ultralytics 8.3.189__py3-none-any.whl → 8.3.191__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (111) hide show
  1. tests/test_cuda.py +6 -5
  2. tests/test_exports.py +1 -6
  3. tests/test_python.py +1 -4
  4. tests/test_solutions.py +1 -1
  5. ultralytics/__init__.py +1 -1
  6. ultralytics/cfg/__init__.py +16 -14
  7. ultralytics/cfg/datasets/VisDrone.yaml +4 -4
  8. ultralytics/data/annotator.py +6 -6
  9. ultralytics/data/augment.py +53 -51
  10. ultralytics/data/base.py +15 -13
  11. ultralytics/data/build.py +7 -4
  12. ultralytics/data/converter.py +9 -10
  13. ultralytics/data/dataset.py +24 -22
  14. ultralytics/data/loaders.py +13 -11
  15. ultralytics/data/split.py +4 -3
  16. ultralytics/data/split_dota.py +14 -12
  17. ultralytics/data/utils.py +31 -25
  18. ultralytics/engine/exporter.py +7 -4
  19. ultralytics/engine/model.py +16 -14
  20. ultralytics/engine/predictor.py +9 -7
  21. ultralytics/engine/results.py +59 -57
  22. ultralytics/engine/trainer.py +7 -0
  23. ultralytics/engine/tuner.py +4 -3
  24. ultralytics/engine/validator.py +3 -1
  25. ultralytics/hub/__init__.py +6 -2
  26. ultralytics/hub/auth.py +2 -2
  27. ultralytics/hub/google/__init__.py +9 -8
  28. ultralytics/hub/session.py +11 -11
  29. ultralytics/hub/utils.py +8 -9
  30. ultralytics/models/fastsam/model.py +8 -6
  31. ultralytics/models/nas/model.py +5 -3
  32. ultralytics/models/rtdetr/train.py +4 -3
  33. ultralytics/models/rtdetr/val.py +6 -4
  34. ultralytics/models/sam/amg.py +13 -10
  35. ultralytics/models/sam/model.py +3 -2
  36. ultralytics/models/sam/modules/blocks.py +21 -21
  37. ultralytics/models/sam/modules/decoders.py +11 -11
  38. ultralytics/models/sam/modules/encoders.py +25 -25
  39. ultralytics/models/sam/modules/memory_attention.py +9 -8
  40. ultralytics/models/sam/modules/sam.py +8 -10
  41. ultralytics/models/sam/modules/tiny_encoder.py +21 -20
  42. ultralytics/models/sam/modules/transformer.py +6 -5
  43. ultralytics/models/sam/modules/utils.py +7 -5
  44. ultralytics/models/sam/predict.py +32 -31
  45. ultralytics/models/utils/loss.py +29 -27
  46. ultralytics/models/utils/ops.py +10 -8
  47. ultralytics/models/yolo/classify/train.py +7 -5
  48. ultralytics/models/yolo/classify/val.py +10 -8
  49. ultralytics/models/yolo/detect/predict.py +3 -3
  50. ultralytics/models/yolo/detect/train.py +8 -6
  51. ultralytics/models/yolo/detect/val.py +23 -21
  52. ultralytics/models/yolo/model.py +14 -14
  53. ultralytics/models/yolo/obb/train.py +5 -3
  54. ultralytics/models/yolo/obb/val.py +13 -10
  55. ultralytics/models/yolo/pose/train.py +7 -5
  56. ultralytics/models/yolo/pose/val.py +11 -9
  57. ultralytics/models/yolo/segment/train.py +4 -5
  58. ultralytics/models/yolo/segment/val.py +12 -10
  59. ultralytics/models/yolo/world/train.py +9 -7
  60. ultralytics/models/yolo/yoloe/train.py +7 -6
  61. ultralytics/models/yolo/yoloe/val.py +10 -8
  62. ultralytics/nn/autobackend.py +40 -52
  63. ultralytics/nn/modules/__init__.py +3 -3
  64. ultralytics/nn/modules/block.py +12 -12
  65. ultralytics/nn/modules/conv.py +4 -3
  66. ultralytics/nn/modules/head.py +46 -38
  67. ultralytics/nn/modules/transformer.py +22 -21
  68. ultralytics/nn/tasks.py +2 -2
  69. ultralytics/nn/text_model.py +6 -5
  70. ultralytics/solutions/analytics.py +7 -5
  71. ultralytics/solutions/config.py +12 -10
  72. ultralytics/solutions/distance_calculation.py +3 -3
  73. ultralytics/solutions/heatmap.py +4 -2
  74. ultralytics/solutions/object_counter.py +5 -3
  75. ultralytics/solutions/parking_management.py +4 -2
  76. ultralytics/solutions/region_counter.py +7 -5
  77. ultralytics/solutions/similarity_search.py +5 -3
  78. ultralytics/solutions/solutions.py +38 -36
  79. ultralytics/solutions/streamlit_inference.py +8 -7
  80. ultralytics/trackers/bot_sort.py +11 -9
  81. ultralytics/trackers/byte_tracker.py +17 -15
  82. ultralytics/trackers/utils/gmc.py +4 -3
  83. ultralytics/utils/__init__.py +27 -77
  84. ultralytics/utils/autobatch.py +3 -2
  85. ultralytics/utils/autodevice.py +10 -10
  86. ultralytics/utils/benchmarks.py +11 -10
  87. ultralytics/utils/callbacks/comet.py +9 -9
  88. ultralytics/utils/callbacks/platform.py +2 -1
  89. ultralytics/utils/checks.py +20 -29
  90. ultralytics/utils/downloads.py +2 -2
  91. ultralytics/utils/export.py +12 -11
  92. ultralytics/utils/files.py +8 -7
  93. ultralytics/utils/git.py +139 -0
  94. ultralytics/utils/instance.py +8 -7
  95. ultralytics/utils/logger.py +7 -6
  96. ultralytics/utils/loss.py +15 -13
  97. ultralytics/utils/metrics.py +62 -62
  98. ultralytics/utils/nms.py +346 -0
  99. ultralytics/utils/ops.py +83 -251
  100. ultralytics/utils/patches.py +6 -4
  101. ultralytics/utils/plotting.py +18 -16
  102. ultralytics/utils/tal.py +1 -1
  103. ultralytics/utils/torch_utils.py +4 -2
  104. ultralytics/utils/tqdm.py +47 -33
  105. ultralytics/utils/triton.py +3 -2
  106. {ultralytics-8.3.189.dist-info → ultralytics-8.3.191.dist-info}/METADATA +1 -1
  107. {ultralytics-8.3.189.dist-info → ultralytics-8.3.191.dist-info}/RECORD +111 -109
  108. {ultralytics-8.3.189.dist-info → ultralytics-8.3.191.dist-info}/WHEEL +0 -0
  109. {ultralytics-8.3.189.dist-info → ultralytics-8.3.191.dist-info}/entry_points.txt +0 -0
  110. {ultralytics-8.3.189.dist-info → ultralytics-8.3.191.dist-info}/licenses/LICENSE +0 -0
  111. {ultralytics-8.3.189.dist-info → ultralytics-8.3.191.dist-info}/top_level.txt +0 -0
ultralytics/utils/tqdm.py CHANGED
@@ -139,10 +139,10 @@ class TQDM:
139
139
  self.initial = initial
140
140
 
