ultralytics 8.3.14__py3-none-any.whl → 8.3.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.14"
3
+ __version__ = "8.3.15"
4
4
 
5
5
  import os
6
6
 
@@ -398,7 +398,7 @@ class Exporter:
398
398
  """YOLO ONNX export."""
399
399
  requirements = ["onnx>=1.12.0"]
400
400
  if self.args.simplify:
401
- requirements += ["onnxslim==0.1.34", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
401
+ requirements += ["onnxslim", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
402
402
  check_requirements(requirements)
403
403
  import onnx # noqa
404
404
 
@@ -126,7 +126,7 @@ class AutoBackend(nn.Module):
126
126
  fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
127
127
  nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
128
128
  stride = 32 # default stride
129
- model, metadata = None, None
129
+ model, metadata, task = None, None, None
130
130
 
131
131
  # Set device
132
132
  cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
@@ -336,11 +336,15 @@ class AutoBackend(nn.Module):
336
336
 
337
337
  Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
338
338
  if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
339
- LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
339
+ device = device[3:] if str(device).startswith("tpu") else ":0"
340
+ LOGGER.info(f"Loading {w} on device {device[1:]} for TensorFlow Lite Edge TPU inference...")
340
341
  delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
341
342
  platform.system()
342
343
  ]
343
- interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
344
+ interpreter = Interpreter(
345
+ model_path=w,
346
+ experimental_delegates=[load_delegate(delegate, options={"device": device})],
347
+ )
344
348
  else: # TFLite
345
349
  LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
346
350
  interpreter = Interpreter(model_path=w) # load TFLite model
@@ -31,7 +31,7 @@ class AIGym(BaseSolution):
31
31
 
32
32
  def monitor(self, im0):
33
33
  """
34
- Monitor the workouts using Ultralytics YOLOv8 Pose Model: https://docs.ultralytics.com/tasks/pose/.
34
+ Monitor the workouts using Ultralytics YOLO Pose Model: https://docs.ultralytics.com/tasks/pose/.
35
35
 
36
36
  Args:
37
37
  im0 (ndarray): The input image that will be used for processing
@@ -143,7 +143,7 @@ class ParkingPtsSelection:
143
143
 
144
144
 
145
145
  class ParkingManagement:
146
- """Manages parking occupancy and availability using YOLOv8 for real-time monitoring and visualization."""
146
+ """Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization."""
147
147
 
148
148
  def __init__(
149
149
  self,
@@ -153,10 +153,10 @@ class ParkingManagement:
153
153
  available_region_color=(0, 255, 0), # available region color
154
154
  ):
155
155
  """
156
- Initializes the parking management system with a YOLOv8 model and visualization settings.
156
+ Initializes the parking management system with a YOLO model and visualization settings.
157
157
 
158
158
  Args:
159
- model (str): Path to the YOLOv8 model.
159
+ model (str): Path to the YOLO model.
160
160
  json_file (str): file that have all parking slot points data
161
161
  occupied_region_color (tuple): RGB color tuple for occupied regions.
162
162
  available_region_color (tuple): RGB color tuple for available regions.
@@ -11,7 +11,7 @@ from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
11
11
 
12
12
 
13
13
  def inference(model=None):
14
- """Runs real-time object detection on video input using Ultralytics YOLOv8 in a Streamlit application."""
14
+ """Runs real-time object detection on video input using Ultralytics YOLO11 in a Streamlit application."""
15
15
  check_requirements("streamlit>=1.29.0") # scope imports for faster ultralytics package load speeds
16
16
  import streamlit as st
17
17
 
@@ -163,7 +163,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
163
163
  Note:
164
164
  Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
165
165
  """
166
- if isinstance(device, torch.device):
166
+ if isinstance(device, torch.device) or str(device).startswith("tpu"):
167
167
  return device
168
168
 
