ultralytics 8.3.1__py3-none-any.whl → 8.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

tests/test_cuda.py CHANGED
@@ -10,6 +10,7 @@ from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
10
10
  from ultralytics import YOLO
11
11
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
12
12
  from ultralytics.utils import ASSETS, WEIGHTS_DIR
13
+ from ultralytics.utils.checks import check_amp
13
14
 
14
15
 
15
16
  def test_checks():
@@ -18,6 +19,13 @@ def test_checks():
18
19
  assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
19
20
 
20
21
 
22
+ @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
23
+ def test_amp():
24
+ """Test AMP training checks."""
25
+ model = YOLO("yolo11n.pt").model.cuda()
26
+ assert check_amp(model)
27
+
28
+
21
29
  @pytest.mark.slow
22
30
  @pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
23
31
  @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.1"
3
+ __version__ = "8.3.3"
4
4
 
5
5
  import os
6
6
 
@@ -377,7 +377,7 @@ class Model(nn.Module):
377
377
  self.model.load(weights)
378
378
  return self
379
379
 
380
- def save(self, filename: Union[str, Path] = "saved_model.pt", use_dill=True) -> None:
380
+ def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
381
381
  """
382
382
  Saves the current model state to a file.
383
383
 
@@ -386,7 +386,6 @@ class Model(nn.Module):
386
386
 
387
387
  Args:
388
388
  filename (Union[str, Path]): The name of the file to save the model to.
389
- use_dill (bool): Whether to try using dill for serialization if available.
390
389
 
391
390
  Raises:
392
391
  AssertionError: If the model is not a PyTorch model.
@@ -408,7 +407,7 @@ class Model(nn.Module):
408
407
  "license": "AGPL-3.0 License (https://ultralytics.com/license)",
409
408
  "docs": "https://docs.ultralytics.com",
410
409
  }
411
- torch.save({**self.ckpt, **updates}, filename, use_dill=use_dill)
410
+ torch.save({**self.ckpt, **updates}, filename)
412
411
 
413
412
  def info(self, detailed: bool = False, verbose: bool = True):
414
413
  """
ultralytics/hub/utils.py CHANGED
@@ -170,7 +170,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos
170
170
  class Events:
171
171
  """
172
172
  A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and
173
- disabled when sync=False. Run 'yolo settings' to see and update settings YAML file.
173
+ disabled when sync=False. Run 'yolo settings' to see and update settings.
174
174
 
175
175
  Attributes:
176
176
  url (str): The URL to send anonymous events.
@@ -210,8 +210,6 @@ def _build_sam(
210
210
  state_dict = torch.load(f)
211
211
  sam.load_state_dict(state_dict)
212
212
  sam.eval()
213
- # sam.load_state_dict(torch.load(checkpoint), strict=True)
214
- # sam.eval()
215
213
  return sam
216
214
 
217
215
 
@@ -23,13 +23,13 @@ def inference(model=None):
23
23
  # Main title of streamlit application
24
24
  main_title_cfg = """<div><h1 style="color:#FF64DA; text-align:center; font-size:40px;
25
25
  font-family: 'Archivo', sans-serif; margin-top:-50px;margin-bottom:20px;">
26
- Ultralytics YOLOv8 Streamlit Application
26
+ Ultralytics YOLO Streamlit Application
27
27
  </h1></div>"""
28
28
 
29
29
  # Subtitle of streamlit application
30
30
  sub_title_cfg = """<div><h4 style="color:#042AFF; text-align:center;
31
31
  font-family: 'Archivo', sans-serif; margin-top:-15px; margin-bottom:50px;">
32
- Experience real-time object detection on your webcam with the power of Ultralytics YOLOv8! 🚀</h4>
32
+ Experience real-time object detection on your webcam with the power of Ultralytics YOLO! 🚀</h4>
33
33
  </div>"""
34
34
 
