ultralytics 8.3.15__py3-none-any.whl → 8.3.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,15 +4,43 @@ from time import time
4
4
 
5
5
  import numpy as np
6
6
 
7
- from ultralytics.solutions.solutions import BaseSolution, LineString
7
+ from ultralytics.solutions.solutions import BaseSolution
8
8
  from ultralytics.utils.plotting import Annotator, colors
9
9
 
10
10
 
11
11
  class SpeedEstimator(BaseSolution):
12
- """A class to estimate the speed of objects in a real-time video stream based on their tracks."""
12
+ """
13
+ A class to estimate the speed of objects in a real-time video stream based on their tracks.
14
+
15
+ This class extends the BaseSolution class and provides functionality for estimating object speeds using
16
+ tracking data in video streams.
17
+
18
+ Attributes:
19
+ spd (Dict[int, float]): Dictionary storing speed data for tracked objects.
20
+ trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated.
21
+ trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects.
22
+ trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects.
23
+ annotator (Annotator): Annotator object for drawing on images.
24
+ region (List[Tuple[int, int]]): List of points defining the speed estimation region.
25
+ track_line (List[Tuple[float, float]]): List of points representing the object's track.
26
+ r_s (LineString): LineString object representing the speed estimation region.
27
+
28
+ Methods:
29
+ initialize_region: Initializes the speed estimation region.
30
+ estimate_speed: Estimates the speed of objects based on tracking data.
31
+ store_tracking_history: Stores the tracking history for an object.
32
+ extract_tracks: Extracts tracks from the current frame.
33
+ display_output: Displays the output with annotations.
34
+
35
+ Examples:
36
+ >>> estimator = SpeedEstimator()
37
+ >>> frame = cv2.imread("frame.jpg")
38
+ >>> processed_frame = estimator.estimate_speed(frame)
39
+ >>> cv2.imshow("Speed Estimation", processed_frame)
40
+ """
13
41
 
14
42
  def __init__(self, **kwargs):
15
- """Initializes the SpeedEstimator with the given parameters."""
43
+ """Initializes the SpeedEstimator object with speed estimation parameters and data structures."""
16
44
  super().__init__(**kwargs)
17
45
 
18
46
  self.initialize_region() # Initialize speed region
@@ -27,9 +55,15 @@ class SpeedEstimator(BaseSolution):
27
55
  Estimates the speed of objects based on tracking data.
28
56
 
29
57
  Args:
30
- im0 (ndarray): The input image that will be used for processing
31
- Returns
32
- im0 (ndarray): The processed image for more usage
58
+ im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images.
59
+
60
+ Returns:
61
+ (np.ndarray): Processed image with speed estimations and annotations.
62
+
63
+ Examples:
64
+ >>> estimator = SpeedEstimator()
65
+ >>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
66
+ >>> processed_image = estimator.estimate_speed(image)
33
67
  """
34
68
  self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
35
69
  self.extract_tracks(im0) # Extract tracks
@@ -56,7 +90,7 @@ class SpeedEstimator(BaseSolution):
56
90
  )
57
91
 
58
92
  # Calculate object speed and direction based on region intersection
59
- if LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.l_s):
93
+ if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s):
60
94
  direction = "known"
61
95
  else:
62
96
  direction = "unknown"
@@ -11,7 +11,7 @@ from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
11
11
 
12
12
 
13
13
  def inference(model=None):
14
- """Runs real-time object detection on video input using Ultralytics YOLO11 in a Streamlit application."""
14
+ """Performs real-time object detection on video input using YOLO in a Streamlit web application."""
15
15
  check_requirements("streamlit>=1.29.0") # scope imports for faster ultralytics package load speeds
16
16
  import streamlit as st
17
17
 
@@ -108,7 +108,7 @@ def inference(model=None):
108
108
  st.warning("Failed to read frame from webcam. Please make sure the webcam is connected properly.")
109
109
  break
110
110
 
