
|
|
1182
|
+
"comet": True, # Comet integration
|
|
1183
|
+
"dvc": True, # DVC integration
|
|
1184
|
+
"hub": True, # Ultralytics HUB integration
|
|
1185
|
+
"mlflow": True, # MLflow integration
|
|
1186
|
+
"neptune": True, # Neptune integration
|
|
1187
|
+
"raytune": True, # Ray Tune integration
|
|
1188
|
+
"tensorboard": True, # TensorBoard logging
|
|
1189
|
+
"wandb": True, # Weights & Biases logging
|
|
1190
|
+
"vscode_msg": True, # VSCode messaging
|
|
1191
1191
|
}
|
|
1192
|
+
|
|
1192
1193
|
self.help_msg = (
|
|
1193
1194
|
f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'"
|
|
1194
1195
|
"\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. "
|
ultralytics/utils/benchmarks.py
CHANGED
|
@@ -536,8 +536,8 @@ class ProfileModels:
|
|
|
536
536
|
"""Generates a table row string with model performance metrics including inference times and model details."""
|
|
537
537
|
layers, params, gradients, flops = model_info
|
|
538
538
|
return (
|
|
539
|
-
f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.
|
|
540
|
-
f"{t_engine[1]:.
|
|
539
|
+
f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}±"
|
|
540
|
+
f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
|
|
541
541
|
)
|
|
542
542
|
|
|
543
543
|
@staticmethod
|
ultralytics/utils/plotting.py
CHANGED
|
@@ -591,8 +591,8 @@ class Annotator:
|
|
|
591
591
|
Args:
|
|
592
592
|
label (str): queue counts label
|
|
593
593
|
points (tuple): region points for center point calculation to display text
|
|
594
|
-
region_color (
|
|
595
|
-
txt_color (
|
|
594
|
+
region_color (tuple): RGB queue region color.
|
|
595
|
+
txt_color (tuple): RGB text display color.
|
|
596
596
|
"""
|
|
597
597
|
x_values = [point[0] for point in points]
|
|
598
598
|
y_values = [point[1] for point in points]
|
|
@@ -631,8 +631,8 @@ class Annotator:
|
|
|
631
631
|
Args:
|
|
632
632
|
im0 (ndarray): inference image
|
|
633
633
|
text (str): object/class name
|
|
634
|
-
txt_color (
|
|
635
|
-
bg_color (
|
|
634
|
+
txt_color (tuple): display color for text foreground
|
|
635
|
+
bg_color (tuple): display color for text background
|
|
636
636
|
x_center (float): x position center point for bounding box
|
|
637
637
|
y_center (float): y position center point for bounding box
|
|
638
638
|
margin (int): gap between text and rectangle for better display
|
|
@@ -655,8 +655,8 @@ class Annotator:
|
|
|
655
655
|
Args:
|
|
656
656
|
im0 (ndarray): inference image
|
|
657
657
|
text (dict): labels dictionary
|
|
658
|
-
txt_color (
|
|
659
|
-
bg_color (
|
|
658
|
+
txt_color (tuple): display color for text foreground
|
|
659
|
+
bg_color (tuple): display color for text background
|
|
660
660
|
margin (int): gap between text and rectangle for better display
|
|
661
661
|
"""
|
|
662
662
|
horizontal_gap = int(im0.shape[1] * 0.02)
|
|
@@ -805,11 +805,14 @@ class Annotator:
|
|
|
805
805
|
Function for drawing segmented object in bounding box shape.
|
|
806
806
|
|
|
807
807
|
Args:
|
|
808
|
-
mask (
|
|
809
|
-
mask_color (
|
|
810
|
-
label (str):
|
|
811
|
-
txt_color (
|
|
808
|
+
mask (np.ndarray): A 2D array of shape (N, 2) containing the contour points of the segmented object.
|
|
809
|
+
mask_color (tuple): RGB color for the contour and label background.
|
|
810
|
+
label (str, optional): Text label for the object. If None, no label is drawn.
|
|
811
|
+
txt_color (tuple): RGB color for the label text.
|
|
812
812
|
"""
|
|
813
|
+
if mask.size == 0: # no masks to plot
|
|
814
|
+
return
|
|
815
|
+
|
|
813
816
|
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
|
|
814
817
|
text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)
|
|
815
818
|
|
|
@@ -833,8 +836,8 @@ class Annotator:
|
|
|
833
836
|
Args:
|
|
834
837
|
pixels_distance (float): Pixels distance between two bbox centroids.