35
35
  # Set html page configuration
@@ -67,7 +67,7 @@ def inference(model=None):
67
67
  vid_file_name = 0
68
68
 
69
69
  # Add dropdown menu for model selection
70
- available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolov8")]
70
+ available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
71
71
  if model:
72
72
  available_models.insert(0, model.split(".pt")[0]) # insert model without suffix as *.pt is added later
73
73
 
@@ -111,6 +111,7 @@ torch.set_printoptions(linewidth=320, precision=4, profile="default")
111
111
  np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
112
112
  cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
113
113
  os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads
114
+ os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training to avoid CUDA warning
114
115
  os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab
115
116
  os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings
116
117
  os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs
@@ -970,7 +971,7 @@ def threaded(func):
970
971
  def set_sentry():
971
972
  """
972
973
  Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
973
- sync=True in settings. Run 'yolo settings' to see and update settings YAML file.
974
+ sync=True in settings. Run 'yolo settings' to see and update settings.
974
975
 
975
976
  Conditions required to send errors (ALL conditions must be met or no errors will be reported):
976
977
  - sentry_sdk package is installed
@@ -982,36 +983,11 @@ def set_sentry():
982
983
  - online environment
983
984
  - CLI used to run package (checked with 'yolo' as the name of the main CLI command)
984
985
 
985
- The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
986
- exceptions and to exclude events with 'out of memory' in their exception message.
986
+ The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError exceptions and to exclude
987
+ events with 'out of memory' in their exception message.
987
988
 
988
989
  Additionally, the function sets custom tags and user information for Sentry events.
989
990
  """
990
-
991
- def before_send(event, hint):
992
- """
993
- Modify the event before sending it to Sentry based on specific exception types and messages.
994
-
995
- Args:
996
- event (dict): The event dictionary containing information about the error.
997
- hint (dict): A dictionary containing additional information about the error.
998
-
999
- Returns:
1000
- dict: The modified event or None if the event should not be sent to Sentry.
1001
- """
1002
- if "exc_info" in hint:
1003
- exc_type, exc_value, tb = hint["exc_info"]
1004
- if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
1005
- return None # do not send event
1006
-
1007
- event["tags"] = {
1008
- "sys_argv": ARGV[0],
1009
- "sys_argv_name": Path(ARGV[0]).name,
1010
- "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
1011
- "os": ENVIRONMENT,
1012
- }
1013
- return event
1014
-
1015
991
  if (
1016
992
  SETTINGS["sync"]
1017
993
  and RANK in {-1, 0}
@@ -1027,8 +1003,32 @@ def set_sentry():
1027
1003
  except ImportError:
1028
1004
  return
1029
1005
 
