ultralytics 8.3.145__py3-none-any.whl → 8.3.146__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -201,6 +201,11 @@ class Annotator:
201
201
  input_is_pil = isinstance(im, Image.Image)
202
202
  self.pil = pil or non_ascii or input_is_pil
203
203
  self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
204
+ if not input_is_pil:
205
+ if im.shape[2] == 1: # handle grayscale
206
+ im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
207
+ elif im.shape[2] > 3: # multispectral
208
+ im = np.ascontiguousarray(im[..., :3])
204
209
  if self.pil: # use PIL
205
210
  self.im = im if input_is_pil else Image.fromarray(im)
206
211
  if self.im.mode not in {"RGB", "RGBA"}: # multispectral
@@ -216,10 +221,6 @@ class Annotator:
216
221
  if check_version(pil_version, "9.2.0"):
217
222
  self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
218
223
  else: # use cv2
219
- if im.shape[2] == 1: # handle grayscale
220
- im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
221
- elif im.shape[2] > 3: # multispectral
222
- im = np.ascontiguousarray(im[..., :3])
223
224
  assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
224
225
  self.im = im if im.flags.writeable else im.copy()
225
226
  self.tf = max(self.lw - 1, 1) # font thickness
@@ -644,7 +645,7 @@ def save_one_box(
644
645
  gain (float, optional): A multiplicative factor to increase the size of the bounding box.
645
646
  pad (int, optional): The number of pixels to add to the width and height of the bounding box.
646
647
  square (bool, optional): If True, the bounding box will be transformed into a square.
647
- BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB.
648
+ BGR (bool, optional): If True, the image will be returned in BGR format, otherwise in RGB.
648
649
  save (bool, optional): If True, the cropped image will be saved to disk.
649
650
 
650
651
  Returns:
@@ -664,12 +665,14 @@ def save_one_box(
664
665
  b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
665
666
  xyxy = ops.xywh2xyxy(b).long()
666
667
  xyxy = ops.clip_boxes(xyxy, im.shape)
667
- crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
668
+ grayscale = im.shape[2] == 1 # grayscale image
669
+ crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR or grayscale else -1)]
668
670
  if save:
669
671
  file.parent.mkdir(parents=True, exist_ok=True) # make directory
670
672
  f = str(increment_path(file).with_suffix(".jpg"))
671
673
  # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
672
- Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
674
+ crop = crop.squeeze(-1) if grayscale else crop[..., ::-1] if BGR else crop
675
+ Image.fromarray(crop).save(f, quality=95, subsampling=0) # save RGB
673
676
  return crop
674
677
 
675
678
 
@@ -10,7 +10,7 @@ from contextlib import contextmanager
10
10
  from copy import deepcopy
11
11
  from datetime import datetime
12
12
  from pathlib import Path
13
- from typing import Union
13
+ from typing import Any, Dict, Union
14
14
 
15
15
  import numpy as np
16
16
  import torch
@@ -704,7 +704,7 @@ class ModelEMA:
704
704
  copy_attr(self.ema, model, include, exclude)
705
705
 
706
706
 
707
- def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict = None) -> dict:
707
+ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: Dict[str, Any] = None) -> Dict[str, Any]:
708
708
  """
709
709
  Strip optimizer from 'f' to finalize training, optionally save as 's'.
