ultralytics 8.3.196__py3-none-any.whl → 8.3.198__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_engine.py +9 -1
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +0 -1
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/default.yaml +96 -94
- ultralytics/cfg/trackers/botsort.yaml +16 -17
- ultralytics/cfg/trackers/bytetrack.yaml +9 -11
- ultralytics/data/augment.py +1 -1
- ultralytics/data/dataset.py +1 -1
- ultralytics/engine/exporter.py +36 -35
- ultralytics/engine/model.py +1 -2
- ultralytics/engine/predictor.py +1 -2
- ultralytics/engine/results.py +1 -1
- ultralytics/engine/trainer.py +8 -10
- ultralytics/engine/tuner.py +54 -32
- ultralytics/models/sam/modules/decoders.py +3 -3
- ultralytics/models/sam/modules/sam.py +5 -5
- ultralytics/models/sam/predict.py +11 -11
- ultralytics/models/yolo/classify/train.py +2 -7
- ultralytics/models/yolo/classify/val.py +2 -2
- ultralytics/models/yolo/detect/predict.py +1 -1
- ultralytics/models/yolo/detect/train.py +1 -11
- ultralytics/models/yolo/detect/val.py +4 -4
- ultralytics/models/yolo/obb/val.py +3 -3
- ultralytics/models/yolo/pose/predict.py +1 -1
- ultralytics/models/yolo/pose/train.py +0 -7
- ultralytics/models/yolo/pose/val.py +2 -2
- ultralytics/models/yolo/segment/predict.py +2 -2
- ultralytics/models/yolo/segment/train.py +0 -6
- ultralytics/models/yolo/segment/val.py +13 -11
- ultralytics/models/yolo/yoloe/val.py +1 -1
- ultralytics/nn/modules/block.py +1 -1
- ultralytics/nn/modules/head.py +1 -2
- ultralytics/nn/tasks.py +2 -2
- ultralytics/utils/checks.py +1 -1
- ultralytics/utils/loss.py +1 -2
- ultralytics/utils/metrics.py +6 -6
- ultralytics/utils/nms.py +8 -14
- ultralytics/utils/plotting.py +22 -36
- ultralytics/utils/torch_utils.py +9 -27
- {ultralytics-8.3.196.dist-info → ultralytics-8.3.198.dist-info}/METADATA +1 -1
- {ultralytics-8.3.196.dist-info → ultralytics-8.3.198.dist-info}/RECORD +46 -45
- {ultralytics-8.3.196.dist-info → ultralytics-8.3.198.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.196.dist-info → ultralytics-8.3.198.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.196.dist-info → ultralytics-8.3.198.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.196.dist-info → ultralytics-8.3.198.dist-info}/top_level.txt +0 -0
@@ -192,8 +192,8 @@ class PoseValidator(DetectionValidator):
|
|
192
192
|
"""
|
193
193
|
tp = super()._process_batch(preds, batch)
|
194
194
|
gt_cls = batch["cls"]
|
195
|
-
if
|
196
|
-
tp_p = np.zeros((
|
195
|
+
if gt_cls.shape[0] == 0 or preds["cls"].shape[0] == 0:
|
196
|
+
tp_p = np.zeros((preds["cls"].shape[0], self.niou), dtype=bool)
|
197
197
|
else:
|
198
198
|
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
|
199
199
|
area = ops.xyxy2xywh(batch["bboxes"])[:, 2:].prod(1) * 0.53
|
@@ -90,7 +90,7 @@ class SegmentationPredictor(DetectionPredictor):
|
|
90
90
|
Construct a single result object from the prediction.
|
91
91
|
|
92
92
|
Args:
|
93
|
-
pred (
|
93
|
+
pred (torch.Tensor): The predicted bounding boxes, scores, and masks.
|
94
94
|
img (torch.Tensor): The image after preprocessing.
|
95
95
|
orig_img (np.ndarray): The original image before preprocessing.
|
96
96
|
img_path (str): The path to the original image.
|
@@ -99,7 +99,7 @@ class SegmentationPredictor(DetectionPredictor):
|
|
99
99
|
Returns:
|
100
100
|
(Results): Result object containing the original image, image path, class names, bounding boxes, and masks.