1006
+ def before_send(event, hint):
1007
+ """
1008
+ Modify the event before sending it to Sentry based on specific exception types and messages.
1009
+
1010
+ Args:
1011
+ event (dict): The event dictionary containing information about the error.
1012
+ hint (dict): A dictionary containing additional information about the error.
1013
+
1014
+ Returns:
1015
+ dict: The modified event or None if the event should not be sent to Sentry.
1016
+ """
1017
+ if "exc_info" in hint:
1018
+ exc_type, exc_value, _ = hint["exc_info"]
1019
+ if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
1020
+ return None # do not send event
1021
+
1022
+ event["tags"] = {
1023
+ "sys_argv": ARGV[0],
1024
+ "sys_argv_name": Path(ARGV[0]).name,
1025
+ "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
1026
+ "os": ENVIRONMENT,
1027
+ }
1028
+ return event
1029
+
1030
1030
  sentry_sdk.init(
1031
- dsn="https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016",
1031
+ dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016",
1032
1032
  debug=False,
1033
1033
  traces_sample_rate=1.0,
1034
1034
  release=__version__,
@@ -1169,25 +1169,26 @@ class SettingsManager(JSONDict):
1169
1169
  self.file = Path(file)
1170
1170
  self.version = version
1171
1171
  self.defaults = {
1172
- "settings_version": version,
1173
- "datasets_dir": str(datasets_root / "datasets"),
1174
- "weights_dir": str(root / "weights"),
1175
- "runs_dir": str(root / "runs"),
1176
- "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
1177
- "sync": True,
1178
- "api_key": "",
1179
- "openai_api_key": "",
1180
- "clearml": True, # integrations
1181
- "comet": True,
1182
- "dvc": True,
1183
- "hub": True,
1184
- "mlflow": True,
1185
- "neptune": True,
1186
- "raytune": True,
1187
- "tensorboard": True,
1188
- "wandb": True,
1189
- "vscode_msg": True,
1172
+ "settings_version": version, # Settings schema version
1173
+ "datasets_dir": str(datasets_root / "datasets"), # Datasets directory
1174
+ "weights_dir": str(root / "weights"), # Model weights directory
1175
+ "runs_dir": str(root / "runs"), # Experiment runs directory
1176
+ "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash
1177
+ "sync": True, # Enable synchronization
1178
+ "api_key": "", # Ultralytics API Key
1179
+ "openai_api_key": "", # OpenAI API Key
1180
+ "clearml": True, # ClearML integration
1181
+ "comet": True, # Comet integration
1182
+ "dvc": True, # DVC integration
1183
+ "hub": True, # Ultralytics HUB integration
1184
+ "mlflow": True, # MLflow integration
1185
+ "neptune": True, # Neptune integration
1186
+ "raytune": True, # Ray Tune integration
1187
+ "tensorboard": True, # TensorBoard logging
1188
+ "wandb": True, # Weights & Biases logging
1189
+ "vscode_msg": True, # VSCode messaging
1190
1190
  }
1191
+
1191
1192
  self.help_msg = (
1192
1193
  f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'"
1193
1194
  "\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. "
@@ -536,8 +536,8 @@ class ProfileModels:
536
536
  """Generates a table row string with model performance metrics including inference times and model details."""
537
537
  layers, params, gradients, flops = model_info
538
538
  return (
539
- f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± "
540
- f"{t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |"
539
+ f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}±"
540
+ f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
541
541
  )
542
542
 
543
543
  @staticmethod
@@ -657,9 +657,10 @@ def check_amp(model):
657
657
  def amp_allclose(m, im):
658
658
  """All close FP32 vs AMP results."""
659
659
  batch = [im] * 8
660
- a = m(batch, imgsz=128, device=device, verbose=False)[0].boxes.data # FP32 inference
660
+ imgsz = max(256, int(model.stride.max() * 4)) # max stride P5-32 and P6-64
661
+ a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference
661
662
  with autocast(enabled=True):
662
- b = m(batch, imgsz=128, device=device, verbose=False)[0].boxes.data # AMP inference
663
+ b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # AMP inference
663
664
  del m
664
665
  return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
665
666
 
@@ -219,4 +219,4 @@ def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_name
219
219
 
220
220
  # Save model using model.save()
221
221
  print(f"Re-saving {model_name} model to {save_path}")
222
- model.save(save_path, use_dill=False)
222
+ model.save(save_path)
@@ -86,25 +86,15 @@ def torch_load(*args, **kwargs):
86
86
  return _torch_load(*args, **kwargs)
87
87
 
88
88
 
89
- def torch_save(*args, use_dill=True, **kwargs):
89
+ def torch_save(*args, **kwargs):
90
90
  """
91
91
  Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and
92
92
  exponential standoff in case of save failure.
93
93
 
94
94
  Args:
95
95
  *args (tuple): Positional arguments to pass to torch.save.
96
- use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
97
96
  **kwargs (Any): Keyword arguments to pass to torch.save.
98
97
  """
99
- try:
100
- assert use_dill
101
- import dill as pickle
102
- except (AssertionError, ImportError):
103
- import pickle
104
-
105
- if "pickle_module" not in kwargs:
106
- kwargs["pickle_module"] = pickle
107
-
108
98
  for i in range(4): # 3 retries
109
99
  try:
110
100
  return _torch_save(*args, **kwargs)
@@ -13,8 +13,8 @@ import torch
13
13
  from PIL import Image, ImageDraw, ImageFont
14
14
  from PIL import __version__ as pil_version
15
15
 