169
169
  s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{torch.__version__} "
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.14
3
+ Version: 8.3.15
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -7,7 +7,7 @@ tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
7
7
  tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
8
8
  tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
9
9
  tests/test_solutions.py,sha256=dpxWGKO-aJ3Yff4KR7BQGajX9VyFdGTWEtcbmFC3WwE,3005
10
- ultralytics/__init__.py,sha256=KzMsO7bLpFbwC0r69u5-Djd8ntMivPUme-w9Jk7K6Qo,681
10
+ ultralytics/__init__.py,sha256=aj8G5I4WicUSrO31o8bjr2-NpBMLdj9qEzU9uVqo-yg,681
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=Y-T6ya7MYBLsoJ4sv8MRgvT5TMKZs5A6ZOYo7Tw_jcs,31732
@@ -99,7 +99,7 @@ ultralytics/data/loaders.py,sha256=Fr70Q9p9t7buLW_8R2_lI_nyCMG033gWSxvwy1M-a-U,2
99
99
  ultralytics/data/split_dota.py,sha256=yOtypHoY5HvIVBKZgFXdfj2tuCLLEBnMwNfAeG94Eik,10680
100
100
  ultralytics/data/utils.py,sha256=bmWEIrdogj4kssZQSJdSbIF8QsJU00lo-EY-Mgcqv4M,31073
101
101
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
102
- ultralytics/engine/exporter.py,sha256=lKmVaypzVY3R-RkCs1KQNrSpF6W4jKMZqNBKZ0CfzmA,57670
102
+ ultralytics/engine/exporter.py,sha256=OQONIGMLBKgkhfUC4CV7mRWfyo_VV03SA5SnaetBIsM,57662
103
103
  ultralytics/engine/model.py,sha256=pvL1uf-wwdWL8Iph7VEAYn1-z7wEHzVug21V_0_gO6M,51456
104
104
  ultralytics/engine/predictor.py,sha256=keTelEeo23Dcbs-XvmRWAPIs4pbCNDtsMBz88WM1eK8,17534
105
105
  ultralytics/engine/results.py,sha256=BxanBI8PhBCfs-9cSy-GS6naScuiD3hdvUAJWPW2mS0,75043
@@ -169,7 +169,7 @@ ultralytics/models/yolo/world/__init__.py,sha256=3VTH0q4NOt2EWRom15yCymvmvm0Etp2
169
169
  ultralytics/models/yolo/world/train.py,sha256=gaDrAmLJpg9qDtmL5evA5HsV2yb4RTRSfk2EDYrHdRg,3686
170
170
  ultralytics/models/yolo/world/train_world.py,sha256=IsnCEVt6DcM9lUskCKmIN-M8MM79xLpwTRqRoAHUnZ4,4857
171
171
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
172
- ultralytics/nn/autobackend.py,sha256=osAOr5S3z8NqRt2sIY1aK_M8RR2r2l2uT28CV-bazvU,31597
172
+ ultralytics/nn/autobackend.py,sha256=sFo9vx3y1M3lzaROMvMFfar7EngEn4BF5-_439r_eZA,31798
173
173
  ultralytics/nn/tasks.py,sha256=vHhPv6kFkSCjYB_OfAmEB6PYwxKVZlyzZvqKULE3utY,48403
174
174
  ultralytics/nn/modules/__init__.py,sha256=xhW2BennT9U_VaMXVpRu-bdLgp1BXt9L8mkIUBE3idU,2625
175
175
  ultralytics/nn/modules/activation.py,sha256=chhn469wnRHEs5BMGNBYXwPYZc_7-urspTT8fnBd-xA,895
@@ -179,16 +179,16 @@ ultralytics/nn/modules/head.py,sha256=WnCpQDBlMDStpEs-m-R0vcKq28OX2FEgTcmHEpRL_p
179
179
  ultralytics/nn/modules/transformer.py,sha256=tGiK8NmPfswwW1rbF21r5ILUkkZQ6Nk4s8j16vFBmps,18069
180
180
  ultralytics/nn/modules/utils.py,sha256=a88cKl2wz1nMVSEBiajtvaCbDBQIkESWOKTZ_WAJy90,3195
181
181
  ultralytics/solutions/__init__.py,sha256=6RDeXWO1QSaMgCq8YrWXaj2xvPw2sJwJL_a0dgjCvz0,648
182
- ultralytics/solutions/ai_gym.py,sha256=lBAkWV8vrEdKAXcBFVbugPeZZ08MOjGYTdnFlG22vKM,3772
182
+ ultralytics/solutions/ai_gym.py,sha256=BG2e7yl3_5LF_Y_RLOeBE9x872NmkVqF6lyAPESp-fs,3770
183
183
  ultralytics/solutions/analytics.py,sha256=x5-PA7DmR_ZbeZFCx6wKBI-Cs-opJ5wKyDNdB5E3fNQ,9294
184
184
  ultralytics/solutions/distance_calculation.py,sha256=3D5qj9g-XGt_QPEu5IQI2ubTC0n2pmISDrNPl__JK9M,3373
185
185
