ultralytics 8.3.136__py3-none-any.whl → 8.3.138__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_cuda.py +2 -7
- tests/test_exports.py +1 -6
- tests/test_solutions.py +181 -8
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +1 -1
- ultralytics/data/base.py +1 -1
- ultralytics/data/build.py +4 -3
- ultralytics/data/loaders.py +2 -2
- ultralytics/engine/exporter.py +6 -7
- ultralytics/engine/model.py +2 -2
- ultralytics/engine/predictor.py +3 -10
- ultralytics/engine/trainer.py +1 -1
- ultralytics/engine/validator.py +1 -1
- ultralytics/hub/auth.py +2 -2
- ultralytics/hub/utils.py +8 -3
- ultralytics/models/yolo/classify/predict.py +11 -0
- ultralytics/models/yolo/obb/val.py +1 -1
- ultralytics/models/yolo/world/train.py +66 -20
- ultralytics/models/yolo/world/train_world.py +1 -0
- ultralytics/models/yolo/yoloe/train.py +10 -39
- ultralytics/models/yolo/yoloe/val.py +3 -3
- ultralytics/nn/tasks.py +41 -24
- ultralytics/nn/text_model.py +1 -0
- ultralytics/solutions/similarity_search.py +3 -6
- ultralytics/solutions/streamlit_inference.py +1 -1
- ultralytics/utils/__init__.py +1 -1
- ultralytics/utils/callbacks/hub.py +5 -4
- ultralytics/utils/checks.py +13 -13
- ultralytics/utils/downloads.py +7 -5
- ultralytics/utils/export.py +1 -1
- ultralytics/utils/plotting.py +1 -1
- ultralytics/utils/torch_utils.py +3 -0
- ultralytics/utils/triton.py +1 -1
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.138.dist-info}/METADATA +1 -1
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.138.dist-info}/RECORD +39 -39
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.138.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.138.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.138.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.138.dist-info}/top_level.txt +0 -0
tests/test_cuda.py
CHANGED
@@ -41,7 +41,7 @@ def test_amp():
|
|
41
41
|
|
42
42
|
|
43
43
|
@pytest.mark.slow
|
44
|
-
|
44
|
+
@pytest.mark.skipif(IS_JETSON, reason="Temporary disable ONNX for Jetson")
|
45
45
|
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
|
46
46
|
@pytest.mark.parametrize(
|
47
47
|
"task, dynamic, int8, half, batch, simplify, nms",
|
@@ -50,12 +50,7 @@ def test_amp():
|
|
50
50
|
for task, dynamic, int8, half, batch, simplify, nms in product(
|
51
51
|
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
|
52
52
|
)
|
53
|
-
if not (
|
54
|
-
(int8 and half)
|
55
|
-
or (task == "classify" and nms)
|
56
|
-
or (task == "obb" and nms and (not TORCH_1_13 or IS_JETSON)) # obb nms fails on NVIDIA Jetson
|
57
|
-
or (simplify and dynamic) # onnxslim is slow when dynamic=True
|
58
|
-
)
|
53
|
+
if not ((int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and not TORCH_1_13))
|
59
54
|
],
|
60
55
|
)
|
61
56
|
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
tests/test_exports.py
CHANGED
@@ -83,12 +83,7 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
|
|
83
83
|
for task, dynamic, int8, half, batch, simplify, nms in product(
|
84
84
|
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
|
85
85
|
)
|
86
|
-
if not (
|
87
|
-
(int8 and half)
|
88
|
-
or (task == "classify" and nms)
|
89
|
-
or (task == "obb" and nms and not TORCH_1_13)
|
90
|
-
or (simplify and dynamic) # onnxslim is slow when dynamic=True
|
91
|
-
)
|
86
|
+
if not ((int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and not TORCH_1_13))
|
92
87
|
],
|
93
88
|
)