141
141
  # Set bar format based on whether we have a total
142
- if self.total is not None:
143
- self.bar_format = bar_format or "{desc}: {percentage:3.0f}% {bar} {n_fmt}/{total_fmt} {rate_fmt} {elapsed}"
142
+ if self.total:
143
+ self.bar_format = bar_format or "{desc}: {percent:.0f}% {bar} {n}/{total} {rate} {elapsed}<{remaining}"
144
144
  else:
145
- self.bar_format = bar_format or "{desc}: {bar} {n_fmt} {rate_fmt} {elapsed}"
145
+ self.bar_format = bar_format or "{desc}: {bar} {n} {rate} {elapsed}"
146
146
 
147
147
  self.file = file or sys.stdout
148
148
 
@@ -155,7 +155,7 @@ class TQDM:
155
155
  self.closed = False
156
156
 
157
157
  # Display initial bar if we have total and not disabled
158
- if not self.disable and self.total is not None and not self.noninteractive:
158
+ if not self.disable and self.total and not self.noninteractive:
159
159
  self._display()
160
160
 
161
161
  def _format_rate(self, rate: float) -> str:
@@ -165,11 +165,18 @@ class TQDM:
165
165
 
166
166
  # For bytes with scaling, use binary units
167
167
  if self.unit in ("B", "bytes") and self.unit_scale:
168
- for threshold, unit in [(1024**3, "GB/s"), (1024**2, "MB/s"), (1024, "KB/s")]:
169
- if rate >= threshold:
170
- return f"{rate / threshold:.1f}{unit}"
171
- return f"{rate:.1f}B/s"
172
-
168
+ return next(
169
+ (
170
+ f"{rate / threshold:.1f}{unit}"
171
+ for threshold, unit in [
172
+ (1073741824, "GB/s"),
173
+ (1048576, "MB/s"),
174
+ (1024, "KB/s"),
175
+ ]
176
+ if rate >= threshold
177
+ ),
178
+ f"{rate:.1f}B/s",
179
+ )
173
180
  # For other scalable units, use decimal units
174
181
  if self.unit_scale and self.unit in ("it", "items", ""):
175
182
  for threshold, prefix in [(1000000, "M"), (1000, "K")]:
@@ -210,7 +217,7 @@ class TQDM:
210
217
  filled = int(frac * width)
211
218
  bar = "━" * filled + "─" * (width - filled)
212
219
  if filled < width and frac * width - filled > 0.5:
213
- bar = bar[:filled] + "" + bar[filled + 1 :]
220
+ bar = f"{bar[:filled]}{bar[filled + 1 :]}"
214
221
  return bar
215
222
 
216
223
  def _should_update(self, dt: float, dn: int) -> bool:
@@ -218,10 +225,7 @@ class TQDM:
218
225
  if self.noninteractive:
219
226
  return False
220
227
 
221
- if self.total is not None and self.n >= self.total:
222
- return True
223
-
224
- return dt >= self.mininterval
228
+ return True if self.total and self.n >= self.total else dt >= self.mininterval
225
229
 
226
230
  def _display(self, final: bool = False) -> None:
227
231
  """Display progress bar."""
@@ -256,30 +260,41 @@ class TQDM:
256
260
  self.last_print_t = current_time
257
261
  elapsed = current_time - self.start_t
258
262
 
263
+ # Calculate remaining time
264
+ remaining_str = ""
265
+ if self.total and 0 < self.n < self.total and rate > 0:
266
+ remaining_str = self._format_time((self.total - self.n) / rate)
267
+
259
268
  # Build progress components
260
- if self.total is not None:
261
- percentage = (self.n / self.total) * 100
269
+ if self.total:
270
+ percent = (self.n / self.total) * 100
262
271
  # For bytes with unit scaling, avoid repeating units: show "5.4/5.4MB" not "5.4MB/5.4MB"
263
- n_fmt = self._format_num(self.n)
264
- total_fmt = self._format_num(self.total)
272
+ n = self._format_num(self.n)
273
+ total = self._format_num(self.total)
265
274
  if self.unit_scale and self.unit in ("B", "bytes"):
266
- n_fmt = n_fmt.rstrip("KMGTPB") # Remove unit suffix from current
275
+ n = n.rstrip("KMGTPB") # Remove unit suffix from current
267
276
  else:
268
- percentage = 0
269
- n_fmt = self._format_num(self.n)
270
- total_fmt = "?"
277
+ percent = 0
278
+ n = self._format_num(self.n)
279
+ total = "?"
271
280
 
272
281
  elapsed_str = self._format_time(elapsed)
273
- rate_fmt = self._format_rate(rate) or (self._format_rate(self.n / elapsed) if elapsed > 0 else "")
282
+
283
+ # Use different format for completion
284
+ if self.total and self.n >= self.total:
285
+ format_str = self.bar_format.replace("<{remaining}", "")
286
+ else:
287
+ format_str = self.bar_format
274
288
 
275
289
  # Format progress string
276
- progress_str = self.bar_format.format(
290
+ progress_str = format_str.format(
277
291
  desc=self.desc,
278
- percentage=percentage,
292
+ percent=percent,
279
293
  bar=self._generate_bar(),
280
- n_fmt=n_fmt,
281
- total_fmt=total_fmt,
282
- rate_fmt=rate_fmt,
294
+ n=n,
295
+ total=total,
296
+ rate=self._format_rate(rate) or (self._format_rate(self.n / elapsed) if elapsed > 0 else ""),
297
+ remaining=remaining_str,
283
298
  elapsed=elapsed_str,
284
299
  unit=self.unit,
285
300
  )
@@ -395,12 +410,12 @@ if __name__ == "__main__":
395
410
  import time
396
411
 
397
412
  print("1. Basic progress bar with known total:")
398
- for i in TQDM(range(0), desc="Known total"):
413
+ for i in TQDM(range(3), desc="Known total"):
399
414
  time.sleep(0.05)
400
415
 
401
416
  print("\n2. Manual updates with known total:")
402
- pbar = TQDM(total=30, desc="Manual updates", unit="files")
403
- for i in range(30):
417
+ pbar = TQDM(total=300, desc="Manual updates", unit="files")
418
+ for i in range(300):
404
419
  time.sleep(0.03)
405
420
  pbar.update(1)
406
421
  if i % 10 == 9:
@@ -438,8 +453,7 @@ if __name__ == "__main__":
438
453
 
439
454
  def process_files():
440
455
  """Simulate processing files of unknown count."""
441
- files = [f"file_{i}.txt" for i in range(18)]
442
- return files
456
+ return [f"file_{i}.txt" for i in range(18)]
443
457
 
444
458
  pbar = TQDM(desc="Scanning files", unit="files")
445
459
  files = process_files()
@@ -1,6 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- from typing import List
3
+ from __future__ import annotations
4
+
4
5
  from urllib.parse import urlsplit
5
6
 