111
- prev_time = time.time()
111
+ prev_time = time.time() # Store initial time for FPS calculation
112
112
 
113
113
  # Store model predictions
114
114
  if enable_trk == "Yes":
@@ -120,7 +120,6 @@ def inference(model=None):
120
120
  # Calculate model FPS
121
121
  curr_time = time.time()
122
122
  fps = 1 / (curr_time - prev_time)
123
- prev_time = curr_time
124
123
 
125
124
  # display frame
126
125
  org_frame.image(frame, channels="BGR")
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.15
4
- Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
3
+ Version: 8.3.16
4
+ Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
7
7
  License: AGPL-3.0
@@ -203,7 +203,7 @@ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more exam
203
203
 
204
204
  YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
205
205
 
206
- <img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
206
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
207
207
 
208
208
  All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
209
209
 
@@ -294,7 +294,7 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
294
294
 
295
295
  ## <div align="center">Integrations</div>
296
296
 
297
- Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
297
+ Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
298
298
 
299
299
  <br>
300
300
  <a href="https://www.ultralytics.com/hub" target="_blank">
@@ -303,11 +303,11 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
303
303
  <br>
304
304
 
305
305
  <div align="center">
306
- <a href="https://roboflow.com/?ref=ultralytics">
307
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" alt="Roboflow logo"></a>
306
+ <a href="https://www.ultralytics.com/hub">
307
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
308
308
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
309
- <a href="https://clear.ml/">
310
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" alt="ClearML logo"></a>
309
+ <a href="https://docs.wandb.ai/guides/integrations/ultralytics/">
310
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="ClearML logo"></a>
311
311
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
312
312
  <a href="https://bit.ly/yolov8-readme-comet">
313
313
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
@@ -316,9 +316,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
316
316
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
317
317
  </div>
318
318
 
319
- | Roboflow | ClearML NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
320
- | :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
321
- | Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
319
+ | Ultralytics HUB 🚀 | W&B | Comet ⭐ NEW | Neural Magic |
320
+ | :----------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
321
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
322
322
 