710
710
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.145
3
+ Version: 8.3.146
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,16 +1,16 @@
1
- tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
1
+ tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
2
2
  tests/conftest.py,sha256=JjgKSs36ZaGmmtqGmAapmFSoFF1YwyV3IZsOgqt2IVM,2593
3
- tests/test_cli.py,sha256=T0HWw0aws8WFlrdVl1NnUnQKROQCRGbjR010iYUN1Sw,5852
3
+ tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
4
4
  tests/test_cuda.py,sha256=-nQsfF3lGfqLm6cIeu_BCiXqLj7HzpL7R1GzPEc6z2I,8128
5
5
  tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
6
6
  tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
7
7
  tests/test_integrations.py,sha256=cQfgueFhEZ8Xs-tF0uiIEhvn0DlhOH-Wqrx96LXp3D0,6303
8
- tests/test_python.py,sha256=Zx9OlPN11_D1WSLpi9nPFqORNHNz0lEn6mxVNL2ZHjE,25852
8
+ tests/test_python.py,sha256=x5m2RAVWnzu5uT5sYnx8ybHpHycToWjzfJJZUklVxqQ,27386
9
9
  tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
10
- ultralytics/__init__.py,sha256=u3QffN3nHEJosKs8D2yFToSRrI9sa77PqqJoQ1T2Fms,730
10
+ ultralytics/__init__.py,sha256=rr8AlK0l4sHv7KJzILIXcGq-I8vDhSKXc5B_8Lf_yO8,730
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
- ultralytics/cfg/__init__.py,sha256=a2jQYIUoTwYRNUddLWE_TWxD7LQOczveM_BV7qVbork,39655
13
+ ultralytics/cfg/__init__.py,sha256=H19EalaxuIa44J_nVBrNxMj8EAPmlZl3ecbX0-xK8y8,39600
14
14
  ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
15
15
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=_xlEDIJ9XkUo0v_iNL7FW079BoSeZtKSuLteKTtGbA8,3275
16
16
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=SHND_CFkojxw5iQD5Mcgju2kCZIl0gW2ajuzv1cqoL0,1224
@@ -29,6 +29,7 @@ ultralytics/cfg/datasets/coco-pose.yaml,sha256=NHdgSsGkHS0-X636p2-hExTJGdoWUSP1T
29
29
  ultralytics/cfg/datasets/coco.yaml,sha256=chdzyIHLfekjOcng-G2_bpC57VUcHPjVvW8ENJfiQao,2619
30
30
  ultralytics/cfg/datasets/coco128-seg.yaml,sha256=ifDPbVuuN7N2_3e8e_YBdTVcANYIOKORQMgXlsPS6D4,1995
31
31
  ultralytics/cfg/datasets/coco128.yaml,sha256=udymG6qzF9Bvh_JYC7BOSXOUeA1Ia8ZmR2EzNGsY6YY,1978
32
+ ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=U3jjPUoFahLch4N11qjG1myhE5wsy2tFeC23I9w_nr0,1974
32
33
  ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=h5Kbx9y3wjWUw6p8jeQVUaIs07VoQS7ZY0vMau5WGAg,2076
33
34
  ultralytics/cfg/datasets/coco8-pose.yaml,sha256=yfw2_SkCZO3ttPLiI0mfjxv5gr4-CA3i0elYP5PY71k,1022
34
35
  ultralytics/cfg/datasets/coco8-seg.yaml,sha256=wpfFI-GfL5asbLtFyaHLE6593jdka7waE07Am3_eg8w,1926
@@ -104,7 +105,7 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
104
105
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
105
106
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
106
107
  ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
107
- ultralytics/data/augment.py,sha256=ekdWksi157TlYh1D27axnEPRqFYonQ11TpJmCv0fbZQ,128933
108
+ ultralytics/data/augment.py,sha256=fvYug6B0qrSSS8IYpvdju9uENnEJWCf-GNG5WqIayng,128964
108
109
  ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
109
110
  ultralytics/data/build.py,sha256=Djz6stD1FXmFhnoUJp-MKp7geu-k3xhnvt9kfXFKGhI,11020
110
111
  ultralytics/data/converter.py,sha256=oKW8ODtvFOKBx9Un8n87xUUm3b5GStU4ViIBH5UDylM,27200
@@ -119,12 +120,12 @@ ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz
119
120
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
120
121
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
121
122
  ultralytics/engine/exporter.py,sha256=Ug0HvQSseQA9k4jb_CUGXKPg9w082W1cocwPxxtXgkM,73902
122
- ultralytics/engine/model.py,sha256=hJNeSemchlecsyxd_Fuj-351z0AJIhOE4GN3W0tJGU8,53300