|
94
89
|
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
tests/test_solutions.py
CHANGED
@@ -3,7 +3,11 @@
|
|
3
3
|
# Tests Ultralytics Solutions: https://docs.ultralytics.com/solutions/,
|
4
4
|
# including every solution excluding DistanceCalculation and Security Alarm System.
|
5
5
|
|
6
|
+
import os
|
7
|
+
from unittest.mock import patch
|
8
|
+
|
6
9
|
import cv2
|
10
|
+
import numpy as np
|
7
11
|
import pytest
|
8
12
|
|
9
13
|
from tests import MODEL, TMP
|
@@ -19,7 +23,10 @@ POSE_VIDEO = "solution_ci_pose_demo.mp4" # only for workouts monitoring solutio
|
|
19
23
|
PARKING_VIDEO = "solution_ci_parking_demo.mp4" # only for parking management solution
|
20
24
|
PARKING_AREAS_JSON = "solution_ci_parking_areas.json" # only for parking management solution
|
21
25
|
PARKING_MODEL = "solutions_ci_parking_model.pt" # only for parking management solution
|
26
|
+
VERTICAL_VIDEO = "solution_vertical_demo.mp4" # only for vertical line counting
|
22
27
|
REGION = [(10, 200), (540, 200), (540, 180), (10, 180)] # for object counting, speed estimation and queue management
|
28
|
+
HORIZONTAL_LINE = [(10, 200), (540, 200)] # for object counting
|
29
|
+
VERTICAL_LINE = [(320, 0), (320, 400)] # for object counting
|
23
30
|
|
24
31
|
# Test configs for each solution : (name, class, needs_frame_count, video, kwargs)
|
25
32
|
SOLUTIONS = [
|
@@ -30,6 +37,27 @@ SOLUTIONS = [
|
|
30
37
|
DEMO_VIDEO,
|
31
38
|
{"region": REGION, "model": MODEL, "show": SHOW},
|
32
39
|
),
|
40
|
+
(
|
41
|
+
"ObjectCounter",
|
42
|
+
solutions.ObjectCounter,
|
43
|
+
False,
|
44
|
+
DEMO_VIDEO,
|
45
|
+
{"region": HORIZONTAL_LINE, "model": MODEL, "show": SHOW},
|
46
|
+
),
|
47
|
+
(
|
48
|
+
"ObjectCounterVertical",
|
49
|
+
solutions.ObjectCounter,
|
50
|
+
False,
|
51
|
+
DEMO_VIDEO,
|
52
|
+
{"region": VERTICAL_LINE, "model": MODEL, "show": SHOW},
|
53
|
+
),
|
54
|
+
(
|
55
|
+
"ObjectCounterwithOBB",
|
56
|
+
solutions.ObjectCounter,
|
57
|
+
False,
|
58
|
+
DEMO_VIDEO,
|
59
|
+
{"region": REGION, "model": "yolo11n-obb.pt", "show": SHOW},
|
60
|
+
),
|
33
61
|
(
|
34
62
|
"Heatmap",
|
35
63
|
solutions.Heatmap,
|
@@ -63,28 +91,28 @@ SOLUTIONS = [
|
|
63
91
|
solutions.Analytics,
|
64
92
|
True,
|
65
93
|
DEMO_VIDEO,
|
66
|
-
{"analytics_type": "line", "model": MODEL, "show": SHOW},
|
94
|
+
{"analytics_type": "line", "model": MODEL, "show": SHOW, "figsize": (6.4, 3.2)},
|
67
95
|
),
|
68
96
|
(
|
69
97
|
"PieAnalytics",
|
70
98
|
solutions.Analytics,
|
71
99
|
True,
|
72
100
|
DEMO_VIDEO,
|
73
|
-
{"analytics_type": "pie", "model": MODEL, "show": SHOW},
|
101
|
+
{"analytics_type": "pie", "model": MODEL, "show": SHOW, "figsize": (6.4, 3.2)},
|
74
102
|
),
|
75
103
|
(
|
76
104
|
"BarAnalytics",
|
77
105
|
solutions.Analytics,
|
78
106
|
True,
|
79
107
|
DEMO_VIDEO,
|
80
|
-
{"analytics_type": "bar", "model": MODEL, "show": SHOW},
|
108
|
+
{"analytics_type": "bar", "model": MODEL, "show": SHOW, "figsize": (6.4, 3.2)},
|
81
109
|
),
|
82
110
|
(
|
83
111
|
"AreaAnalytics",
|
84
112
|
solutions.Analytics,
|
85
113
|
True,
|
86
114
|
DEMO_VIDEO,
|
87
|
-
{"analytics_type": "area", "model": MODEL, "show": SHOW},
|
115
|
+
{"analytics_type": "area", "model": MODEL, "show": SHOW, "figsize": (6.4, 3.2)},
|
88
116
|
),
|
89
117
|
("TrackZone", solutions.TrackZone, False, DEMO_VIDEO, {"region": REGION, "model": MODEL, "show": SHOW}),
|
90
118
|
(
|
@@ -99,7 +127,7 @@ SOLUTIONS = [
|
|
99
127
|
solutions.ObjectBlurrer,
|
100
128
|
False,
|
101
129
|
DEMO_VIDEO,
|
102
|
-
{"blur_ratio": 0.