16
- from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
17
- from ultralytics.utils.checks import check_font, check_version, is_ascii
16
+ from ultralytics.utils import IS_JUPYTER, LOGGER, TryExcept, ops, plt_settings, threaded
17
+ from ultralytics.utils.checks import check_font, check_requirements, check_version, is_ascii
18
18
  from ultralytics.utils.files import increment_path
19
19
 
20
20
 
@@ -524,7 +524,18 @@ class Annotator:
524
524
 
525
525
  def show(self, title=None):
526
526
  """Show the annotated image."""
527
- Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)
527
+ im = Image.fromarray(np.asarray(self.im)[..., ::-1]) # Convert numpy array to PIL Image with RGB to BGR
528
+ if IS_JUPYTER:
529
+ check_requirements("ipython")
530
+ try:
531
+ from IPython.display import display
532
+
533
+ display(im)
534
+ except ImportError as e:
535
+ LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}")
536
+ else:
537
+ # Convert numpy array to PIL Image and show
538
+ im.show(title=title)
528
539
 
529
540
  def save(self, filename="image.jpg"):
530
541
  """Save the annotated image to 'filename'."""
@@ -580,8 +591,8 @@ class Annotator:
580
591
  Args:
581
592
  label (str): queue counts label
582
593
  points (tuple): region points for center point calculation to display text
583
- region_color (RGB): queue region color
584
- txt_color (RGB): text display color
594
+ region_color (tuple): RGB queue region color.
595
+ txt_color (tuple): RGB text display color.
585
596
  """
586
597
  x_values = [point[0] for point in points]
587
598
  y_values = [point[1] for point in points]
@@ -620,8 +631,8 @@ class Annotator:
620
631
  Args:
621
632
  im0 (ndarray): inference image
622
633
  text (str): object/class name
623
- txt_color (bgr color): display color for text foreground
624
- bg_color (bgr color): display color for text background
634
+ txt_color (tuple): display color for text foreground
635
+ bg_color (tuple): display color for text background
625
636
  x_center (float): x position center point for bounding box
626
637
  y_center (float): y position center point for bounding box
627
638
  margin (int): gap between text and rectangle for better display
@@ -644,8 +655,8 @@ class Annotator:
644
655
  Args:
645
656
  im0 (ndarray): inference image
646
657
  text (dict): labels dictionary
647
- txt_color (bgr color): display color for text foreground
648
- bg_color (bgr color): display color for text background
658
+ txt_color (tuple): display color for text foreground
659
+ bg_color (tuple): display color for text background
649
660
  margin (int): gap between text and rectangle for better display
650
661
  """
651
662
  horizontal_gap = int(im0.shape[1] * 0.02)
@@ -794,11 +805,14 @@ class Annotator:
794
805
  Function for drawing segmented object in bounding box shape.
795
806
 
796
807
  Args:
797
- mask (list): masks data list for instance segmentation area plotting
798
- mask_color (RGB): mask foreground color
799
- label (str): Detection label text
800
- txt_color (RGB): text color
808
+ mask (np.ndarray): A 2D array of shape (N, 2) containing the contour points of the segmented object.
809
+ mask_color (tuple): RGB color for the contour and label background.
810
+ label (str, optional): Text label for the object. If None, no label is drawn.
811
+ txt_color (tuple): RGB color for the label text.
801
812
  """
813
+ if mask.size == 0: # no masks to plot
814
+ return
815
+
802
816
  cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
803
817
  text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)
804
818
 