123
+ ultralytics/engine/model.py,sha256=nOhlQFUTXrghmAfHLo97rji8HCt2vzIhGO6TruWvrNI,53315
123
124
  ultralytics/engine/predictor.py,sha256=30fBpuwOuNT3hr8bju4coeOr-jqU_8hDYESugmowLBE,22151
124
125
  ultralytics/engine/results.py,sha256=Mb8pBTOrBtQh0PQtGVbhRZ_C1VyqYFumjLggiKCRIJs,72295
125
126
  ultralytics/engine/trainer.py,sha256=zZ2Lm7VJOlBX-Ya52ec3n3IlSn9_yM5fbsRIWGeGOyo,39556
126
127
  ultralytics/engine/tuner.py,sha256=4ue7JbMFQp7JcWhhwCAY-b-xZsjm5VKVlPFDUTyxt_8,12789
127
- ultralytics/engine/validator.py,sha256=MMxH1TMKN32Y8MHaN4XOofQ1RkXNm867oM63eVtOtZA,16970
128
+ ultralytics/engine/validator.py,sha256=2YEdIn2DpPdUPjwDJDR0d0DU8BiwFmh2_502xDPGwMo,16953
128
129
  ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
129
130
  ultralytics/hub/auth.py,sha256=5uMPzZt8aO-YsnEWADzc1qBUt9c30RTIfrGo5SWTrv4,6271
130
131
  ultralytics/hub/session.py,sha256=UeUSRbdclSBPJQfpSNGeY13gb1O2Bhzh0Aj7cXum6P4,18518
@@ -137,7 +138,7 @@ ultralytics/models/fastsam/predict.py,sha256=G-o8hs8W5XmqSN5G37zi6q9FglFnZSbD6qH
137
138
  ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
138
139
  ultralytics/models/fastsam/val.py,sha256=hDGCcQl04GA8ldDlRHUN3fri_N2Aev3Vu7-r3BftmvE,2335
139
140
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
140
- ultralytics/models/nas/model.py,sha256=519WcZr3Ac9syWIEKJFwvmGdSktpTUsakMX6MSkJBG4,4001
141
+ ultralytics/models/nas/model.py,sha256=kQeF3mkVHLLsoTL9F32CrYITNsdbTrYF6lEgHclhKN0,3824
141
142
  ultralytics/models/nas/predict.py,sha256=J4UT7nwi_h63lJ3a_gYac-Ws8wFYingZINxMqSoaX5E,2706
142
143
  ultralytics/models/nas/val.py,sha256=QUTE3zuhJLVqmDGd2n7iSSk7X6jKZCRxufFkBbyxYYo,1548
143
144
  ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
@@ -167,23 +168,23 @@ ultralytics/models/yolo/model.py,sha256=C0wInQC6rFuFOGpdAen1s2e5LIFDmqevto8uPbpm
167
168
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
168
169
  ultralytics/models/yolo/classify/predict.py,sha256=_GiN6muuZOBrMS1KER85FE4ktcw_Onn1bZdGvpbsGCE,4618
169
170
  ultralytics/models/yolo/classify/train.py,sha256=jXErkxnsC3pBFQBrFxObF8BJyqkckcw3C_qHMSWZrsY,10312
170
- ultralytics/models/yolo/classify/val.py,sha256=Oj-ZbEfxyWK7QXvndouLLR3bMwXPKXLB6rA9hAMztsM,9858
171
+ ultralytics/models/yolo/classify/val.py,sha256=G2huxA1Lf2BL4OUK0Gw43klhG3eLOFMFfhnFjmziKhQ,9721
171
172
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
172
173
  ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
173
174
  ultralytics/models/yolo/detect/train.py,sha256=qCWz0nvU-pQofa-_F7UhUoLQe-U1ExW0mvE5ZHnav4o,9818
174
- ultralytics/models/yolo/detect/val.py,sha256=Gt4St8giPAA-UkIf9THwRowS1yGgvBUgrCURBZ9jvkI,19302
175
+ ultralytics/models/yolo/detect/val.py,sha256=MCXImLgaoTPDoQvQW9KZyUrtHxVW5xAY3-bxdenZe-c,19164
175
176
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
176
177
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
177
178
  ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
178
- ultralytics/models/yolo/obb/val.py,sha256=se796OoYtIdlrlnnEoqE266D0_WvMPjZiXwvMU8MwQ4,14090
179
+ ultralytics/models/yolo/obb/val.py,sha256=pizYmRUkSlglQnNjZi0DeZehCJE9y5CmYjs_tGLDta4,14394
179
180
  ultralytics/models/yolo/pose/__init__.py,sha256=63xmuHZLNzV8I76HhVXAq4f2W0KTk8Oi9eL-Y204LyQ,227
180
181
  ultralytics/models/yolo/pose/predict.py,sha256=oePbV_IVRt0xPcTiycFAIixiX7bScth0d1uOOtdeErU,3773
181
182
  ultralytics/models/yolo/pose/train.py,sha256=6i1EQx-f112skBBBhCk6JIRKLjCoTEqw2ECJrc53Ku8,6862
182
- ultralytics/models/yolo/pose/val.py,sha256=27NZr_Pe4eq2N1-JYe7n33q3AU31XvIOddQQrD4D3cg,19371
183