|
101
101
|
"""
|
102
|
-
if
|
102
|
+
if pred.shape[0] == 0: # save empty boxes
|
103
103
|
masks = None
|
104
104
|
elif self.args.retina_masks:
|
105
105
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
@@ -8,7 +8,6 @@ from pathlib import Path
|
|
8
8
|
from ultralytics.models import yolo
|
9
9
|
from ultralytics.nn.tasks import SegmentationModel
|
10
10
|
from ultralytics.utils import DEFAULT_CFG, RANK
|
11
|
-
from ultralytics.utils.plotting import plot_results
|
12
11
|
|
13
12
|
|
14
13
|
class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
@@ -41,7 +40,6 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
|
41
40
|
overrides = {}
|
42
41
|
overrides["task"] = "segment"
|
43
42
|
super().__init__(cfg, overrides, _callbacks)
|
44
|
-
self.dynamic_tensors = ["batch_idx", "cls", "bboxes", "masks"]
|
45
43
|
|
46
44
|
def get_model(self, cfg: dict | str | None = None, weights: str | Path | None = None, verbose: bool = True):
|
47
45
|
"""
|
@@ -72,7 +70,3 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
|
72
70
|
return yolo.segment.SegmentationValidator(
|
73
71
|
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
74
72
|
)
|
75
|
-
|
76
|
-
def plot_metrics(self):
|
77
|
-
"""Plot training/validation metrics."""
|
78
|
-
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png
|
@@ -112,7 +112,7 @@ class SegmentationValidator(DetectionValidator):
|
|
112
112
|
coefficient = pred.pop("extra")
|
113
113
|
pred["masks"] = (
|
114
114
|
self.process(proto[i], coefficient, pred["bboxes"], shape=imgsz)
|
115
|
-
if
|
115
|
+
if coefficient.shape[0]
|
116
116
|
else torch.zeros(
|
117
117
|
(0, *(imgsz if self.process is ops.process_mask_native else proto.shape[2:])),
|
118
118
|
dtype=torch.uint8,
|
@@ -133,16 +133,18 @@ class SegmentationValidator(DetectionValidator):
|
|
133
133
|
(dict[str, Any]): Prepared batch with processed annotations.
|
134
134
|
"""
|
135
135
|
prepared_batch = super()._prepare_batch(si, batch)
|
136
|
-
nl =
|
136
|
+
nl = prepared_batch["cls"].shape[0]
|
137
137
|
if self.args.overlap_mask:
|
138
138
|
masks = batch["masks"][si]
|
139
139
|
index = torch.arange(1, nl + 1, device=masks.device).view(nl, 1, 1)
|
140
140
|
masks = (masks == index).float()
|
141
141
|
else:
|
142
142
|
masks = batch["masks"][batch["batch_idx"] == si]
|
143
|
-
if nl
|
144
|
-
|
145
|
-
masks
|
143
|
+
if nl:
|
144
|
+
mask_size = [s if self.process is ops.process_mask_native else s // 4 for s in prepared_batch["imgsz"]]
|
145
|
+
if masks.shape[1:] != mask_size:
|
146
|
+
masks = F.interpolate(masks[None], mask_size, mode="bilinear", align_corners=False)[0]
|
147
|
+
masks = masks.gt_(0.5)
|
146
148
|
prepared_batch["masks"] = masks
|
147
149
|
return prepared_batch
|
148
150
|
|
@@ -168,8 +170,8 @@ class SegmentationValidator(DetectionValidator):
|
|
168
170
|
"""
|
169
171
|
tp = super()._process_batch(preds, batch)
|
170
172
|
gt_cls = batch["cls"]
|
171
|
-
if
|
172
|
-
tp_m = np.zeros((
|
173
|
+
if gt_cls.shape[0] == 0 or preds["cls"].shape[0] == 0:
|
174
|
+
tp_m = np.zeros((preds["cls"].shape[0], self.niou), dtype=bool)
|
173
175
|
else:
|
174
176
|
iou = mask_iou(batch["masks"].flatten(1), preds["masks"].flatten(1))
|
175
177
|
tp_m = self.match_predictions(preds["cls"], gt_cls, iou).cpu().numpy()
|
@@ -187,10 +189,10 @@ class SegmentationValidator(DetectionValidator):
|
|
187
189
|
"""
|
188
190
|
for p in preds:
|
189
191
|
masks = p["masks"]
|
190
|
-
if masks.shape[0] >
|
191
|
-
LOGGER.warning("Limiting validation plots to
|
192
|
-
p["masks"] = torch.as_tensor(masks[:
|
193
|
-
super().plot_predictions(batch, preds, ni, max_det=
|
192
|
+
if masks.shape[0] > self.args.max_det:
|
193
|
+
LOGGER.warning(f"Limiting validation plots to 'max_det={self.args.max_det}' items.")