|
130
|
+
{"blur_ratio": 0.02, "model": MODEL, "show": SHOW},
|
103
131
|
),
|
104
132
|
(
|
105
133
|
"InstanceSegmentation",
|
@@ -160,7 +188,10 @@ def process_video(solution, video_path, needs_frame_count=False):
|
|
160
188
|
def test_solution(name, solution_class, needs_frame_count, video, kwargs):
|
161
189
|
"""Test individual Ultralytics solution."""
|
162
190
|
if video:
|
163
|
-
|
191
|
+
if name != "ObjectCounterVertical":
|
192
|
+
safe_download(url=f"{ASSETS_URL}/{video}", dir=TMP)
|
193
|
+
else:
|
194
|
+
safe_download(url=f"{ASSETS_URL}/{VERTICAL_VIDEO}", dir=TMP)
|
164
195
|
if name == "ParkingManager":
|
165
196
|
safe_download(url=f"{ASSETS_URL}/{PARKING_AREAS_JSON}", dir=TMP)
|
166
197
|
safe_download(url=f"{ASSETS_URL}/{PARKING_MODEL}", dir=TMP)
|
@@ -169,6 +200,7 @@ def test_solution(name, solution_class, needs_frame_count, video, kwargs):
|
|
169
200
|
solution_class(**kwargs).inference() # requires interactive GUI environment
|
170
201
|
return
|
171
202
|
|
203
|
+
video = VERTICAL_VIDEO if name == "ObjectCounterVertical" else video
|
172
204
|
process_video(
|
173
205
|
solution=solution_class(**kwargs),
|
174
206
|
video_path=str(TMP / video),
|
@@ -181,7 +213,148 @@ def test_solution(name, solution_class, needs_frame_count, video, kwargs):
|
|
181
213
|
@pytest.mark.skipif(IS_RASPBERRYPI, reason="Disabled due to slow performance on Raspberry Pi.")
|
182
214
|
def test_similarity_search():
|
183
215
|
"""Test similarity search solution."""
|
184
|
-
from ultralytics import solutions
|
185
|
-
|
186
216
|
searcher = solutions.VisualAISearch()
|
187
217
|
_ = searcher("a dog sitting on a bench") # Returns the results in format "- img name | similarity score"
|
218
|
+
|
219
|
+
|
220
|
+
def test_left_click_selection():
|
221
|
+
"""Test distance calculation left click."""
|
222
|
+
dc = solutions.DistanceCalculation()
|
223
|
+
dc.boxes, dc.track_ids = [[10, 10, 50, 50]], [1]
|
224
|
+
dc.mouse_event_for_distance(cv2.EVENT_LBUTTONDOWN, 30, 30, None, None)
|
225
|
+
assert 1 in dc.selected_boxes
|
226
|
+
|
227
|
+
|
228
|
+
def test_right_click_reset():
|
229
|
+
"""Test distance calculation right click."""