|
|
835
838
|
centroids (list): Bounding box centroids data.
|
|
836
|
-
line_color (
|
|
837
|
-
centroid_color (
|
|
839
|
+
line_color (tuple): RGB distance line color.
|
|
840
|
+
centroid_color (tuple): RGB bounding box centroid color.
|
|
838
841
|
"""
|
|
839
842
|
# Get the text size
|
|
840
843
|
(text_width_m, text_height_m), _ = cv2.getTextSize(
|
ultralytics/utils/torch_utils.py
CHANGED
|
@@ -170,6 +170,8 @@ def select_device(device="", batch=0, newline=False, verbose=True):
|
|
|
170
170
|
elif device: # non-cpu device requested
|
|
171
171
|
if device == "cuda":
|
|
172
172
|
device = "0"
|
|
173
|
+
if "," in device:
|
|
174
|
+
device = ",".join([x for x in device.split(",") if x]) # remove sequential commas, i.e. "0,,1" -> "0,1"
|
|
173
175
|
visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
|
|
174
176
|
os.environ["CUDA_VISIBLE_DEVICES"] = device # set environment variable - must be before assert is_available()
|
|
175
177
|
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.split(","))):
|
|
@@ -191,7 +193,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
|
|
|
191
193
|
)
|
|
192
194
|
|
|
193
195
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
|
194
|
-
devices = device.split(",") if device else "0" #
|
|
196
|
+
devices = device.split(",") if device else "0" # i.e. "0,1" -> ["0", "1"]
|
|
195
197
|
n = len(devices) # device count
|
|
196
198
|
if n > 1: # multi-GPU
|
|
197
199
|
if batch < 1:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.3.
|
|
3
|
+
Version: 8.3.4
|
|
4
4
|
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Ayush Chaurasia
|
|
6
6
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
@@ -33,7 +33,7 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
33
33
|
Requires-Python: >=3.8
|
|
34
34
|
Description-Content-Type: text/markdown
|
|
35
35
|
License-File: LICENSE
|
|
36
|
-
Requires-Dist: numpy
|
|
36
|
+
Requires-Dist: numpy>=1.23.0
|
|
37
37
|
Requires-Dist: matplotlib>=3.3.0
|
|
38
38
|
Requires-Dist: opencv-python>=4.6.0
|
|
39
39
|
Requires-Dist: pillow>=7.1.2
|
|
@@ -76,6 +76,7 @@ Requires-Dist: numpy==1.23.5; platform_machine == "aarch64" and extra == "export
|
|
|
76
76
|
Requires-Dist: h5py!=3.11.0; platform_machine == "aarch64" and extra == "export"
|
|
77
77
|
Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
|
|
78
78
|
Requires-Dist: coremltools>=7.0; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
|
|
79
|
+
Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
|
|
79
80
|
Provides-Extra: extra
|
|
80
81
|
Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
|
|
81
82
|
Requires-Dist: ipython; extra == "extra"
|
|
@@ -214,11 +215,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
214
215
|
|
|
215
216
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
216
217
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
217
|
-
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.
|
|
218
|
-
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.
|
|
219
|
-
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.
|
|
220
|
-
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.
|
|
221
|
-
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.
|
|
218
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
|
|
219
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
|
|
220
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
|
|
221
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
|
|
222
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
|
|
222
223
|
|
|
223
224
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
224
225
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -231,28 +232,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
231
232
|
|
|
232
233
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
233
234
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
234
|
-
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.
|
|
235
|
-
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.
|
|
236
|
-
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.
|
|
237
|
-
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.
|
|
238
|
-
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.
|
|
235
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
|
|
236
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
|
|
237
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
|
|
238
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
|
|
239
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
|
|
239
240
|
|
|
240
241
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
241
242
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
242
243
|
|
|
243
244
|
</details>
|
|
244
245
|
|
|
246
|
+
<details><summary>Classification (ImageNet)</summary>
|
|
247
|
+
|
|
248
|
+
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
249
|
+
|
|
250
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
251
|
+
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
252
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
|
|
253
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
|
|
254
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
|
|
255
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
|
|
256
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
|
|
257
|
+
|
|
258
|
+
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
259
|
+
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
260
|
+
|
|
261
|
+
</details>
|
|
262
|
+
|
|
245
263
|
<details><summary>Pose (COCO)</summary>
|
|
246
264
|
|
|
247
265
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
248
266
|
|
|
249
267
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
250
268
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
251
|
-
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.