|
194
|
+
p["masks"] = torch.as_tensor(masks[: self.args.max_det], dtype=torch.uint8).cpu()
|
195
|
+
super().plot_predictions(batch, preds, ni, max_det=self.args.max_det) # plot bboxes
|
194
196
|
|
195
197
|
def save_one_txt(self, predn: torch.Tensor, save_conf: bool, shape: tuple[int, int], file: Path) -> None:
|
196
198
|
"""
|
@@ -89,7 +89,7 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
89
89
|
for i in range(preds.shape[0]):
|
90
90
|
cls = batch["cls"][batch_idx == i].squeeze(-1).to(torch.int).unique(sorted=True)
|
91
91
|
pad_cls = torch.ones(preds.shape[1], device=self.device) * -1
|
92
|
-
pad_cls[:
|
92
|
+
pad_cls[: cls.shape[0]] = cls
|
93
93
|
for c in cls:
|
94
94
|
visual_pe[c] += preds[i][pad_cls == c].sum(0) / cls_visual_num[c]
|
95
95
|
|
ultralytics/nn/modules/block.py
CHANGED
@@ -1921,7 +1921,7 @@ class A2C2f(nn.Module):
|
|
1921
1921
|
y.extend(m(y[-1]) for m in self.m)
|
1922
1922
|
y = self.cv2(torch.cat(y, 1))
|
1923
1923
|
if self.gamma is not None:
|
1924
|
-
return x + self.gamma.view(-1,
|
1924
|
+
return x + self.gamma.view(-1, self.gamma.shape[0], 1, 1) * y
|
1925
1925
|
return y
|
1926
1926
|
|
1927
1927
|
|
ultralytics/nn/modules/head.py
CHANGED
@@ -13,7 +13,7 @@ from torch.nn.init import constant_, xavier_uniform_
|
|
13
13
|
|
14
14
|
from ultralytics.utils import NOT_MACOS14
|
15
15
|
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
|
16
|
-
from ultralytics.utils.torch_utils import
|
16
|
+
from ultralytics.utils.torch_utils import fuse_conv_and_bn, smart_inference_mode
|
17
17
|
|
18
18
|
from .block import DFL, SAVPE, BNContrastiveHead, ContrastiveHead, Proto, Residual, SwiGLUFFN
|
19
19
|
from .conv import Conv, DWConv
|
@@ -149,7 +149,6 @@ class Detect(nn.Module):
|
|
149
149
|
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
|
150
150
|
return y if self.export else (y, {"one2many": x, "one2one": one2one})
|
151
151
|
|
152
|
-
@disable_dynamo
|
153
152
|
def _inference(self, x: list[torch.Tensor]) -> torch.Tensor:
|
154
153
|
"""
|
155
154
|
Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.
|
ultralytics/nn/tasks.py
CHANGED
@@ -766,7 +766,7 @@ class RTDETRDetectionModel(DetectionModel):
|
|
766
766
|
|
767
767
|
img = batch["img"]
|
768
768
|
# NOTE: preprocess gt_bbox and gt_labels to list.
|
769
|
-
bs =
|
769
|
+
bs = img.shape[0]
|
770
770
|
batch_idx = batch["batch_idx"]
|
771
771
|
gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
|
772
772
|
targets = {
|
@@ -923,7 +923,7 @@ class WorldModel(DetectionModel):
|
|
923
923
|
(torch.Tensor): Model's output tensor.