323
323
  ## <div align="center">Ultralytics HUB</div>
324
324
 
@@ -6,8 +6,8 @@ tests/test_engine.py,sha256=dcEcJsMQh61rDSNv7l4TIAgybLpzjVwerv9JZC_KCM8,4934
6
6
  tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
7
7
  tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
8
8
  tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
9
- tests/test_solutions.py,sha256=dpxWGKO-aJ3Yff4KR7BQGajX9VyFdGTWEtcbmFC3WwE,3005
10
- ultralytics/__init__.py,sha256=aj8G5I4WicUSrO31o8bjr2-NpBMLdj9qEzU9uVqo-yg,681
9
+ tests/test_solutions.py,sha256=sPYhy2d814mIVvojQeVxeZPu0IVy01_Y8zuMcu_9GF0,3790
10
+ ultralytics/__init__.py,sha256=sBXjCpn04kFZOFzQS8jnCWjkrkcS0PPNFEmNHT7kRNo,681
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=Y-T6ya7MYBLsoJ4sv8MRgvT5TMKZs5A6ZOYo7Tw_jcs,31732
@@ -85,7 +85,7 @@ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=dhaR47WxuLOrZWDCceS4bQG00sQdrMc8FQ
85
85
  ultralytics/cfg/models/v9/yolov9m.yaml,sha256=l6CmivzNu44sRVmkQXk4-tXflbV1nWnk5MSc8su2vhs,1311
86
86
  ultralytics/cfg/models/v9/yolov9s.yaml,sha256=lPWcu-6ub1kCBD6zIDFwthYZ3RvdJfODWKy3vEQWRjo,1291
87
87
  ultralytics/cfg/models/v9/yolov9t.yaml,sha256=qL__kr6GoefpQWP4jV0jdzwTp46bdFUcqtPRnfDbkY8,1275
88
- ultralytics/cfg/solutions/default.yaml,sha256=zZ_ksoZ-BcAIL5jjw0jzHgraoe7363oxXqfSsg9yopk,1673
88
+ ultralytics/cfg/solutions/default.yaml,sha256=CmkH6P1H_pR679juZmoBMscKVJSejgCMXip6q-AnLis,1720
89
89
  ultralytics/cfg/trackers/botsort.yaml,sha256=8B0xNbnG_E-9DCUpap72PWkUgBb1AjuApEn7gHiVngE,916
90
90
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=8vpTZ2x9mhRXJymoJvs1G8kTXo_HxbSwHup2FQALT3A,721
91
91
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
@@ -96,7 +96,7 @@ ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,726
96
96
  ultralytics/data/converter.py,sha256=QCtrcbNz9kid8nvHfGIWt02nH1wwMKv6HI-8s927CR8,24251
97
97
  ultralytics/data/dataset.py,sha256=D556AW0ZEsW3V8c5zJiHM_prc_YfZqymIkDKPw3k9Io,22936
98
98
  ultralytics/data/loaders.py,sha256=Fr70Q9p9t7buLW_8R2_lI_nyCMG033gWSxvwy1M-a-U,28449
99
- ultralytics/data/split_dota.py,sha256=yOtypHoY5HvIVBKZgFXdfj2tuCLLEBnMwNfAeG94Eik,10680
99
+ ultralytics/data/split_dota.py,sha256=eFafJ7Vg52wj6KDCHFJAf1tKzyPD5YaPB8kM4VX5Aeg,10688
100
100
  ultralytics/data/utils.py,sha256=bmWEIrdogj4kssZQSJdSbIF8QsJU00lo-EY-Mgcqv4M,31073
101
101
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
102
102
  ultralytics/engine/exporter.py,sha256=OQONIGMLBKgkhfUC4CV7mRWfyo_VV03SA5SnaetBIsM,57662
@@ -179,16 +179,16 @@ ultralytics/nn/modules/head.py,sha256=WnCpQDBlMDStpEs-m-R0vcKq28OX2FEgTcmHEpRL_p
179
179
  ultralytics/nn/modules/transformer.py,sha256=tGiK8NmPfswwW1rbF21r5ILUkkZQ6Nk4s8j16vFBmps,18069
180
180
  ultralytics/nn/modules/utils.py,sha256=a88cKl2wz1nMVSEBiajtvaCbDBQIkESWOKTZ_WAJy90,3195
181
181
  ultralytics/solutions/__init__.py,sha256=6RDeXWO1QSaMgCq8YrWXaj2xvPw2sJwJL_a0dgjCvz0,648
182
- ultralytics/solutions/ai_gym.py,sha256=BG2e7yl3_5LF_Y_RLOeBE9x872NmkVqF6lyAPESp-fs,3770
183
- ultralytics/solutions/analytics.py,sha256=x5-PA7DmR_ZbeZFCx6wKBI-Cs-opJ5wKyDNdB5E3fNQ,9294
184
- ultralytics/solutions/distance_calculation.py,sha256=3D5qj9g-XGt_QPEu5IQI2ubTC0n2pmISDrNPl__JK9M,3373
185
- ultralytics/solutions/heatmap.py,sha256=Y9RHAp7b7-01foLUW0iUjKis6Iu60fFEFxxZqiENhX0,3845