|
|
252
|
-
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.
|
|
253
|
-
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.
|
|
254
|
-
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.
|
|
255
|
-
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 |
|
|
269
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
|
|
270
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
|
|
271
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
|
|
272
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
|
|
273
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
|
|
256
274
|
|
|
257
275
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
258
276
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -265,34 +283,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
265
283
|
|
|
266
284
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
267
285
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
268
|
-
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.
|
|
269
|
-
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.
|
|
270
|
-
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.
|
|
271
|
-
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.
|
|
272
|
-
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.
|
|
286
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
|
|
287
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
|
|
288
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
|
|
289
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
|
|
290
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
|
|
273
291
|
|
|
274
292
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
275
293
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
276
294
|
|
|
277
295
|
</details>
|
|
278
296
|
|
|
279
|
-
<details><summary>Classification (ImageNet)</summary>
|
|
280
|
-
|
|
281
|
-
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
282
|
-
|
|
283
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
284
|
-
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
285
|
-
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
286
|
-
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
287
|
-
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
288
|
-
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
289
|
-
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
290
|
-
|
|
291
|
-
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
292
|
-
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
293
|
-
|
|
294
|
-
</details>
|
|
295
|
-
|
|
296
297
|
## <div align="center">Integrations</div>
|
|
297
298
|
|
|
298
299
|
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
|
@@ -8,7 +8,7 @@ tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
|
|
|
8
8
|
tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
|
|
9
9
|
tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
|
|
10
10
|
tests/test_solutions.py,sha256=eAaLf1wM7IJ6DjT7NEw6sRaeDuTX0ZgsTjrI33XFCXE,3300
|
|
11
|
-
ultralytics/__init__.py,sha256=
|
|
11
|
+
ultralytics/__init__.py,sha256=JkiE8I9-uPGkhvc3KD7MpGn6E2kVJQCe1o-nZlJrriQ,693
|
|
12
12
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
13
13
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
14
14
|
ultralytics/cfg/__init__.py,sha256=62PSSAa0W4-gAEcRNKoKbcxUWBeFNs0ss2O4XJQhOPY,33145
|
|