|
924
924
|
"""
|
925
925
|
txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype)
|
926
|
-
if
|
926
|
+
if txt_feats.shape[0] != x.shape[0] or self.model[-1].export:
|
927
927
|
txt_feats = txt_feats.expand(x.shape[0], -1, -1)
|
928
928
|
ori_txt_feats = txt_feats.clone()
|
929
929
|
y, dt, embeddings = [], [], [] # outputs
|
ultralytics/utils/checks.py
CHANGED
@@ -907,7 +907,7 @@ def is_intel():
|
|
907
907
|
try:
|
908
908
|
result = subprocess.run(["xpu-smi", "discovery"], capture_output=True, text=True, timeout=5)
|
909
909
|
return "intel" in result.stdout.lower()
|
910
|
-
except
|
910
|
+
except Exception: # broad clause to capture all Intel GPU exception types
|
911
911
|
return False
|
912
912
|
|
913
913
|
|
ultralytics/utils/loss.py
CHANGED
@@ -11,7 +11,7 @@ import torch.nn.functional as F
|
|
11
11
|
from ultralytics.utils.metrics import OKS_SIGMA
|
12
12
|
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
|
13
13
|
from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
|
14
|
-
from ultralytics.utils.torch_utils import autocast
|
14
|
+
from ultralytics.utils.torch_utils import autocast
|
15
15
|
|
16
16
|
from .metrics import bbox_iou, probiou
|
17
17
|
from .tal import bbox2dist
|
@@ -215,7 +215,6 @@ class v8DetectionLoss:
|
|
215
215
|
self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)
|
216
216
|
self.bbox_loss = BboxLoss(m.reg_max).to(device)
|
217
217
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
|
218
|
-
disable_dynamo(self.__class__) # exclude from compile
|
219
218
|
|
220
219
|
def preprocess(self, targets: torch.Tensor, batch_size: int, scale_tensor: torch.Tensor) -> torch.Tensor:
|
221
220
|
"""Preprocess targets by converting to tensor format and scaling coordinates."""
|
ultralytics/utils/metrics.py
CHANGED
@@ -397,11 +397,11 @@ class ConfusionMatrix(DataExportMixin):
|
|
397
397
|
gt_cls, gt_bboxes = batch["cls"], batch["bboxes"]
|
398
398
|
if self.matches is not None: # only if visualization is enabled
|
399
399
|
self.matches = {k: defaultdict(list) for k in {"TP", "FP", "FN", "GT"}}
|
400
|
-
for i in range(
|
400
|
+
for i in range(gt_cls.shape[0]):
|
401
401
|
self._append_matches("GT", batch, i) # store GT
|
402
402
|
is_obb = gt_bboxes.shape[1] == 5 # check if boxes contains angle for OBB
|
403
403
|
conf = 0.25 if conf in {None, 0.01 if is_obb else 0.001} else conf # apply 0.25 if default val conf is passed
|
404
|
-
no_pred =
|
404
|
+
no_pred = detections["cls"].shape[0] == 0
|
405
405
|
if gt_cls.shape[0] == 0: # Check if labels is empty
|
406
406
|
if not no_pred:
|
407
407
|
detections = {k: detections[k][detections["conf"] > conf] for k in detections}
|
@@ -491,13 +491,13 @@ class ConfusionMatrix(DataExportMixin):
|
|
491
491
|
for i, mtype in enumerate(["GT", "FP", "TP", "FN"]):
|
492
492
|
mbatch = self.matches[mtype]
|
493
493
|
if "conf" not in mbatch:
|
494
|
-
mbatch["conf"] = torch.tensor([1.0] *
|
495
|
-
mbatch["batch_idx"] = torch.ones(
|
494
|
+
mbatch["conf"] = torch.tensor([1.0] * mbatch["bboxes"].shape[0], device=img.device)
|
495
|
+
mbatch["batch_idx"] = torch.ones(mbatch["bboxes"].shape[0], device=img.device) * i
|
496
496
|
for k in mbatch.keys():
|
497
497
|
labels[k] += mbatch[k]
|
498
498
|
|
499
499
|
labels = {k: torch.stack(v, 0) if len(v) else v for k, v in labels.items()}
|
500
|
-
if self.task != "obb" and
|
500
|
+
if self.task != "obb" and labels["bboxes"].shape[0]:
|
501
501
|
labels["bboxes"] = xyxy2xywh(labels["bboxes"])
|
502
502
|
(save_dir / "visualizations").mkdir(parents=True, exist_ok=True)
|
503
503
|
plot_images(
|
@@ -980,7 +980,7 @@ class Metric(SimpleClass):
|
|
980
980
|
|
981
981
|
def fitness(self) -> float:
|
982
982
|
"""Return model fitness as a weighted combination of metrics."""
|
983
|
-
w = [0.0, 0.0, 0.