186
- ultralytics/solutions/object_counter.py,sha256=7s3Q--CAFHr_uXzeq6epXgl5YSinc6q-VThPBx1Gj3Y,5485
187
- ultralytics/solutions/parking_management.py,sha256=dvvymuR2ErvufN9PzC2M9K4byKsjIFYPiDcrCNPJtbk,9049
188
- ultralytics/solutions/queue_management.py,sha256=5d1RURQiqffAoET8S66gHimK0l3gKNAfuPO5U6_08jc,2716
189
- ultralytics/solutions/solutions.py,sha256=qWKGlwlH9858GfAdZkcu_QXbrzjTFStDvg16Eky0oyo,3541
190
- ultralytics/solutions/speed_estimation.py,sha256=2jLTEdnSF3Mm3Z7QJVPCUq84-7L6ELIJIR_sPFBW_cU,3164
191
- ultralytics/solutions/streamlit_inference.py,sha256=I9qNwBsoLgvEUy_y9CF7W8dod4ifJq2kOqsv0EOcTxU,5699
182
+ ultralytics/solutions/ai_gym.py,sha256=A2C9K-3i0NZmuFyfbRLWVPMFXHenbOU9xNdnLDFtShM,5341
183
+ ultralytics/solutions/analytics.py,sha256=G4SKg8OPwGsHdUITOeD3pP11iUce1j8ut6HW7BCoJuc,11535
184
+ ultralytics/solutions/distance_calculation.py,sha256=KN3CC-dm2dTQylj79IrifCJT8ZhE7hc2EweH3KK31mE,5461
185
+ ultralytics/solutions/heatmap.py,sha256=If9rosSCmE7pAL1HtVnLkx05gQp6nP1K6HzATMcaEEE,5372
186
+ ultralytics/solutions/object_counter.py,sha256=vKB7riRm8NjHA6IXyf557FpmV-b0_XoKbXHqMHziXSM,8264
187
+ ultralytics/solutions/parking_management.py,sha256=402e2W0PIyLvSrwEjinq9IVlzFB-R7KCmJTHL09rJ5E,11268
188
+ ultralytics/solutions/queue_management.py,sha256=D9TqwJSVrZQFxp_M8O62WfBAxkAuDWWnXe7FFmnp7_w,4881
189
+ ultralytics/solutions/solutions.py,sha256=k3GL1cd4OcaUZCAAFw8EsWwdxJp97z6p5CKbNBuDDyc,6491
190
+ ultralytics/solutions/speed_estimation.py,sha256=A10DmuZlGkoZUyfHhZWcDRjj1-9GXiDhEjyBbAzfaDs,4936
191
+ ultralytics/solutions/streamlit_inference.py,sha256=w4dnvSv2FOrpji9W1Ir86phka3OXc7jd_38-OCbQdZw,5701
192
192
  ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
193
193
  ultralytics/trackers/basetrack.py,sha256=dXnXW3cxxd7lPm20JJCNO2voCIrQ4vhbNI1g4YEgn-Y,4423
194
194
  ultralytics/trackers/bot_sort.py,sha256=766grVQExvonb087Wy-SB32TSwYYsTEM22yoWeQ_EEo,10494
@@ -227,9 +227,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=IbGQfEltamUKXJt93uSLQFn8c2rYh3DMTg
227
227
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
228
228
  ultralytics/utils/callbacks/tensorboard.py,sha256=SHlE58Fb-sg-uZKtgy-ybIO3SAIfK55aj8kTYGA0Cyg,4167
229
229
  ultralytics/utils/callbacks/wb.py,sha256=upfbF8-LLXueUvulLaMDmKDhKCl_PWbNa_87PQ0L0Rc,6752
230
- ultralytics-8.3.15.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
231
- ultralytics-8.3.15.dist-info/METADATA,sha256=H_YoVi7MhmRhxpODtQejSTLVwbcGGtKWRltpeTfp8wU,34660
232
- ultralytics-8.3.15.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
233
- ultralytics-8.3.15.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
234
- ultralytics-8.3.15.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
235
- ultralytics-8.3.15.dist-info/RECORD,,
230
+ ultralytics-8.3.16.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
231
+ ultralytics-8.3.16.dist-info/METADATA,sha256=VQg85ooStdWruRUcg44_kQRHY0CWbdC6LvHaq31Y_YY,34799
232
+ ultralytics-8.3.16.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
233
+ ultralytics-8.3.16.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
234
+ ultralytics-8.3.16.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
235
+ ultralytics-8.3.16.dist-info/RECORD,,