@@ -822,8 +836,8 @@ class Annotator:
822
836
  Args:
823
837
  pixels_distance (float): Pixels distance between two bbox centroids.
824
838
  centroids (list): Bounding box centroids data.
825
- line_color (RGB): Distance line color.
826
- centroid_color (RGB): Bounding box centroid color.
839
+ line_color (tuple): RGB distance line color.
840
+ centroid_color (tuple): RGB bounding box centroid color.
827
841
  """
828
842
  # Get the text size
829
843
  (text_width_m, text_height_m), _ = cv2.getTextSize(
@@ -595,7 +595,7 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict
595
595
 
596
596
  # Save
597
597
  combined = {**metadata, **x, **(updates or {})}
598
- torch.save(combined, s or f, use_dill=False) # combine dicts (prefer to the right)
598
+ torch.save(combined, s or f) # combine dicts (prefer to the right)
599
599
  mb = os.path.getsize(s or f) / 1e6 # file size
600
600
  LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
601
601
  return combined
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.1
3
+ Version: 8.3.3
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Ayush Chaurasia
6
6
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
@@ -214,11 +214,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
214
214
 
215
215
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
216
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
217
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
218
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
219
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
220
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
221
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
217
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
218
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
219
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
220
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
221
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
222
222
 
223
223
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
224
224
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -231,28 +231,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
231
231
 
232
232
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
233
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
234
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
235
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
236
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
237
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
238
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
234
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
235
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
236
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
237
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
238
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
239
239
 
240
240
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
241
241
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
242
242
 
243
243
  </details>
244
244
 
245
+ <details><summary>Classification (ImageNet)</summary>
246
+
247
+ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
248
+
249
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
250
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
251
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
252
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
253
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
254
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
255
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
256
+
257
+ - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
258
+ - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
259
+
260
+ </details>
261
+
245
262
  <details><summary>Pose (COCO)</summary>
246
263
 
247
264
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
248
265
 
249
266
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
250
267
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
251
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
252
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
253
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
254
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
255
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
268
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
269
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
270
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
271
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
272
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
256
273
 
257
274
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
258
275
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -265,34 +282,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
265
282
 
266
283
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
267
284
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
268
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
269
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
270
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
271
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
272
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
285
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
286
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
287
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
288
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
289
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
273
290
 
274
291
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
275
292
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
276
293
 
277
294
  </details>
278
295
 
279
- <details><summary>Classification (ImageNet)</summary>
280
-
281
- See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
282
-
283
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
284
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
285
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
286
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
287
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
288
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
289
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
290
-
291
- - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
292
- - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
293
-
294
- </details>
295
-
296
296
  ## <div align="center">Integrations</div>
297
297
 