6
7
  import numpy as np
@@ -86,7 +87,7 @@ class TritonRemoteModel:
86
87
  self.output_names = [x["name"] for x in config["output"]]
87
88
  self.metadata = eval(config.get("parameters", {}).get("metadata", {}).get("string_value", "None"))
88
89
 
89
- def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]:
90
+ def __call__(self, *inputs: np.ndarray) -> list[np.ndarray]:
90
91
  """
91
92
  Call the model with the given inputs and return inference results.
92
93
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.189
3
+ Version: 8.3.191
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,17 +1,17 @@
1
1
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
2
2
  tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
3
3
  tests/test_cli.py,sha256=EMf5gTAopOnIz8VvzaM-Qb044o7D0flnUHYQ-2ffOM4,5670
4
- tests/test_cuda.py,sha256=7RAMC1DoXpsRvH0Jfyo9cqHkaJZWcWeqniCW5BW87hY,8228
4
+ tests/test_cuda.py,sha256=Z-MX1aIBQyt_fAAgKxBEznE0Mj7caSwrctW9z__NGzU,8240
5
5
  tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
6
- tests/test_exports.py,sha256=CY-4xVZlVM16vdyIC0mSR3Ix59aiZm1qjFGIhSNmB20,11007
6
+ tests/test_exports.py,sha256=jBMAWADCqBsPaZuhZKU7JgQVA0gfYHHFwOI6kx84bqo,10885
7
7
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
8
- tests/test_python.py,sha256=ENUbLIobqCZAxEy9W7gvhmkmW5OJ2oG-3gI8QLiJjzs,28020
9
- tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
10
- ultralytics/__init__.py,sha256=do7OwLDZuVDuQVLM4bkHUsrGS_kMw-_Eoq4GGUl3zHI,730
8
+ tests/test_python.py,sha256=IpjqS2wKSfZaukSdW7QtXeyijXxZ1uXiJLEdlkK_0jQ,27908
9
+ tests/test_solutions.py,sha256=6wJ9-lhyWSAm7zaR4D9L_DrUA3iJU1NgqmbQO6PIuvo,13211
10
+ ultralytics/__init__.py,sha256=9XqSrgB_pQx47nZN8IEDHMj3Mmf_Ot9YRmDk9MoAq3Q,730
11
11
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=Uj1br3-NVFvP6VY5CL4PK63mAQAom93XFC5cqSbM6t4,39887
14
+ ultralytics/cfg/__init__.py,sha256=B6lVzv3ISXgZFgKv8cB1YumCvhFUDVr7RNXbHGF3V9Q,39867
15
15
  ultralytics/cfg/default.yaml,sha256=1SspGAK_K_DT7DBfEScJh4jsJUTOxahehZYj92xmj7o,8347
16
16
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=J4ItoUlE_EiYTmp1DFKYHfbqHkj8j4wUtRJQhaMIlBM,3275
17
17
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-ROSTiKWpS7c,1211
@@ -22,7 +22,7 @@ ultralytics/cfg/datasets/ImageNet.yaml,sha256=GvDWypLVG_H3H67Ai8IC1pvK6fwcTtF5FR
22
22
  ultralytics/cfg/datasets/Objects365.yaml,sha256=eMQuA8B4ZGp_GsmMNKFP4CziMSVduyuAK1IANkAZaJw,9367
23
23
  ultralytics/cfg/datasets/SKU-110K.yaml,sha256=PvO0GsM09Bqm9HEWvVA7--bOqJKl31KtT5wZ8LhAMuY,2559
24
24
  ultralytics/cfg/datasets/VOC.yaml,sha256=NhVLvsmLOwMIteW4DPKxetURP5bTaJvYc7w08-HYAUs,3785
25
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=RauTGwmGetLjamcPCiBL7FEWwd8mAA1Y4ARlozX6-E8,3613
25
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=vIEBrCJLrKg8zYu5imnA5XQKrXwOpVKyaLvoz5oKAG8,3581
26
26
  ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SuloMp9WAZBigGC8az-VLACsFhTM76_O29yhTvUqdnU,915
27
27
  ultralytics/cfg/datasets/brain-tumor.yaml,sha256=qrxPO_t9wxbn2kHFwP3vGTzSWj2ELTLelUwYL3_b6nc,800
28
28
  ultralytics/cfg/datasets/carparts-seg.yaml,sha256=A4e9hM1unTY2jjZIXGiKSarF6R-Ad9R99t57OgRJ37w,1253
@@ -105,173 +105,175 @@ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=Q8GpSXE7fumhuJiQg4a2SkuS_UmnXqp-eo
105
105
  ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7WDz4rEwA,1215
106
106
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
107
107
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
108
- ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
109
- ultralytics/data/augment.py,sha256=Ps1s-ug_oXdyAz4Jyur6OmxzRlyzwP3VP-3hDalSxj8,132959
110
- ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
111
- ultralytics/data/build.py,sha256=v2dHe52m_cqKnRSWZhEcpGynKMCB-dgw4SyVnfTNAXA,11464
112
- ultralytics/data/converter.py,sha256=h-0liMb7OkxoR7P0h_mOUpEu5KUsocH3fVEAz3_-p-I,32096
113
- ultralytics/data/dataset.py,sha256=0GyB6PPsUXMxpf88RyvhGcsREDCenS7Xvc8CrMWivco,36759
114
- ultralytics/data/loaders.py,sha256=u9sExTGPy1iiqVd_p29zVoEkQ3C36g2rE0FEbYPET0A,31767
115
- ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
116
- ultralytics/data/split_dota.py,sha256=rr-lLpTUVaFZMggV_fUYZdFVIJk_zbbSOpgB_Qp50_M,12893
117
- ultralytics/data/utils.py,sha256=Zt01BBVwpdHBLwkJC_qTUpaokhF_74hmBYQC3d9Ic8w,36675
108
+ ultralytics/data/annotator.py,sha256=DNf62m-8wl8okQiH62p_0P4boGXXLdmlpHneW7Cgvm4,2990
109
+ ultralytics/data/augment.py,sha256=8fVfzlwpPGgT_SJ2uPqHdYtWwNaa3i8moxj6762wTlk,132890
110
+ ultralytics/data/base.py,sha256=jFYl0Bm5QJwX5ByLiV9C50cbUWOqXwTBHs_3B7-Rfl8,19661
111
+ ultralytics/data/build.py,sha256=9Qytj451Ml7lFbGNFpslrh4Jt9EucAqL0ic_6veySnk,11511
112
+ ultralytics/data/converter.py,sha256=tJ5UjTbqcYa8_zTZcSUuTFNsJrJUQSXpPmDYafCTdNo,32049