+ ultralytics/models/yolo/pose/val.py,sha256=2QPhqVr90Aww2RKxuK36kGh_m3vbvWdMDhBDCb8Ho6M,19598
183
184
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
184
185
  ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHrw_7MXwtXE1l1Y,5377
185
186
  ultralytics/models/yolo/segment/train.py,sha256=026mRDOIjJ0ctMQQ2N9hRP6E5oLj2meGKO46u_MzrDk,5523
186
- ultralytics/models/yolo/segment/val.py,sha256=t9S5daw9DvRIEDoLL35EsWCoEnCj8_1i6G4Pai1GjgQ,18416
187
+ ultralytics/models/yolo/segment/val.py,sha256=KMB63KwqWF06mEwBgB7PqNdDy0qSzc0tYKPEvC1ykCg,19020
187
188
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
188
189
  ultralytics/models/yolo/world/train.py,sha256=94_hgCluzsv39JkBVDmR2gjuycYjeJC8wVrCfrjpENk,7806
189
190
  ultralytics/models/yolo/world/train_world.py,sha256=YJm37ZTgr0CoE_sYrjxN45w9mICr2RMWfWZrriiHqbM,9022
@@ -205,13 +206,13 @@ ultralytics/nn/modules/transformer.py,sha256=PW5-6gzOP3_rZ_uAkmxvI42nU5bkrgbgLKC
205
206
  ultralytics/nn/modules/utils.py,sha256=rn8yTObZGkQoqVzjbZWLaHiytppG4ffjMME4Lw60glM,6092
206
207
  ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2aWkI,1209
207
208
  ultralytics/solutions/ai_gym.py,sha256=A8vzdjTqOF2mFAiiy7zu3f8lzwqLJ07dk5aqZ8p-x_w,5256
208
- ultralytics/solutions/analytics.py,sha256=e_uD6lVFdpVrpxSZzAt_zLh5GnoKpSDDZF16uz3nS0U,12252
209
+ ultralytics/solutions/analytics.py,sha256=IfYlXV4vufpaOZz9h8cT1Vx9RjsqQYTCB7SbDlR0zv0,12784
209
210
  ultralytics/solutions/config.py,sha256=1HZvgWPt7duDxqAaOTyu4-TOBeRJeWx5EQgUwnyyO50,5394
210
211
  ultralytics/solutions/distance_calculation.py,sha256=e2Xa7dVOqiuk43JNakoxQlX48evEgZiEtxdtHTdlAsk,5931
211
212
  ultralytics/solutions/heatmap.py,sha256=IVnTOyIbxKrhmnzGbkncIqPakPHeJe4nrwQkOPJ00wY,5421
212
213
  ultralytics/solutions/instance_segmentation.py,sha256=HBWkCwmRa0jk84q4fhANzGpyirAtiCkAKRt0j9ED_Cw,3739
213
214
  ultralytics/solutions/object_blurrer.py,sha256=UVd9EGpyb_fJXFnPg3lbnhWxY1ntHVWmIJ2ragbZ6eY,3942
214
- ultralytics/solutions/object_counter.py,sha256=8wLAGv3DYFHvVgGGaEVaYj2WtdCSspuxInX-T78rwLs,9505
215
+ ultralytics/solutions/object_counter.py,sha256=1iPJW_59iIw8DZedYdjw7HIQINpQtEBCd190g6TosNA,9353
215
216
  ultralytics/solutions/object_cropper.py,sha256=SVB9fflB7-juZWUARpi-kndSZDVI-oXjHg4WUnOuA9A,3470
216
217
  ultralytics/solutions/parking_management.py,sha256=IHWK48DZa6PwaOKUu3XTJAZCxF6WtTlCno7N8W6VR4k,13481
217
218
  ultralytics/solutions/queue_management.py,sha256=_K6ugLMDfpp37S-LFV36K3QXf3vqjfxji8BPP_-6iqc,4337
@@ -226,31 +227,31 @@ ultralytics/solutions/vision_eye.py,sha256=LCb-2YPVvEks9e7xqZtNGftpAXNaZhEUb5yb3
226
227
  ultralytics/solutions/templates/similarity-search.html,sha256=DPoAO-1H-KXNt_T8mGtSCsYUEi_5Nrx01p0cZfX-E8Q,3790
227
228
  ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0pFGI,255
228
229
  ultralytics/trackers/basetrack.py,sha256=-skBFFatzgJFAPN9Frm1u1h_RDUg3WOlxG6eHQxp2Gw,4384
229
- ultralytics/trackers/bot_sort.py,sha256=Nkf4LVaCr7qaTQUOBwv9XEmKz8xenkGMuuKFD9mJQBE,12096
230
+ ultralytics/trackers/bot_sort.py,sha256=knP5oo1LC45Lrato8LpcY_j4KBojQFP1lxT_NJxhEUo,12134
230
231
  ultralytics/trackers/byte_tracker.py,sha256=CNS10VOGPtXXEimi0TaO88TAIcOBgo8ALF9H79iK_uQ,21633
231
232
  ultralytics/trackers/track.py,sha256=EmYi42ujLP3_CKuS6CmO_9dw8Ekg7-0WWJQeYfQucv0,4804
232
233
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
233
234
  ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
234
235
  ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
235
236
  ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
236
- ultralytics/utils/__init__.py,sha256=Z2-2V5jKe4psJ1IH8FwPK2U-2f40m4iKa3YJN7kBqx8,59563