298
298
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
@@ -1,14 +1,14 @@
1
1
  tests/__init__.py,sha256=iVH5nXrACTDv0_ZIVRPi-9f6oYBl6g-tCkeR2Hb8MFM,666
2
2
  tests/conftest.py,sha256=9PFAiwAy6eeORGspr5dOKxVuFDVKqYg8Nn_RxSJ27UI,2919
3
3
  tests/test_cli.py,sha256=E4lMt49TGo12Lb5CgQfpk1bwyFUZuFxF0V9j_ykV7xM,4821
4
- tests/test_cuda.py,sha256=NT2AqAh3uAtVI44usSdt1PRlvaECwB2MQxDFxofCptA,5133
4
+ tests/test_cuda.py,sha256=KoRtRLUB7KOb9IXYX4mCi295Uh_cZEEFhCyvCDGRK9s,5381
5
5
  tests/test_engine.py,sha256=dcEcJsMQh61rDSNv7l4TIAgybLpzjVwerv9JZC_KCM8,4934
6
6
  tests/test_explorer.py,sha256=9EeMtt4-K3-MeGnAc7NemTg3uTo-Xr6AYJlTJZJJeF8,2572
7
7
  tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
8
8
  tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
9
9
  tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
10
10
  tests/test_solutions.py,sha256=eAaLf1wM7IJ6DjT7NEw6sRaeDuTX0ZgsTjrI33XFCXE,3300
11
- ultralytics/__init__.py,sha256=v5M2b4dAONrER9wuum2weuqz6i71ntKRaMrCBiaLCmg,693
11
+ ultralytics/__init__.py,sha256=EBK5aoP9DP2M_QXggxoUlGqceIsrS3Pv0LXlAQforQU,693
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
14
  ultralytics/cfg/__init__.py,sha256=62PSSAa0W4-gAEcRNKoKbcxUWBeFNs0ss2O4XJQhOPY,33145
@@ -105,7 +105,7 @@ ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2
105
105
  ultralytics/data/explorer/gui/dash.py,sha256=vZ476NaUH4FKU08rAJ1K9WNyKtg0soMyJJxqg176yWc,10498
106
106
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
107
107
  ultralytics/engine/exporter.py,sha256=BFYvv763kbEm5q0-AYIh979vL0ccU4RNvON2w8qtm1s,57019
108
- ultralytics/engine/model.py,sha256=RDxuxKMTkO2_zTwZDxd474dhNeRSo-7WvvqO_Ahjz5c,51583
108
+ ultralytics/engine/model.py,sha256=TDuy9JzzyvOaq5aKVljL_MFRKBDMCFwaLo3JD_d45CU,51462
109
109
  ultralytics/engine/predictor.py,sha256=MgMWHUJdRcVCaVmOyvdy2Gjk_EyRHv-ar0SSGxQe8F4,17471
110
110
  ultralytics/engine/results.py,sha256=8RJlN8J-_9w-mrDZm9wC-DZJTPBS7v1c_r_R173QyRM,75043
111
111
  ultralytics/engine/trainer.py,sha256=lBMKJDpu8owE0eeNkAsYszbAROk-WOB3vlhoGB1Vicc,36971
@@ -114,7 +114,7 @@ ultralytics/engine/validator.py,sha256=483Ad87Irk7IBlJNLu2SQAJsb7YriALTX9GIgriCm
114
114
  ultralytics/hub/__init__.py,sha256=3SKvZ5aRina3h94xMPQIB3D4maF62qFcyIqPPHRHNAc,5644
115
115
  ultralytics/hub/auth.py,sha256=kDLakGa2NbzvMAeXc2UdzZ65r0AH-XeM_JfsDY97WGk,5545
116
116
  ultralytics/hub/session.py,sha256=2KznO5kX14HFZ2-Ct9LoG312sdHuigQSLZb58MGvbJY,16411
117
- ultralytics/hub/utils.py,sha256=I7NATG6O_QRw7EU7EHkdTVvbCkwKCyUe54BP60To_so,9715
117
+ ultralytics/hub/utils.py,sha256=jBfuDJkOc8xCC-pjRFaC-x5GEfcS5Koua2bepHIU3SY,9705
118
118
  ultralytics/hub/google/__init__.py,sha256=uclNs-_5vAzQMgQKgl8eBvml1cx6IZYXRUhrF57v6_k,7504
119
119
  ultralytics/models/__init__.py,sha256=TT9iLCL_n9Y80dcUq0Fo-p-GRZCSU2vrWXM3CoMwqqE,265
120
120