|
983
|
+
w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
984
984
|
return (np.nan_to_num(np.array(self.mean_results())) * w).sum()
|
985
985
|
|
986
986
|
def update(self, results: tuple):
|
ultralytics/utils/nms.py
CHANGED
@@ -192,6 +192,7 @@ class TorchNMS:
|
|
192
192
|
iou_threshold: float,
|
193
193
|
use_triu: bool = True,
|
194
194
|
iou_func=box_iou,
|
195
|
+
exit_early: bool = True,
|
195
196
|
) -> torch.Tensor:
|
196
197
|
"""
|
197
198
|
Fast-NMS implementation from https://arxiv.org/pdf/1904.02689 using upper triangular matrix operations.
|
@@ -202,6 +203,7 @@ class TorchNMS:
|
|
202
203
|
iou_threshold (float): IoU threshold for suppression.
|
203
204
|
use_triu (bool): Whether to use torch.triu operator for upper triangular matrix operations.
|
204
205
|
iou_func (callable): Function to compute IoU between boxes.
|
206
|
+
exit_early (bool): Whether to exit early if there are no boxes.
|
205
207
|
|
206
208
|
Returns:
|
207
209
|
(torch.Tensor): Indices of boxes to keep after NMS.
|
@@ -212,7 +214,7 @@ class TorchNMS:
|
|
212
214
|
>>> scores = torch.tensor([0.9, 0.8])
|
213
215
|
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
|
214
216
|
"""
|
215
|
-
if boxes.numel() == 0:
|
217
|
+
if boxes.numel() == 0 and exit_early:
|
216
218
|
return torch.empty((0,), dtype=torch.int64, device=boxes.device)
|
217
219
|
|
218
220
|
sorted_idx = torch.argsort(scores, descending=True)
|
@@ -261,12 +263,11 @@ class TorchNMS:
|
|
261
263
|
areas = (x2 - x1) * (y2 - y1)
|
262
264
|
|
263
265
|
# Sort by scores descending
|
264
|
-
|
266
|
+
order = scores.argsort(0, descending=True)
|
265
267
|
|
266
268
|
# Pre-allocate keep list with maximum possible size
|
267
269
|
keep = torch.zeros(order.numel(), dtype=torch.int64, device=boxes.device)
|
268
270
|
keep_idx = 0
|
269
|
-
|
270
271
|
while order.numel() > 0:
|
271
272
|
i = order[0]
|
272
273
|
keep[keep_idx] = i
|
@@ -274,7 +275,6 @@ class TorchNMS:
|
|
274
275
|
|
275
276
|
if order.numel() == 1:
|
276
277
|
break
|
277
|
-
|
278
278
|
# Vectorized IoU calculation for remaining boxes
|
279
279
|
rest = order[1:]
|
280
280
|
xx1 = torch.maximum(x1[i], x1[rest])
|
@@ -286,20 +286,14 @@ class TorchNMS:
|
|
286
286
|
w = (xx2 - xx1).clamp_(min=0)
|
287
287
|
h = (yy2 - yy1).clamp_(min=0)
|
288
288
|
inter = w * h
|
289
|
-
|
290
|
-
# Early termination: skip IoU calculation if no intersection
|
289
|
+
# Early exit: skip IoU calculation if no intersection
|
291
290
|
if inter.sum() == 0:
|
292
291
|
# No overlaps with current box, keep all remaining boxes
|
293
|
-
|
294
|
-
|
295
|
-
keep_idx += remaining_count
|
296
|
-
break
|
297
|
-
|
292
|
+
order = rest
|
293
|
+
continue
|
298
294
|
iou = inter / (areas[i] + areas[rest] - inter)
|
299
|
-
|
300
295
|
# Keep boxes with IoU <= threshold
|
301
|
-
|
302
|
-
order = rest[mask]
|
296
|
+
order = rest[iou <= iou_threshold]
|
303
297
|
|
304
298
|
return keep[:keep_idx]
|
305
299
|
|
ultralytics/utils/plotting.py
CHANGED
@@ -812,14 +812,13 @@ def plot_images(
|
|
812
812
|
|
813
813
|
# Plot masks
|
814
814
|
if len(masks):
|
815
|
-
if idx.shape[0] == masks.shape[0]: # overlap_mask=False
|
815
|
+
if idx.shape[0] == masks.shape[0] and masks.max() <= 1: # overlap_mask=False
|
816
816
|
image_masks = masks[idx]
|
817
817
|
else: # overlap_mask=True
|
818
818
|
image_masks = masks[[i]] # (1, 640, 640)
|
819
819
|
nl = idx.sum()
|
820
|
-
index = np.arange(nl).reshape((nl, 1, 1))
|
821
|
-
image_masks =
|
822
|
-
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
820
|
+
index = np.arange(1, nl + 1).reshape((nl, 1, 1))
|
821
|
+
image_masks = (image_masks == index).astype(np.float32)
|
823
822
|
|
824
823
|
im = np.asarray(annotator.im).copy()
|
825
824
|
for j in range(len(image_masks)):
|
@@ -847,14 +846,7 @@ def plot_images(
|
|
847
846
|
|
848
847
|
|
849