113
+ ultralytics/data/dataset.py,sha256=JC3sHsKva65sSptdAJHfh90yyag8WrqGXcXNpD9C-f0,36751
114
+ ultralytics/data/loaders.py,sha256=Mt6ogS2SUq8SE6oJajX7xSyzIxvwjKUhxFbIynhBlGk,31748
115
+ ultralytics/data/split.py,sha256=5ubnL_wsEutFQOj4I4K01L9UpZrrO_vO3HrydSLJyIY,5107
116
+ ultralytics/data/split_dota.py,sha256=gSGHRWZFQOofMkb8GcTtkUb5gV5jtOV7bzVMovTW0ak,12910
117
+ ultralytics/data/utils.py,sha256=Y92D9qxVBZ0uOdhYbFctcBZhRTxOiYYwfFQsVYwtS-8,36702
118
118
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
119
119
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
120
120
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
121
121
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
122
122
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
123
- ultralytics/engine/exporter.py,sha256=qHGD5wFmka_o8BNZTiPH8Qfp7-_y7Cz-OREOsfw9vmM,75261
124
- ultralytics/engine/model.py,sha256=877u2n0ISz2COOYtEMUqQe0E-HHB4Atb2DuH1XCE98k,53530
125
- ultralytics/engine/predictor.py,sha256=iXnUB-tvBHtVpKbB-5EKs1wSREBIerdUxWx39MaFYuk,22485
126
- ultralytics/engine/results.py,sha256=6xagidv6FDJlstAX6tHob_mgfNs3459JVWeyOZgNpko,71686
127
- ultralytics/engine/trainer.py,sha256=_chaZeS_kkoljG3LWUStksKrDwNpfq5LzANgM3CgjRg,40257
128
- ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
129
- ultralytics/engine/validator.py,sha256=g0StH6WOn95zBN-hULDAR5Uug1pU2YkaeNH3zzq3SVg,16573
130
- ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
131
- ultralytics/hub/auth.py,sha256=5uMPzZt8aO-YsnEWADzc1qBUt9c30RTIfrGo5SWTrv4,6271
132
- ultralytics/hub/session.py,sha256=UeUSRbdclSBPJQfpSNGeY13gb1O2Bhzh0Aj7cXum6P4,18518
133
- ultralytics/hub/utils.py,sha256=5-y3WBT5U_L0ZscTJrUWvGB02QYwVAF82OiFqvvd0sE,10262
134
- ultralytics/hub/google/__init__.py,sha256=ZJnS6s6wVl792p9h5aUmm9K2Di1DrHmTk1aEUJdTXhs,8443
123
+ ultralytics/engine/exporter.py,sha256=llc7LdSYD1bkwFw3iUs_xHEZZQk6wE64R6a6LNduUzU,75400
124
+ ultralytics/engine/model.py,sha256=oxlYx1nMEOcqLFr_clFhWv3Lni-Ykl3-k1NX9JoHiqY,53520
125
+ ultralytics/engine/predictor.py,sha256=bPG_YOnrtXr8zM8QGEkgJJWT5zaDJsN9hEhH6sEkYUs,22478
126
+ ultralytics/engine/results.py,sha256=115lVbiqzyho1fXm-YpqQBtKiv-Wo2FPNhz6ExYHtCk,71499
127
+ ultralytics/engine/trainer.py,sha256=tYtRag7WgaQ4HqlnC6c8yFB06lKJ3pdPXTqvB3_Bz0Q,40479
128
+ ultralytics/engine/tuner.py,sha256=OGi65rxjq-xgwoVfBZ_nMBcogljSFMe_hu-NMGVg4oo,12818
129
+ ultralytics/engine/validator.py,sha256=8ky0lcMCYDY7RGYRUowDAKxEMfsPBLpT7LlgfHA-IsY,16681
130
+ ultralytics/hub/__init__.py,sha256=RmrZw24uyFF109SLVba1s-ItjllfzRKlCgQ_U0RVRUo,6720
131
+ ultralytics/hub/auth.py,sha256=RIwZDWfW6vS2yGpZKR0xVl0-38itJYEFtmqY_M70bl8,6304
132
+ ultralytics/hub/session.py,sha256=iz7HbxU63OHr-7bNm1QIKPVRQc-3lnXMbWH19bgFVfQ,18450
133
+ ultralytics/hub/utils.py,sha256=eQRtJ1KzdiWgj_-7cVgEKxeFWaQbxw9sJLtoX7Up8wg,10189
134
+ ultralytics/hub/google/__init__.py,sha256=-Hh4rUoQBdUFkPqnj7UeQUMdejVbbL8nFFrKAT5OxhE,8468
135
135
  ultralytics/models/__init__.py,sha256=DqQFFYJ4IQlqIDb61H1HzcnZU7SuHN-43bw94-l-YAQ,309
136
136
  ultralytics/models/fastsam/__init__.py,sha256=HGJ8EKlBAsdF-e2aIwQLjSDAFI_r0yHR0A1gzrp4vqE,231
137
- ultralytics/models/fastsam/model.py,sha256=IW0QCgQgGNWjVToEInZ8jVwemfc3XnPA78A_zROw3xk,3436
137
+ ultralytics/models/fastsam/model.py,sha256=gMlH1iCt-qrdPzSIohV4wDAVeA55GP98xrTN2DAlxIo,3438
138
138
  ultralytics/models/fastsam/predict.py,sha256=feta9w9UD7xlbfB3p5QCum31RZ-eDMnWt01VCdVdT44,8962
139
139
  ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
140
140
  ultralytics/models/fastsam/val.py,sha256=oLxB8vBKTfiT7eBbTzvpqq_xNSvDOjGdP1J7egHGsCA,2041
141
141
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
142
- ultralytics/models/nas/model.py,sha256=CStfE5x08uPIJ-wY_8NYVmVlWiom5oTF9kT6jIKM5Sc,3873
142
+ ultralytics/models/nas/model.py,sha256=Z4MzerD4MRNAVYqHQ0Wdztbc5Rwps6q-jztITdYfPC0,3903
143
143
  ultralytics/models/nas/predict.py,sha256=J4UT7nwi_h63lJ3a_gYac-Ws8wFYingZINxMqSoaX5E,2706
144
144
  ultralytics/models/nas/val.py,sha256=QUTE3zuhJLVqmDGd2n7iSSk7X6jKZCRxufFkBbyxYYo,1548
145
145
  ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
146
146
  ultralytics/models/rtdetr/model.py,sha256=e2u6kQEYawRXGGO6HbFDE1uyHfsIqvKk4IpVjjYN41k,2182
147
147
  ultralytics/models/rtdetr/predict.py,sha256=Jqorq8OkGgXCCRS8DmeuGQj3XJxEhz97m22p7VxzXTw,4279
148
- ultralytics/models/rtdetr/train.py,sha256=6FA3nDEcH1diFQ8Ky0xENp9cOOYATHxU6f42z9npMvs,3766
149
- ultralytics/models/rtdetr/val.py,sha256=8WVwlfSa6V8PQdFJIFp2bmKTZ_kBoLEvnXMLf08BbWI,8913
148
+ ultralytics/models/rtdetr/train.py,sha256=SNntxGHXatbNqn1yna5_dDQiR_ciDK6o_4S7JIHU7EY,3765
149
+ ultralytics/models/rtdetr/val.py,sha256=2ySCAcJMH2H1v5fYNxCIAYGFV4QtQ5Vh82wVSNBaYrI,8918
150
150