237
+ ultralytics/utils/__init__.py,sha256=CahopjtuOs7q9uKm5NX89vm8iGE8_DJlwvmvX71ezQE,59523
237
238
  ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
238
239
  ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
239
- ultralytics/utils/benchmarks.py,sha256=YYsSSQfoe1HzHLEz-OR2z3XcrcMlFG_hef6kvaS3fwQ,30886
240
- ultralytics/utils/checks.py,sha256=qykHykHYl5ceWX3EYW06qRpIQw1HB2JgIvbFBFrXWns,33762
240
+ ultralytics/utils/benchmarks.py,sha256=14jidnH74g_ZCChuJF5qUnQ2YugX5amGTjea9__RlJ4,30836
241
+ ultralytics/utils/checks.py,sha256=PPVmxfxoHuC4YR7i56uklCKXFAPnltzbHHCxUwERjUQ,34100
241
242
  ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
242
- ultralytics/utils/downloads.py,sha256=aKbQJVJqRFSpLXPWW8bZXNmAA19naa-SMGH8hiSA_38,22048
243
+ ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkgc,22080
243
244
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
244
245
  ultralytics/utils/export.py,sha256=ZmxiY5Y2MuL4iBFsLr8ykbUsnvT01DCs0Kg1w3_Ikac,9789
245
246
  ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
246
247
  ultralytics/utils/instance.py,sha256=vhqaZRGT_4K9Q3oQH5KNNK4ISOzxlf1_JjauwhuFhu0,18408
247
248
  ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
248
- ultralytics/utils/metrics.py,sha256=xSrBkLC5aJznAsWpTnFHTgSIXxWLQL949OaKTq9hMxQ,61952
249
+ ultralytics/utils/metrics.py,sha256=mD5W7yr8T8XNHE0pJx38Ivcbq0PJIFGl0pq_sUOauuo,62122
249
250
  ultralytics/utils/ops.py,sha256=Yjm397sirPt9wNlgHU2SeVEApeEeYX1msSg5cTBGN8g,34381
250
251
  ultralytics/utils/patches.py,sha256=GI7NXCJ5H22FGp3sIvj5rrGfwdYNRWlxFcW-Jhjgius,5181
251
- ultralytics/utils/plotting.py,sha256=Njai4h7a1KEOqtOfWQ5gxdWi923rHaegkhj28tAhFmM,48108
252
+ ultralytics/utils/plotting.py,sha256=QMwedj19XNHus5NbUY3cQI1PGDgriPhHOzGirBsxdK8,48277
252
253
  ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
253
- ultralytics/utils/torch_utils.py,sha256=JDqCT6JAQOqV4riWPJHhblWas71-UZQBj-u0BFEwkjQ,39153
254
+ ultralytics/utils/torch_utils.py,sha256=iIAjf2g4hikzBeHvKN-EQK8QFlC_QtWWRuYQuBF2zIk,39184
254
255
  ultralytics/utils/triton.py,sha256=M7qe4RztiADBJQEWQKaIQsp94ERFJ_8_DUHDR6TXEOM,5410
255
256
  ultralytics/utils/tuner.py,sha256=bHr09Fz-0-t0ei55gX5wJh-obyiAQoicP7HUVM2I8qA,6826
256
257
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
@@ -264,9 +265,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
264
265
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
265
266
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
266
267
  ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
267
- ultralytics-8.3.145.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
268
- ultralytics-8.3.145.dist-info/METADATA,sha256=FgXekJXZrrgIpL91ohK8GSKACSKwgBOezGaVt_BbiIE,37200
269
- ultralytics-8.3.145.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
270
- ultralytics-8.3.145.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
271
- ultralytics-8.3.145.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
272
- ultralytics-8.3.145.dist-info/RECORD,,
268
+ ultralytics-8.3.146.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
269
+ ultralytics-8.3.146.dist-info/METADATA,sha256=PClBKSO8kBkL0QqN1rwEbHoxXh1sFz3BxUjCleLtOn8,37200
270
+ ultralytics-8.3.146.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
+ ultralytics-8.3.146.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
+ ultralytics-8.3.146.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
+ ultralytics-8.3.146.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.8.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5