  ultralytics/models/fastsam/__init__.py,sha256=W0rRSJM3vdxcsneuiN6_ajkUw86k6-opUKdLxVhKOoQ,203
@@ -133,7 +133,7 @@ ultralytics/models/rtdetr/train.py,sha256=3QjchAvLM3gh1sNTOVSVvpyqqsZSYprUQ12e4o
133
133
  ultralytics/models/rtdetr/val.py,sha256=xVjZShZ1AvES97wVekl2q_1g20Pq-IIHhkJdWtxMncs,5566
134
134
  ultralytics/models/sam/__init__.py,sha256=o4_D6y8YJlOXIK7Lwo9RHnIJJ9xoFNi4zK99QSc1kdM,176
135
135
  ultralytics/models/sam/amg.py,sha256=GrmO_8YfIDt_QkPEMF_WFjPZkhwhf7iwx7ig8JgOUnE,8709
136
- ultralytics/models/sam/build.py,sha256=zNQbrgSHUgz1gyXQwLKGTpa6CSEjeaevcP3w1Z1l3mo,12233
136
+ ultralytics/models/sam/build.py,sha256=np9vP7AETCZA2Wdds-uj2eQKVnpHQaVpRrE2-U2uMTI,12153
137
137
  ultralytics/models/sam/model.py,sha256=2KFUp8SHiqOgwUjkdqdau0oduJwKQxm4N9GHWjdhUFo,7382
138
138
  ultralytics/models/sam/predict.py,sha256=unsoNrEx6pexKD28-HTpALa02PtNtE4e2ERdzs9qbYw,38556
139
139
  ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
@@ -192,7 +192,7 @@ ultralytics/solutions/object_counter.py,sha256=U66uvv_6QSol4-LY1E9JOZnYRYbek5Kz3
192
192
  ultralytics/solutions/parking_management.py,sha256=VgYyhoSEo7fnPegIhNUqnFL0jlMEevALx0QQbzJ3vGI,9049
193
193
  ultralytics/solutions/queue_management.py,sha256=yKPGc2-fN-lMpNddkxjN7xYGIJwMdoU-VIDRxQ1KPow,4869
194
194
  ultralytics/solutions/speed_estimation.py,sha256=c9OPGpDU9x6Dj4SobNc-sO90EZTPTGeKkW5u6C6Zj7g,4623
195
- ultralytics/solutions/streamlit_inference.py,sha256=MKf5P3O5oJwIKu2h_URvzaQjMWoSEMDMBwordplfRxo,5703
195
+ ultralytics/solutions/streamlit_inference.py,sha256=qA2EtwUC7ADOQ8P-zs3VPyrIoRArhcZz9CxkFbH63bw,5699
196
196
  ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
197
197
  ultralytics/trackers/basetrack.py,sha256=dXnXW3cxxd7lPm20JJCNO2voCIrQ4vhbNI1g4YEgn-Y,4423
198
198
  ultralytics/trackers/bot_sort.py,sha256=766grVQExvonb087Wy-SB32TSwYYsTEM22yoWeQ_EEo,10494
@@ -202,22 +202,22 @@ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7J
202
202
  ultralytics/trackers/utils/gmc.py,sha256=VcURuY041qGCeWUGMxHZBr10T16LtcMqyv7AmTfE1MY,14557
203
203
  ultralytics/trackers/utils/kalman_filter.py,sha256=cH9zD3fwkuezP97H9mw8cSBN7a8hHKx_Sx1j7t3oYGs,21349
204
204
  ultralytics/trackers/utils/matching.py,sha256=3Ie1WNNRZ4_q3365F03XD7Nr9juZB_08mw4yUKC3w74,7162
205
- ultralytics/utils/__init__.py,sha256=Vl0nNyniKdFJYkQfwHnQ3CFS8GwqajZk5iY2m7l1irA,48238
205
+ ultralytics/utils/__init__.py,sha256=R2VpuwIfwpTSTX2T_MFdW1tNdX27FZW5XAH984tjR1Q,48834
206
206
  ultralytics/utils/autobatch.py,sha256=AXboYfNSnTGsYj5FmgGYPQd0crfkeleyms6QXQfZGQ4,4194
207
- ultralytics/utils/benchmarks.py,sha256=IN6ZqU-1DVHnwRsdgS_vcBhng8DUMRIEjEEgdrl1mdY,25101
208
- ultralytics/utils/checks.py,sha256=PgvIYpYw8gmwifDShoUuSil396FPf9KmZWh4FaWtSWA,28910
207
+ ultralytics/utils/benchmarks.py,sha256=8FYp5WPzcxcDaeg8ol2sgzRBHVGYatEO7f3MrmPF6nI,25097
208
+ ultralytics/utils/checks.py,sha256=tiwVY1SCf7AlDOUQDh6fJlmhQ3CxQEqLUrXRvwRBoKs,28998