  ultralytics/models/sam/__init__.py,sha256=4VtjxrbrSsqBvteaD_CwA4Nj3DdSUG1MknymtWwRMbc,359
151
- ultralytics/models/sam/amg.py,sha256=IpcuIfC5KBRiF4sdrsPl1ecWEJy75axo1yG23r5BFsw,11783
151
+ ultralytics/models/sam/amg.py,sha256=07UkNkcbOUj3tc9L2H9rAuH5s1WDJLqX81kt2zbzDsw,11821
152
152
  ultralytics/models/sam/build.py,sha256=J6n-_QOYLa63jldEZmhRe9D3Is_AJE8xyZLUjzfRyTY,12629
153
- ultralytics/models/sam/model.py,sha256=j1TwsLmtxhiXyceU31VPzGVkjRXGylphKrdPSzUJRJc,7231
154
- ultralytics/models/sam/predict.py,sha256=a7G0mLlQmQNg-mxduiSRxLIY7mWw74U0w7WRp5GLO44,105095
153
+ ultralytics/models/sam/model.py,sha256=rTBCWYoYDKvF34FY5RXhdTTSNa_fO4LjkJbIPgYh-L8,7237
154
+ ultralytics/models/sam/predict.py,sha256=yplRzYQ3KalzXGh3PD90XaefW6R4iWmWRV_3Hn9UA78,104966
155
155
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
156
- ultralytics/models/sam/modules/blocks.py,sha256=lnMhnexvXejzhixWRQQyqjrpALoIhuOSwnSGW-c9kZk,46089
157
- ultralytics/models/sam/modules/decoders.py,sha256=U9jqFRkD0JmO3eugSmwLD0sQkiGqJJLympWNO83osGM,25638
158
- ultralytics/models/sam/modules/encoders.py,sha256=srtxrfy3SfUarkC41L1S8tY4GdFueUuR2qQDFZ6ZPl4,37362
159
- ultralytics/models/sam/modules/memory_attention.py,sha256=F1XJAxSwho2-LMlrao_ij0MoALTvhkK-OVghi0D4cU0,13651
160
- ultralytics/models/sam/modules/sam.py,sha256=fI0IVElSVUEAomCiQRC6m4g_6cyWcZ0M4bSL1g6OcYQ,55746
161
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=lmUIeZ9-3M-C3YmJBs13W6t__dzeJloOl0qFR9Ll8ew,42241
162
- ultralytics/models/sam/modules/transformer.py,sha256=xc2g6gb0jvr7cJkHkzIbZOGcTrmsOn2ojvuH-MVIMVs,14953
163
- ultralytics/models/sam/modules/utils.py,sha256=-PYSLExtBajbotBdLan9J07aFaeXJ03WzopAv4JcYd4,16022
156
+ ultralytics/models/sam/modules/blocks.py,sha256=Wc6ThlZ5G3S8XJrH6WclbyzI3vIqWHKAWYb7n3A6Fdk,46055
157
+ ultralytics/models/sam/modules/decoders.py,sha256=Vc0nDC1Ex8RBxJX6j-RWRdkYQif0A4-0vtE13aeF8eA,25620
158
+ ultralytics/models/sam/modules/encoders.py,sha256=sfmqlkBQhRWdf5KDAJqkYZMZzQzgnwvq0-Nrrie_eG0,37326
159
+ ultralytics/models/sam/modules/memory_attention.py,sha256=BOkV6ULHc0Iiw_tHcNYosYrZ1tAXyC0DG46ktQzR91E,13638
160
+ ultralytics/models/sam/modules/sam.py,sha256=HHk174QDyqHId6aZ8YWoGYgjBW8BgqsHTkCkxNoYkhY,55618
161
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=lNuB7Tnah-SgBB9h5Kqo7Xnw8VJEJ3LYP-sKhsH9BE4,42199
162
+ ultralytics/models/sam/modules/transformer.py,sha256=UdZdhGQYYPTU6R4A4Yyy-hElQLCG7nX726iTKaV977A,14958
163
+ ultralytics/models/sam/modules/utils.py,sha256=f9boo_M1sV-M42h4R5Aqd0dab_Kj5WNzTy2QsZUiftw,16045
164
164
  ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
165
- ultralytics/models/utils/loss.py,sha256=E-61TfLPc04IdeL6IlFDityDoPju-ov0ouWV_cNY4Kg,21254
166
- ultralytics/models/utils/ops.py,sha256=Pr77n8XW25SUEx4X3bBvXcVIbRdJPoaXJuG0KWWawRQ,15253
165
+ ultralytics/models/utils/loss.py,sha256=Ow8kzMDb9Q3AyvUfDskbA_xTizqEmIak1Qxp6d1mJmE,21231
166
+ ultralytics/models/utils/ops.py,sha256=5Apsg8061T8wxvw3GECTuPGe1_fmiOvE2-DABTtK3OE,15239
167
167
  ultralytics/models/yolo/__init__.py,sha256=or0j5xvcM0usMlsFTYhNAOcQUri7reD0cD9JR5b7zDk,307
168
- ultralytics/models/yolo/model.py,sha256=DpeRzzSrjW7s84meCsS15BhZwxHbWWTOH7fVwQ0lrBI,18798
168
+ ultralytics/models/yolo/model.py,sha256=9uMCZtyt-ydHg0mAoOWx7Ljn_I_R_jtlkHxRV-hCLRE,18761
169
169
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
170
170
  ultralytics/models/yolo/classify/predict.py,sha256=FqAC2YXe25bRwedMZhF3Lw0waoY-a60xMKELhxApP9I,4149
171
- ultralytics/models/yolo/classify/train.py,sha256=V-hevc6X7xemnpyru84OfTRA77eNnkVSMEz16_OUvo4,10244
172
- ultralytics/models/yolo/classify/val.py,sha256=iQZRS6D3-YQjygBhFpC8VCJMI05L3uUPe4ukwbVtSdI,10021
171
+ ultralytics/models/yolo/classify/train.py,sha256=8SD4-RO6W9xb9x62IkzNvmtLeeEjBrqWFYLbVMslgCs,10258
172
+ ultralytics/models/yolo/classify/val.py,sha256=lJCGeQ0MClrnSWTccmdn8czXqadoHDLBLr4jonLnAdA,10020
173
173
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
174
- ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
175
- ultralytics/models/yolo/detect/train.py,sha256=HlaCoHJ6Y2TpCXXWabMRZApAYqBvjuM_YQJUV5JYCvw,9907
176
- ultralytics/models/yolo/detect/val.py,sha256=rHg0lPC0ccGbVF6113-18grCViVgGdXkg-aT-0sWT4U,21318
174
+ ultralytics/models/yolo/detect/predict.py,sha256=CM8gY2LHDh_0z_G_YZ5aE8MZyUga8TXxELDNI0AyKfI,5390
175
+ ultralytics/models/yolo/detect/train.py,sha256=AwPI0Ab_UzM7i8QIbsbcieZI1_BHiCSU8EpYr0gw4L4,9909
176
+ ultralytics/models/yolo/detect/val.py,sha256=4uWoYRcxH3NBvi9uQ-cELU_fLe71b6rfsVMHlu4LvrY,21305
177
177
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
178
178
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
179
- ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
180