@@ -104,17 +104,17 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
|
|
|
104
104
|
ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
105
105
|
ultralytics/data/explorer/gui/dash.py,sha256=vZ476NaUH4FKU08rAJ1K9WNyKtg0soMyJJxqg176yWc,10498
|
|
106
106
|
ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
107
|
-
ultralytics/engine/exporter.py,sha256=
|
|
107
|
+
ultralytics/engine/exporter.py,sha256=qhuPMBjBDVj9Qaa2qJYR954a-YS4BJtVN9jJeyFzyOg,57527
|
|
108
108
|
ultralytics/engine/model.py,sha256=TDuy9JzzyvOaq5aKVljL_MFRKBDMCFwaLo3JD_d45CU,51462
|
|
109
109
|
ultralytics/engine/predictor.py,sha256=MgMWHUJdRcVCaVmOyvdy2Gjk_EyRHv-ar0SSGxQe8F4,17471
|
|
110
110
|
ultralytics/engine/results.py,sha256=8RJlN8J-_9w-mrDZm9wC-DZJTPBS7v1c_r_R173QyRM,75043
|
|
111
|
-
ultralytics/engine/trainer.py,sha256=
|
|
111
|
+
ultralytics/engine/trainer.py,sha256=O2xCZ6mriLfPhU2IRe8XCCyZiI5A_AknjpQw3O5bAIE,36983
|
|
112
112
|
ultralytics/engine/tuner.py,sha256=gPqDTHH7vRB2O3YyH26m1BjVKbXxuA2XAlPRzTKFZsc,11838
|
|
113
113
|
ultralytics/engine/validator.py,sha256=483Ad87Irk7IBlJNLu2SQAJsb7YriALTX9GIgriCmRg,14650
|
|
114
114
|
ultralytics/hub/__init__.py,sha256=3SKvZ5aRina3h94xMPQIB3D4maF62qFcyIqPPHRHNAc,5644
|
|
115
115
|
ultralytics/hub/auth.py,sha256=kDLakGa2NbzvMAeXc2UdzZ65r0AH-XeM_JfsDY97WGk,5545
|
|
116
116
|
ultralytics/hub/session.py,sha256=2KznO5kX14HFZ2-Ct9LoG312sdHuigQSLZb58MGvbJY,16411
|
|
117
|
-
ultralytics/hub/utils.py,sha256=
|
|
117
|
+
ultralytics/hub/utils.py,sha256=jBfuDJkOc8xCC-pjRFaC-x5GEfcS5Koua2bepHIU3SY,9705
|
|
118
118
|
ultralytics/hub/google/__init__.py,sha256=uclNs-_5vAzQMgQKgl8eBvml1cx6IZYXRUhrF57v6_k,7504
|
|
119
119
|
ultralytics/models/__init__.py,sha256=TT9iLCL_n9Y80dcUq0Fo-p-GRZCSU2vrWXM3CoMwqqE,265
|
|
120
120
|
ultralytics/models/fastsam/__init__.py,sha256=W0rRSJM3vdxcsneuiN6_ajkUw86k6-opUKdLxVhKOoQ,203
|
|
@@ -135,7 +135,7 @@ ultralytics/models/sam/__init__.py,sha256=o4_D6y8YJlOXIK7Lwo9RHnIJJ9xoFNi4zK99QS
|
|
|
135
135
|
ultralytics/models/sam/amg.py,sha256=GrmO_8YfIDt_QkPEMF_WFjPZkhwhf7iwx7ig8JgOUnE,8709
|
|
136
136
|
ultralytics/models/sam/build.py,sha256=np9vP7AETCZA2Wdds-uj2eQKVnpHQaVpRrE2-U2uMTI,12153
|
|
137
137
|
ultralytics/models/sam/model.py,sha256=2KFUp8SHiqOgwUjkdqdau0oduJwKQxm4N9GHWjdhUFo,7382
|
|
138
|
-
ultralytics/models/sam/predict.py,sha256=
|
|
138
|
+
ultralytics/models/sam/predict.py,sha256=_spP0uYNFzUnybwBvzZhF3iEMwvAi6bxryRdUwxwweM,38608
|
|
139
139
|
ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
140
140
|
ultralytics/models/sam/modules/blocks.py,sha256=Q-KwhFbdyZhl1tjG_kP2LcQkZbzoNt618i-NRrKNx2Y,45919
|
|
141
141
|
ultralytics/models/sam/modules/decoders.py,sha256=mODsqnTN_CjE3H0Sh9cd8PfTnHANPjGB1bjqHxfezSg,25830
|
|
@@ -192,7 +192,7 @@ ultralytics/solutions/object_counter.py,sha256=U66uvv_6QSol4-LY1E9JOZnYRYbek5Kz3
|
|
|
192
192
|
ultralytics/solutions/parking_management.py,sha256=VgYyhoSEo7fnPegIhNUqnFL0jlMEevALx0QQbzJ3vGI,9049
|
|
193
193
|
ultralytics/solutions/queue_management.py,sha256=yKPGc2-fN-lMpNddkxjN7xYGIJwMdoU-VIDRxQ1KPow,4869
|
|
194
194
|
ultralytics/solutions/speed_estimation.py,sha256=c9OPGpDU9x6Dj4SobNc-sO90EZTPTGeKkW5u6C6Zj7g,4623
|
|
195
|
-
ultralytics/solutions/streamlit_inference.py,sha256=
|
|
195
|
+
ultralytics/solutions/streamlit_inference.py,sha256=qA2EtwUC7ADOQ8P-zs3VPyrIoRArhcZz9CxkFbH63bw,5699
|
|
196
196
|
ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
|
|
197
197
|
ultralytics/trackers/basetrack.py,sha256=dXnXW3cxxd7lPm20JJCNO2voCIrQ4vhbNI1g4YEgn-Y,4423
|
|
198
198
|
ultralytics/trackers/bot_sort.py,sha256=766grVQExvonb087Wy-SB32TSwYYsTEM22yoWeQ_EEo,10494
|
|
@@ -202,9 +202,9 @@ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7J
|
|
|
202
202
|
ultralytics/trackers/utils/gmc.py,sha256=VcURuY041qGCeWUGMxHZBr10T16LtcMqyv7AmTfE1MY,14557
|
|
203
203
|
ultralytics/trackers/utils/kalman_filter.py,sha256=cH9zD3fwkuezP97H9mw8cSBN7a8hHKx_Sx1j7t3oYGs,21349
|
|
204
204
|
ultralytics/trackers/utils/matching.py,sha256=3Ie1WNNRZ4_q3365F03XD7Nr9juZB_08mw4yUKC3w74,7162
|
|
205
|
-
ultralytics/utils/__init__.py,sha256=
|
|
205
|
+
ultralytics/utils/__init__.py,sha256=jGfv0ejbMp1hYcxeZtbcCtTIyW4UpzfdvAikyC2xubQ,48880
|
|
206
206
|
ultralytics/utils/autobatch.py,sha256=AXboYfNSnTGsYj5FmgGYPQd0crfkeleyms6QXQfZGQ4,4194
|
|
207
|
-
ultralytics/utils/benchmarks.py,sha256=
|
|
207
|
+
ultralytics/utils/benchmarks.py,sha256=8FYp5WPzcxcDaeg8ol2sgzRBHVGYatEO7f3MrmPF6nI,25097
|
|
208
208
|
ultralytics/utils/checks.py,sha256=tiwVY1SCf7AlDOUQDh6fJlmhQ3CxQEqLUrXRvwRBoKs,28998
|
|
209
209
|
ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
|
|
210
210
|
ultralytics/utils/downloads.py,sha256=97JitihZqvIMS6_TX5rJAG7BI8eYHlu5g8YXlI0RkR4,21998
|
|
@@ -215,9 +215,9 @@ ultralytics/utils/loss.py,sha256=SW3FVFFp8Ki_LCT8wIdFbm6KmyPcQn3RmKNcvVAhMQI,341
|
|
|
215
215
|
ultralytics/utils/metrics.py,sha256=UgLGudWp57uXDMlMUJy4gsz6cfVjcq7tYmHeto3TqvM,53927
|
|
216
216
|
ultralytics/utils/ops.py,sha256=dsXNdyrYx_p6io6zezig9p84dxS7U-10vceHNVu2IL0,32888
|
|
217
217
|
ultralytics/utils/patches.py,sha256=J-iOwIRbfUs-inBZerhnXby5tUKjYcOIyvhLTS352JE,3270
|
|
218
|
-
ultralytics/utils/plotting.py,sha256=
|
|
218
|
+
ultralytics/utils/plotting.py,sha256=Sqs9Q7mhenCsFed_oyw_64wgvd0TTae9L3Lc4g2_lSI,62296
|
|
219
219
|
ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
|
|
220
|
-
ultralytics/utils/torch_utils.py,sha256=
|
|
220
|
+
ultralytics/utils/torch_utils.py,sha256=RsTzm3__J4K1OUaxqc32O9WT6azcl4hPNkDdxhEp3q4,29792
|
|
221
221
|
ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
|
|
222
222
|
ultralytics/utils/tuner.py,sha256=AtEtK6pOt9xVTyx864OpNRVxNdAxz5aKHzveiXwkD1A,6250
|
|
223
223
|
ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
|
|
@@ -231,9 +231,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
|
|
|
231
231
|
ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
|
|
232
232
|
ultralytics/utils/callbacks/tensorboard.py,sha256=0kn4IR10no99UCIheojWRujgybmUHSx5fPI6Vsq6l_g,4135
|
|
233
233
|
ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
|
|
234
|
-
ultralytics-8.3.
|
|
235
|
-
ultralytics-8.3.
|
|
236
|
-
ultralytics-8.3.
|
|
237
|
-
ultralytics-8.3.
|
|
238
|
-
ultralytics-8.3.
|
|
239
|
-
ultralytics-8.3.
|
|
234
|
+
ultralytics-8.3.4.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
235
|
+
ultralytics-8.3.4.dist-info/METADATA,sha256=oNkPldiv138BEelfph38kxAuGZAOiadiFH5Z2B3B6MY,34685
|
|
236
|
+
ultralytics-8.3.4.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
237
|
+
ultralytics-8.3.4.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
238
|
+
ultralytics-8.3.4.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
239
|
+
ultralytics-8.3.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|