848
|
@plt_settings()
|
850
|
-
def plot_results(
|
851
|
-
file: str = "path/to/results.csv",
|
852
|
-
dir: str = "",
|
853
|
-
segment: bool = False,
|
854
|
-
pose: bool = False,
|
855
|
-
classify: bool = False,
|
856
|
-
on_plot: Callable | None = None,
|
857
|
-
):
|
849
|
+
def plot_results(file: str = "path/to/results.csv", dir: str = "", on_plot: Callable | None = None):
|
858
850
|
"""
|
859
851
|
Plot training results from a results CSV file. The function supports various types of data including segmentation,
|
860
852
|
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.
|
@@ -862,9 +854,6 @@ def plot_results(
|
|
862
854
|
Args:
|
863
855
|
file (str, optional): Path to the CSV file containing the training results.
|
864
856
|
dir (str, optional): Directory where the CSV file is located if 'file' is not provided.
|
865
|
-
segment (bool, optional): Flag to indicate if the data is for segmentation.
|
866
|
-
pose (bool, optional): Flag to indicate if the data is for pose estimation.
|
867
|
-
classify (bool, optional): Flag to indicate if the data is for classification.
|
868
857
|
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
|
869
858
|
|
870
859
|
Examples:
|
@@ -876,34 +865,31 @@ def plot_results(
|
|
876
865
|
from scipy.ndimage import gaussian_filter1d
|
877
866
|
|
878
867
|
save_dir = Path(file).parent if file else Path(dir)
|
879
|
-
if classify:
|
880
|
-
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
|
881
|
-
index = [2, 5, 3, 4]
|
882
|
-
elif segment:
|
883
|
-
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
884
|
-
index = [2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 8, 9, 12, 13]
|
885
|
-
elif pose:
|
886
|
-
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
|
887
|
-
index = [2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 9, 10, 13, 14]
|
888
|
-
else:
|
889
|
-
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
890
|
-
index = [2, 3, 4, 5, 6, 9, 10, 11, 7, 8]
|
891
|
-
ax = ax.ravel()
|
892
868
|
files = list(save_dir.glob("results*.csv"))
|
893
869
|
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
|
894
|
-
|
870
|
+
|
871
|
+
loss_keys, metric_keys = [], []
|
872
|
+
for i, f in enumerate(files):
|
895
873
|
try:
|
896
874
|
data = pl.read_csv(f, infer_schema_length=None)
|
897
|
-
|
875
|
+
if i == 0:
|
876
|
+
for c in data.columns:
|
877
|
+
if "loss" in c:
|
878
|
+
loss_keys.append(c)
|
879
|
+
elif "metric" in c:
|
880
|
+
metric_keys.append(c)
|
881
|
+
loss_mid, metric_mid = len(loss_keys) // 2, len(metric_keys) // 2
|
882
|
+
columns = (
|
883
|
+
loss_keys[:loss_mid] + metric_keys[:metric_mid] + loss_keys[loss_mid:] + metric_keys[metric_mid:]
|
884
|
+
)
|
885
|
+
fig, ax = plt.subplots(2, len(columns) // 2, figsize=(len(columns) + 2, 6), tight_layout=True)
|
886
|
+
ax = ax.ravel()
|
898
887
|
x = data.select(data.columns[0]).to_numpy().flatten()
|
899
|
-
for i, j in enumerate(
|
900
|
-
y = data.select(
|
901
|
-
# y[y == 0] = np.nan # don't show zero values
|
888
|
+
for i, j in enumerate(columns):
|
889
|
+
y = data.select(j).to_numpy().flatten().astype("float")
|
902
890
|
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
|
903
891
|
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
|
904
|
-
ax[i].set_title(
|
905
|
-
# if j in {8, 9, 10}: # share train and val loss y axes
|
906
|
-
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
892
|
+
ax[i].set_title(j, fontsize=12)
|
907
893
|
except Exception as e:
|
908
894
|
LOGGER.error(f"Plotting error for {f}: {e}")
|
909
895
|
ax[1].legend()
|
ultralytics/utils/torch_utils.py
CHANGED
@@ -1006,35 +1006,13 @@ class FXModel(nn.Module):
|
|
1006
1006
|
return x
|
1007
1007
|
|
1008
1008
|
|
1009
|
-
def disable_dynamo(func: Any) -> Any:
|
1010
|
-
"""
|
1011
|
-
Disable torch.compile/dynamo for a callable when available.