- ultralytics/models/yolo/obb/val.py,sha256=I05mwGK620JFBz9yuGPlV9NN1fsWZE0lDqMxL5iG9YA,14085
179
+ ultralytics/models/yolo/obb/train.py,sha256=l0z1XoEMe6Nl5eEv0QfRHvJT7aGxuc4J-fE85ehPiLU,3910
180
+ ultralytics/models/yolo/obb/val.py,sha256=4JCYy2ZCVYRU-x8Q6JJOZvicHUZncxPBDy6cAqtYz7k,14171
181
181
  ultralytics/models/yolo/pose/__init__.py,sha256=63xmuHZLNzV8I76HhVXAq4f2W0KTk8Oi9eL-Y204LyQ,227
182
182
  ultralytics/models/yolo/pose/predict.py,sha256=M0C7ZfVXx4QXgv-szjnaXYEPas76ZLGAgDNNh1GG0vI,3743
183
- ultralytics/models/yolo/pose/train.py,sha256=GyvNnDPJ3UFq_90HN8_FJ0dbwRkw3JJTVpkMFH0vC0o,5457
184
- ultralytics/models/yolo/pose/val.py,sha256=4aOTgor8EcWvLEN5wCbk9I7ILFvb1q8_F1LlHukxWUs,12631
183
+ ultralytics/models/yolo/pose/train.py,sha256=MXYh-Fw7fcp3dPqKAdjcorUACIj-vfaNXqHt9GToSKY,5450
184
+ ultralytics/models/yolo/pose/val.py,sha256=9VQkTvh-Mm6RY2Ee7i_oovfjlZhp5ImxZizSpNxfhR8,12654
185
185
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
186
186
  ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHrw_7MXwtXE1l1Y,5377
187
- ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65rK-QH9mtNIw,3802
188
- ultralytics/models/yolo/segment/val.py,sha256=GRlHSN75j7M3B5rP5owop5LzG7THIzzCxhNgec3Qi1c,11309
187
+ ultralytics/models/yolo/segment/train.py,sha256=bBEnEUHqN3QlbreD5Fy-h1X5Ps-dONH2r9EnoLc72x4,3762
188
+ ultralytics/models/yolo/segment/val.py,sha256=vLgQmmLOEse6Z_zn4HTUVuZEXywRR9ap_qdS2MC4O1g,11326
189
189
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
190
- ultralytics/models/yolo/world/train.py,sha256=wBKnSC-TvrKWM1Taxqwo13XcwGHwwAXzNYV1tmqcOpc,7845
190
+ ultralytics/models/yolo/world/train.py,sha256=yreg4VyzsbLHLwIgn_0qH9GLbccUE2lihNzrNUwXSOs,7847
191
191
  ultralytics/models/yolo/world/train_world.py,sha256=lk9z_INGPSTP_W7Rjh3qrWSmjHaxOJtGngonh1cj2SM,9551
192
192
  ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
193
193
  ultralytics/models/yolo/yoloe/predict.py,sha256=GmQxCQe7sLomAujde53jQzquzryNn6fEjS4Oalf3mPs,7124
194
- ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
194
+ ultralytics/models/yolo/yoloe/train.py,sha256=Z_mPBd8zLcFLrNTYwzDHTKkg0ERRIkAqvgH1IoFgUyE,14051
195
195
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
196
- ultralytics/models/yolo/yoloe/val.py,sha256=2NuERI3B3WeED658Cat1xL2SVpORUHlCHCWI3L8pJJc,9784
196
+ ultralytics/models/yolo/yoloe/val.py,sha256=76zG39MFrUhdq8DLDtKS-5TvIrPlCdE_IUyKlLJVSWw,9768
197
197
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
198
- ultralytics/nn/autobackend.py,sha256=K98yjm1jF6aVFwfyPkS9pG1AWPFuYdQzCD4PNi6MzMY,42029
199
- ultralytics/nn/tasks.py,sha256=wI15MlEX5FOgAIM1O2ygMxeljthvaUinYcz_jy7CJh0,72485
200
- ultralytics/nn/text_model.py,sha256=cYwD-0el4VeToDBP4iPFOQGqyEQatJOBHrVyONL3K_s,15282
201
- ultralytics/nn/modules/__init__.py,sha256=2nY0X69Z5DD5SWt6v3CUTZa5gXSzC9TQr3VTVqhyGho,3158
198
+ ultralytics/nn/autobackend.py,sha256=lvotDJeABLcF7Xb0muAoxM6V3MI0EWKq9vAClHbm7tI,41376
199
+ ultralytics/nn/tasks.py,sha256=WSEA_odbXC0R_EGlcoOUhvE8ERIj62-7Tt9rWbo54nE,72480
200
+ ultralytics/nn/text_model.py,sha256=lserJWlXNzP31jB4xA-7gkbhB0VsMBGiE9G8wYpztvE,15275
201
+ ultralytics/nn/modules/__init__.py,sha256=BPMbEm1daI7Tuds3zph2_afAX7Gq1uAqK8BfiCfKTZs,3198
202
202
  ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
203
- ultralytics/nn/modules/block.py,sha256=lxaEaQ3E-ZuqjXYNC9scUjrZCIF9fDXIALn4F5GKX7Q,70627
204
- ultralytics/nn/modules/conv.py,sha256=eM_t0hQwvEH4rllJucqRMNq7IoipEjbTa_ELROu4ubs,21445
205
- ultralytics/nn/modules/head.py,sha256=WiYJ-odEWisWZKKbOuvj1dJkUky2Z6D3yCTFqiRO-B0,53450
206
- ultralytics/nn/modules/transformer.py,sha256=PW5-6gzOP3_rZ_uAkmxvI42nU5bkrgbgLKCy5PC5px4,31415
203
+ ultralytics/nn/modules/block.py,sha256=c2Rw6PGComYgWy-aoz3PYfRtOI3QeGGT9sCt1uuK37w,70618
204
+ ultralytics/nn/modules/conv.py,sha256=Mo2RJC7I9ldoya_hP88QRsO5iFEChd74z0a8IyKyamg,21457
205
+ ultralytics/nn/modules/head.py,sha256=Hhva5WPUsgWp6TfJ5a3jnE6kwrt4Jum9aV_C_jOSL3M,53556
206
+ ultralytics/nn/modules/transformer.py,sha256=l6NuuFF7j_bogcNULHBBdj5l6sf7MwiVEGz8XcRyTUM,31366
207
207
  ultralytics/nn/modules/utils.py,sha256=rn8yTObZGkQoqVzjbZWLaHiytppG4ffjMME4Lw60glM,6092
208
208
  ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2aWkI,1209
209
209
  ultralytics/solutions/ai_gym.py,sha256=wwfTqX7G3mZXneMwiibEfYbVYaJF_JUX3SQdsdQUvBM,5217
210
- ultralytics/solutions/analytics.py,sha256=aHwKjSEW_3y47LrzugJbPB3VQGTDQCIb5goiPuxnmrc,12802
211
- ultralytics/solutions/config.py,sha256=CevL8lzeSbiSAAA514CTiduCg2_Wh04P0RaB_kmwJa8,5404
212
- ultralytics/solutions/distance_calculation.py,sha256=TYX7pRlM1v7XTq6wTTfJmj3WHT3zRBhRRcu50uZQ_AE,5936
213
- ultralytics/solutions/heatmap.py,sha256=hBJR_Z3Lu9JcvCaEwnd-uN_WEiXK14FDRXedgaI8oqU,5515
210
+ ultralytics/solutions/analytics.py,sha256=71-1Nuf6OJFF2aKEvyFA9RlCnPvEAk1dM6B6-7qj4Po,12823