209
209
  ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
210
210
  ultralytics/utils/downloads.py,sha256=97JitihZqvIMS6_TX5rJAG7BI8eYHlu5g8YXlI0RkR4,21998
211
211
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
212
- ultralytics/utils/files.py,sha256=zxKNaH6YJvGKrD4DVPk0kkoo44Q7Xi-n_1Fy48TzTxw,8240
212
+ ultralytics/utils/files.py,sha256=YjfzbBDAq-nD3LKjtuMVwggnnv1dROMuVoo3Edm_tjU,8224
213
213
  ultralytics/utils/instance.py,sha256=QSms7mPHZ5e8JGuJYLohLWltzI0aBE8dob2rOUK4RtM,16249
214
214
  ultralytics/utils/loss.py,sha256=SW3FVFFp8Ki_LCT8wIdFbm6KmyPcQn3RmKNcvVAhMQI,34174
215
215
  ultralytics/utils/metrics.py,sha256=UgLGudWp57uXDMlMUJy4gsz6cfVjcq7tYmHeto3TqvM,53927
216
216
  ultralytics/utils/ops.py,sha256=dsXNdyrYx_p6io6zezig9p84dxS7U-10vceHNVu2IL0,32888
217
- ultralytics/utils/patches.py,sha256=Oo3DkP7MbXnNGvPfoFSocAkVvaPh9kwMT_9RQUfjVhI,3594
218
- ultralytics/utils/plotting.py,sha256=lCx9i3USQK2KGsgD-l2cbdbv33c396gIwMFsZ9iOa1w,61629
217
+ ultralytics/utils/patches.py,sha256=J-iOwIRbfUs-inBZerhnXby5tUKjYcOIyvhLTS352JE,3270
218
+ ultralytics/utils/plotting.py,sha256=Sqs9Q7mhenCsFed_oyw_64wgvd0TTae9L3Lc4g2_lSI,62296
219
219
  ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
220
- ultralytics/utils/torch_utils.py,sha256=eDVUZEam4Tjerx_oZc6F71lXYQoTVRLgSBirDvr_Bi4,29689
220
+ ultralytics/utils/torch_utils.py,sha256=tqOyNnUZbLBOIueSWwljZua65cz6_RvClxYv8gNHIw0,29673
221
221
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
222
222
  ultralytics/utils/tuner.py,sha256=AtEtK6pOt9xVTyx864OpNRVxNdAxz5aKHzveiXwkD1A,6250
223
223
  ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
@@ -231,9 +231,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
231
231
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
232
232
  ultralytics/utils/callbacks/tensorboard.py,sha256=0kn4IR10no99UCIheojWRujgybmUHSx5fPI6Vsq6l_g,4135
233
233
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
234
- ultralytics-8.3.1.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
235
- ultralytics-8.3.1.dist-info/METADATA,sha256=nizZPXWp3kanv5QhQYO2nHQ3cBN0T3oN6wmJuHJwRsc,34574
236
- ultralytics-8.3.1.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
237
- ultralytics-8.3.1.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
238
- ultralytics-8.3.1.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
239
- ultralytics-8.3.1.dist-info/RECORD,,
234
+ ultralytics-8.3.3.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
235
+ ultralytics-8.3.3.dist-info/METADATA,sha256=K4q0V89-JTwWjGWue29_CsVQH9AhLpZVmt3b61x-iMc,34574
236
+ ultralytics-8.3.3.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
237
+ ultralytics-8.3.3.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
238
+ ultralytics-8.3.3.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
239
+ ultralytics-8.3.3.dist-info/RECORD,,