|
1012
|
-
|
1013
|
-
Args:
|
1014
|
-
func (Any): Callable object to wrap. Could be a function, method, or class.
|
1015
|
-
|
1016
|
-
Returns:
|
1017
|
-
func (Any): Same callable, wrapped by torch._dynamo.disable when available, otherwise unchanged.
|
1018
|
-
|
1019
|
-
Examples:
|
1020
|
-
>>> @disable_dynamo
|
1021
|
-
... def fn(x):
|
1022
|
-
... return x + 1
|
1023
|
-
>>> # Works even if torch._dynamo is not available
|
1024
|
-
>>> _ = fn(1)
|
1025
|
-
"""
|
1026
|
-
if hasattr(torch, "_dynamo"):
|
1027
|
-
return torch._dynamo.disable(func)
|
1028
|
-
return func
|
1029
|
-
|
1030
|
-
|
1031
1009
|
def attempt_compile(
|
1032
1010
|
model: torch.nn.Module,
|
1033
1011
|
device: torch.device,
|
1034
1012
|
imgsz: int = 640,
|
1035
1013
|
use_autocast: bool = False,
|
1036
1014
|
warmup: bool = False,
|
1037
|
-
|
1015
|
+
mode: bool | str = "default",
|
1038
1016
|
) -> torch.nn.Module:
|
1039
1017
|
"""
|
1040
1018
|
Compile a model with torch.compile and optionally warm up the graph to reduce first-iteration latency.
|
@@ -1049,7 +1027,8 @@ def attempt_compile(
|
|
1049
1027
|
imgsz (int, optional): Square input size to create a dummy tensor with shape (1, 3, imgsz, imgsz) for warmup.
|
1050
1028
|
use_autocast (bool, optional): Whether to run warmup under autocast on CUDA or MPS devices.
|
1051
1029
|
warmup (bool, optional): Whether to execute a single dummy forward pass to warm up the compiled model.
|
1052
|
-
|
1030
|
+
mode (bool | str, optional): torch.compile mode. True → "default", False → no compile, or a string like
|
1031
|
+
"default", "reduce-overhead", "max-autotune".
|
1053
1032
|
|
1054
1033
|
Returns:
|
1055
1034
|
model (torch.nn.Module): Compiled model if compilation succeeds, otherwise the original unmodified model.
|
@@ -1064,13 +1043,16 @@ def attempt_compile(
|
|
1064
1043
|
>>> # Try to compile and warm up a model with a 640x640 input
|
1065
1044
|
>>> model = attempt_compile(model, device=device, imgsz=640, use_autocast=True, warmup=True)
|
1066
1045
|
"""
|
1067
|
-
if not hasattr(torch, "compile"):
|
1046
|
+
if not hasattr(torch, "compile") or not mode:
|
1068
1047
|
return model
|
1069
1048
|
|
1070
|
-
|
1049
|
+
if mode is True:
|
1050
|
+
mode = "default"
|
1051
|
+
prefix = colorstr("compile:")
|
1052
|
+
LOGGER.info(f"{prefix} starting torch.compile with '{mode}' mode...")
|
1071
1053
|
t0 = time.perf_counter()
|
1072
1054
|
try:
|
1073
|
-
model = torch.compile(model, mode=
|
1055
|
+
model = torch.compile(model, mode=mode, backend="inductor")
|
1074
1056
|
except Exception as e:
|
1075
1057
|
LOGGER.warning(f"{prefix} torch.compile failed, continuing uncompiled: {e}")
|
1076
1058
|
return model
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.198
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|