211
+ ultralytics/solutions/config.py,sha256=ccONKFun14rIOURsSxtzU0Ob0IWe7NQRzNaliMBn7Pg,5396
212
+ ultralytics/solutions/distance_calculation.py,sha256=JmAXeHw2EQQ70R_PnZW1Xep25gyKgNQIXh7LQNBLotI,5924
213
+ ultralytics/solutions/heatmap.py,sha256=qiaC76RV4WE0ZYMGI1CtEsSiskle816uAvACLSkRSUU,5545
214
214
  ultralytics/solutions/instance_segmentation.py,sha256=zPMBY9ixn4YmZozBD2EyowLBadu4dOvZwk-m65EwgDk,3789
215
215
  ultralytics/solutions/object_blurrer.py,sha256=96KOAEagk4UoErlUMiIDK6j1CWs2nN1dcJ5V6pl9L-8,3992
216
- ultralytics/solutions/object_counter.py,sha256=zD-EYIxu_y7qCFEkv6aqV60oMCZ4q6b_kL_stXKof_A,9427
216
+ ultralytics/solutions/object_counter.py,sha256=gL-0SamJAXgj8aN7QaI7qPCoXuasOBlZMGH70oZoRUo,9443
217
217
  ultralytics/solutions/object_cropper.py,sha256=lRKtWINAe9GDxau1Xejbjydsqg2hrpGZXPtZwTgvyKQ,3603
218
- ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVSw8VD0OrpKtExPE,13613
218
+ ultralytics/solutions/parking_management.py,sha256=v7_4khFZcSRSXLQfQ8Jyj9_mMJ8dLpplRgQrqYNJkxg,13636
219
219
  ultralytics/solutions/queue_management.py,sha256=gTkILx4dVcsKRZXSCXtelkEjCRiDS5iznb3FnddC61c,4390
220
- ultralytics/solutions/region_counter.py,sha256=gaBN5piMyIJSk0DBycKxm7HXHOfixA0meITcMxbwHOg,6031
220
+ ultralytics/solutions/region_counter.py,sha256=ELslwx4TKaUdOz-lySIiYIjaoCV6blu0fd7mJcoAT1o,6048
221
221
  ultralytics/solutions/security_alarm.py,sha256=czEaMcy04q-iBkKqT_14d8H20CFB6zcKH_31nBGQnyw,6345
222
- ultralytics/solutions/similarity_search.py,sha256=c18TK0qW5AvanXU28nAX4o_WtB1SDAJStUtyLDuEBHQ,9505
223
- ultralytics/solutions/solutions.py,sha256=9dTkAx1W-0oaZGwKyysXTxKCYNBEV4kThRjqsQea2VQ,36059
222
+ ultralytics/solutions/similarity_search.py,sha256=2e9Ca1b3c6cNyQQXEnkj8zQatqHJp_FELvBXe-cOFFI,9535
223
+ ultralytics/solutions/solutions.py,sha256=h_buWdBjNDuToBebKGQg7RmTv2Eqq6rTufhl2UmvdtE,36042
224
224
  ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
225
- ultralytics/solutions/streamlit_inference.py,sha256=qgvH5QxJWQWj-JNvCuIRZ_PV2I9tH-A6zbdxVPrmdRA,13070
225
+ ultralytics/solutions/streamlit_inference.py,sha256=xCg2dioxPuB_eedJYn5-3fBT0vhI1skfBUSiSjrN7NI,13056
226
226
  ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
227
227
  ultralytics/solutions/vision_eye.py,sha256=J_nsXhWkhfWz8THNJU4Yag4wbPv78ymby6SlNKeSuk4,3005
228
228
  ultralytics/solutions/templates/similarity-search.html,sha256=nyyurpWlkvYlDeNh-74TlV4ctCpTksvkVy2Yc4ImQ1U,4261
229
229
  ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0pFGI,255
230
230
  ultralytics/trackers/basetrack.py,sha256=-skBFFatzgJFAPN9Frm1u1h_RDUg3WOlxG6eHQxp2Gw,4384
231
- ultralytics/trackers/bot_sort.py,sha256=o7FgI7hh5Ucfc5nUOrP1GKTbCetD4AWObL2wYVLJUvo,12247
232
- ultralytics/trackers/byte_tracker.py,sha256=p8gSmdToCkNqN4so0rO7cTpTvKXAuuWWbjBt8UyT7_0,21506
231
+ ultralytics/trackers/bot_sort.py,sha256=IiC1MSP2He2FTSl6u5BBImVjLwAtq8g7hkeOroTEnCk,12255
232
+ ultralytics/trackers/byte_tracker.py,sha256=-i0xjMob019a0GJRLaKY_RixHnHtA0hbfx9D-XwiSv8,21493
233
233
  ultralytics/trackers/track.py,sha256=MHMydDt_MfXdj6naO2lLuEPF46pZUbDmz5Sqtr18-J4,4757
234
234
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
235
- ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
235
+ ultralytics/trackers/utils/gmc.py,sha256=a4WuIh976_GYogvlQEPKTNE59JNNtSNlT_IPrz4wmrM,14028
236
236
  ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
237
237
  ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
238
- ultralytics/utils/__init__.py,sha256=J4i95DBEP2t6HeNLRqCjbNqz9SwxbOBIk6IFgj11UpI,54472
239
- ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
240
- ultralytics/utils/autodevice.py,sha256=1wwjkO2tmyR5IAYa6t8G9QJgGrm00niPY4bTbTRH0Uk,8861
241
- ultralytics/utils/benchmarks.py,sha256=wqIdUpYLp3Ac-oWX9bgngqOvmGyUiKuI61KBOcCqR6A,31479
242
- ultralytics/utils/checks.py,sha256=q64U5wKyejD-2W2fCPqJ0Oiaa4_4vq2pVxV9wp6lMz4,34707
238
+ ultralytics/utils/__init__.py,sha256=AKhyF3aM0jwcgAlA2w6ZwAb6K2AQJAxY4q3GnETOxFY,53065
239
+ ultralytics/utils/autobatch.py,sha256=i6KYLLSItKP1Q2IUlTPHrZhjcxl7UOjs0Seb8bF8pvM,5124
240
+ ultralytics/utils/autodevice.py,sha256=Od9SGx6xAQoX-3L62PS7I6xOxbbqjYLR4Wipgn5WoDc,8843
241
+ ultralytics/utils/benchmarks.py,sha256=zKI-DxEqaVmqlE2pg9p6j1kI7Efo1OyM1NnKubYpDU8,31458
242
+ ultralytics/utils/checks.py,sha256=jLM9CuKI6aZGIGG4W2n_CORCApGnUb2a1Z5YH87ngew,34453
243
243
  ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
244
- ultralytics/utils/downloads.py,sha256=jtaStUmZiWhJ9-ovubsSJHqnWS891qIZggQHGUC0fJo,23009
244
+ ultralytics/utils/downloads.py,sha256=mLOLonKQsePC15sLVZJzGyLmD_TZPkL1T_qd0gUb4lA,23029
245
245
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
246