  ultralytics/solutions/heatmap.py,sha256=Y9RHAp7b7-01foLUW0iUjKis6Iu60fFEFxxZqiENhX0,3845
186
186
  ultralytics/solutions/object_counter.py,sha256=7s3Q--CAFHr_uXzeq6epXgl5YSinc6q-VThPBx1Gj3Y,5485
187
- ultralytics/solutions/parking_management.py,sha256=VgYyhoSEo7fnPegIhNUqnFL0jlMEevALx0QQbzJ3vGI,9049
187
+ ultralytics/solutions/parking_management.py,sha256=dvvymuR2ErvufN9PzC2M9K4byKsjIFYPiDcrCNPJtbk,9049
188
188
  ultralytics/solutions/queue_management.py,sha256=5d1RURQiqffAoET8S66gHimK0l3gKNAfuPO5U6_08jc,2716
189
189
  ultralytics/solutions/solutions.py,sha256=qWKGlwlH9858GfAdZkcu_QXbrzjTFStDvg16Eky0oyo,3541
190
190
  ultralytics/solutions/speed_estimation.py,sha256=2jLTEdnSF3Mm3Z7QJVPCUq84-7L6ELIJIR_sPFBW_cU,3164
191
- ultralytics/solutions/streamlit_inference.py,sha256=qA2EtwUC7ADOQ8P-zs3VPyrIoRArhcZz9CxkFbH63bw,5699
191
+ ultralytics/solutions/streamlit_inference.py,sha256=I9qNwBsoLgvEUy_y9CF7W8dod4ifJq2kOqsv0EOcTxU,5699
192
192
  ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
193
193
  ultralytics/trackers/basetrack.py,sha256=dXnXW3cxxd7lPm20JJCNO2voCIrQ4vhbNI1g4YEgn-Y,4423
194
194
  ultralytics/trackers/bot_sort.py,sha256=766grVQExvonb087Wy-SB32TSwYYsTEM22yoWeQ_EEo,10494
@@ -213,7 +213,7 @@ ultralytics/utils/ops.py,sha256=dsXNdyrYx_p6io6zezig9p84dxS7U-10vceHNVu2IL0,3288
213
213
  ultralytics/utils/patches.py,sha256=J-iOwIRbfUs-inBZerhnXby5tUKjYcOIyvhLTS352JE,3270
214
214
  ultralytics/utils/plotting.py,sha256=TKtdbAOl6gZdFD2hlA5T4LNWfr2LUWbCC-cXkgL1JAU,61089
215
215
  ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
216
- ultralytics/utils/torch_utils.py,sha256=bGr_YWoLdhWoP4eUyrrwFCQjr6zOA4_9t5XzGkttYHI,30056
216
+ ultralytics/utils/torch_utils.py,sha256=91fmJtZRvIVb6LI-wNkNrlHE7mMNBmcR4oif8ZYppYU,30089
217
217
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
218
218
  ultralytics/utils/tuner.py,sha256=mJdgvuE2StoFS13mEdsTbsxQgSZA4fSdSCgoyh8PvNw,6250
219
219
  ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
@@ -227,9 +227,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=IbGQfEltamUKXJt93uSLQFn8c2rYh3DMTg
227
227
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
228
228
  ultralytics/utils/callbacks/tensorboard.py,sha256=SHlE58Fb-sg-uZKtgy-ybIO3SAIfK55aj8kTYGA0Cyg,4167
229
229
  ultralytics/utils/callbacks/wb.py,sha256=upfbF8-LLXueUvulLaMDmKDhKCl_PWbNa_87PQ0L0Rc,6752
230
- ultralytics-8.3.14.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
231
- ultralytics-8.3.14.dist-info/METADATA,sha256=d9dz7HQL5osy3P_rLzWcclGC2JnO84dx-q3Tqie6ByY,34660
232
- ultralytics-8.3.14.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
233
- ultralytics-8.3.14.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
234
- ultralytics-8.3.14.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
235
- ultralytics-8.3.14.dist-info/RECORD,,
230
+ ultralytics-8.3.15.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
231
+ ultralytics-8.3.15.dist-info/METADATA,sha256=H_YoVi7MhmRhxpODtQejSTLVwbcGGtKWRltpeTfp8wU,34660
232
+ ultralytics-8.3.15.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
233
+ ultralytics-8.3.15.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
234
+ ultralytics-8.3.15.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
235
+ ultralytics-8.3.15.dist-info/RECORD,,