- ultralytics/utils/export.py,sha256=LK-wlTlyb_zIKtSvOmfmvR70RcUU9Ct9UBDt5wn9_rY,9880
247
- ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
248
- ultralytics/utils/instance.py,sha256=dC83rHvQXciAED3rOiScFs3BOX9OI06Ey1mj9sjUKvs,19070
249
- ultralytics/utils/logger.py,sha256=KDHLdpBe3su3OkMpLSUgDk3-cXMkRgH3oK0hhxsxxvM,15137
250
- ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
251
- ultralytics/utils/metrics.py,sha256=Q0cD4J1_7WRElv_En6YUM94l4SjE7XTF9LdZUMvrGys,68853
252
- ultralytics/utils/ops.py,sha256=8d60fbpntrexK3gPoLUS6mWAYGrtrQaQCOYyRJsCjuI,34521
253
- ultralytics/utils/patches.py,sha256=PPWiKzwGbCvuawLzDKVR8tWOQAlZbJBi8g_-A6eTCYA,6536
254
- ultralytics/utils/plotting.py,sha256=npFWWIGEdQM3IsSSqoZ29kAFyCN3myeZOFj-gALFT6M,47465
255
- ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
256
- ultralytics/utils/torch_utils.py,sha256=PoqnrVRRgnNw2aTxcSrjZ1PvzEg2iR8XKZYIOKVqy0o,39476
257
- ultralytics/utils/tqdm.py,sha256=G7V-0Ku_XEKKjA8D2duWD9OToekX2LGLbbOTzd1UrWo,16414
258
- ultralytics/utils/triton.py,sha256=M7qe4RztiADBJQEWQKaIQsp94ERFJ_8_DUHDR6TXEOM,5410
246
+ ultralytics/utils/export.py,sha256=xHBBDyI0hGQ1hbUi-uWnCgnFBES77nXqZFtgSrX0VXA,9838
247
+ ultralytics/utils/files.py,sha256=kxE2rkBuZL288nSN7jxLljmDnBgc16rekEXeRjhbUoo,8213
248
+ ultralytics/utils/git.py,sha256=DcaxKNQfCiG3cxdzuw7M6l_VXgaSVqkERQt_vl8UyXM,5512
249
+ ultralytics/utils/instance.py,sha256=Jf64QNpEHmXLTRPMIhOWs-PFJz6mkULggO4kGlHbETc,19043
250
+ ultralytics/utils/logger.py,sha256=o_vH4CCgQat6_Sbmwm1sUAJ4muAgVcsUed-WqpGNQZw,15129
251
+ ultralytics/utils/loss.py,sha256=sC2efov3Uwg2eT5oOzMHRfnQLZvtGXSdMuWBTKxyxPw,39816
252
+ ultralytics/utils/metrics.py,sha256=9nykBkIy6soJebhc31UpaQghC4kz8e0qUpGpnr4yaGs,68809
253
+ ultralytics/utils/nms.py,sha256=wCRQ7O7shv5ccEWHgtF9Ky_vUeyumxFLWBFEj1h0U54,14199
254
+ ultralytics/utils/ops.py,sha256=z6feVEbs57eN18Nl4IEdhgUiChGAZrq4bQjDkp-0MxA,26630
255
+ ultralytics/utils/patches.py,sha256=j0fXwX3YqKrON7yrmSVkXsn__tsvs4qVuysH-hzcxOE,6541
256
+ ultralytics/utils/plotting.py,sha256=yIfkJ7JosIHtfHKGXZAJL82REGUrSK-HL4DjiLVqGG4,47463
257
+ ultralytics/utils/tal.py,sha256=K3lPxC3bbduP8ho-toJ9VHnklo5IaGkqogEaQorbrvs,20924
258
+ ultralytics/utils/torch_utils.py,sha256=UrFD-R-3XhYSHgFg3rF2HGyk0YojM2jNCyxiIsOb-TY,39493
259
+ ultralytics/utils/tqdm.py,sha256=M_FQYKTjI9nGbB-DFN5GOwfGFFil_l0VI5bFNBYaHSY,16853
260
+ ultralytics/utils/triton.py,sha256=-qG-ZP5uotcD8FZyaAcEGHX7Cv9_yBG8UHvmmXpYZkM,5422
259
261
  ultralytics/utils/tuner.py,sha256=bHr09Fz-0-t0ei55gX5wJh-obyiAQoicP7HUVM2I8qA,6826
260
262
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
261
263
  ultralytics/utils/callbacks/base.py,sha256=dGir0vkJY4jjprW63e23Qy4kHUT5dOINPii6HnwJuPg,6893
262
264
  ultralytics/utils/callbacks/clearml.py,sha256=xr5mZT_cY6AY_drbdCXFt-Dp2fOjRELxLDhDoRhNPg8,6067
263
- ultralytics/utils/callbacks/comet.py,sha256=Ytv-dalpMBH36qsYIpU_VruREa9BVwFJzYDacZslEQU,25394
265
+ ultralytics/utils/callbacks/comet.py,sha256=t-O4Kc57wLFFEclyl6XJWAixrNle0mpZK5IEM__WoTY,25393
264
266
  ultralytics/utils/callbacks/dvc.py,sha256=NV0DXMQ1B5Sk5fmh60QFUGkifrAz-vwit5qhdfsyqXc,7511
265
267
  ultralytics/utils/callbacks/hub.py,sha256=IZ8lldLfxI0SvMnG9aWGWj59JFSks_x11L2is26ajd0,4123
266
268
  ultralytics/utils/callbacks/mlflow.py,sha256=6K8I5zij1yq3TUW9c5BBQNqdzz3IXugQjwKoBOvV6ag,5344
267
269
  ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY7TR5Um_O8,4612
268
- ultralytics/utils/callbacks/platform.py,sha256=gdbEuedXEs1VjdU0IiedjPFwttZJUiI0dJoImU3G_Gc,1999
270
+ ultralytics/utils/callbacks/platform.py,sha256=a7T_8htoBB0uX1WIc392UJnhDjxkRyQMvhPYKR6wUTU,2008
269
271
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
270
272
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
271
273
  ultralytics/utils/callbacks/wb.py,sha256=ngQO8EJ1kxJDF1YajScVtzBbm26jGuejA0uWeOyvf5A,7685
272
- ultralytics-8.3.189.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
273
- ultralytics-8.3.189.dist-info/METADATA,sha256=hJvZ2maiZJHBB8aqGXVJGsMYVyu8Y-w3IjtLVf4J_GI,37693
274
- ultralytics-8.3.189.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
275
- ultralytics-8.3.189.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
276
- ultralytics-8.3.189.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
277
- ultralytics-8.3.189.dist-info/RECORD,,
274
+ ultralytics-8.3.191.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
275
+ ultralytics-8.3.191.dist-info/METADATA,sha256=jidcQeE7qCrrTybs8QlZTHH93G6Kra7vkQsbtp0rkAc,37693
276
+ ultralytics-8.3.191.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
277
+ ultralytics-8.3.191.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
278
+ ultralytics-8.3.191.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
279
+ ultralytics-8.3.191.dist-info/RECORD,,