|
230
|
+
dc = solutions.DistanceCalculation()
|
231
|
+
dc.selected_boxes, dc.left_mouse_count = {1: [10, 10, 50, 50]}, 1
|
232
|
+
dc.mouse_event_for_distance(cv2.EVENT_RBUTTONDOWN, 0, 0, None, None)
|
233
|
+
assert dc.selected_boxes == {}
|
234
|
+
assert dc.left_mouse_count == 0
|
235
|
+
|
236
|
+
|
237
|
+
def test_parking_json_none():
|
238
|
+
"""Test that ParkingManagement skips or errors cleanly when no JSON is provided."""
|
239
|
+
im0 = np.zeros((640, 480, 3), dtype=np.uint8)
|
240
|
+
try:
|
241
|
+
parkingmanager = solutions.ParkingManagement(json_path=None)
|
242
|
+
parkingmanager(im0)
|
243
|
+
except ValueError:
|
244
|
+
pytest.skip("Skipping test due to missing JSON.")
|
245
|
+
|
246
|
+
|
247
|
+
def test_analytics_graph_not_supported():
|
248
|
+
"""Test that unsupported analytics type raises ModuleNotFoundError."""
|
249
|
+
try:
|
250
|
+
analytics = solutions.Analytics(analytics_type="test") # 'test' is unsupported
|
251
|
+
analytics.process(im0=None, frame_number=0)
|
252
|
+
assert False, "Expected ModuleNotFoundError for unsupported chart type"
|
253
|
+
except ModuleNotFoundError as e:
|
254
|
+
assert "test chart is not supported" in str(e)
|
255
|
+
|
256
|
+
|
257
|
+
def test_area_chart_padding():
|
258
|
+
"""Test area chart graph update with dynamic class padding logic."""
|
259
|
+
analytics = solutions.Analytics(analytics_type="area")
|
260
|
+
analytics.update_graph(frame_number=1, count_dict={"car": 2}, plot="area")
|
261
|
+
plot_im = analytics.update_graph(frame_number=2, count_dict={"car": 3, "person": 1}, plot="area")
|
262
|
+
assert plot_im is not None
|
263
|
+
|
264
|
+
|
265
|
+
def test_config_update_method_with_invalid_argument():
|
266
|
+
"""Test that update() raises ValueError for invalid config keys."""
|
267
|
+
obj = solutions.config.SolutionConfig()
|
268
|
+
try:
|
269
|
+
obj.update(invalid_key=123)
|
270
|
+
assert False, "Expected ValueError for invalid update argument"
|
271
|
+
except ValueError as e:
|
272
|
+
assert "❌ invalid_key is not a valid solution argument" in str(e)
|
273
|
+
|
274
|
+
|
275
|
+
def test_plot_with_no_masks():
|
276
|
+
"""Test that instance segmentation handles cases with no masks."""
|
277
|
+
im0 = np.zeros((640, 480, 3), dtype=np.uint8)
|
278
|
+
isegment = solutions.InstanceSegmentation(model="yolo11n-seg.pt")
|
279
|
+
results = isegment(im0)
|
280
|
+
assert results.plot_im is not None
|
281
|
+
|
282
|
+
|
283
|
+
def test_streamlit_handle_video_upload_creates_file():
|
284
|
+
"""Test Streamlit video upload logic saves file correctly."""
|
285
|
+
import io
|
286
|
+
|
287
|
+
fake_file = io.BytesIO(b"fake video content")
|
288
|
+
fake_file.read = fake_file.getvalue
|
289
|
+
if fake_file is not None:
|
290
|
+
g = io.BytesIO(fake_file.read())
|
291
|
+
with open("ultralytics.mp4", "wb") as out:
|
292
|
+
out.write(g.read())
|
293
|
+
output_path = "ultralytics.mp4"
|
294
|
+
else:
|
295
|
+
output_path = None
|
296
|
+
assert output_path == "ultralytics.mp4"
|
297
|
+
assert os.path.exists("ultralytics.mp4")
|
298
|
+
with open("ultralytics.mp4", "rb") as f:
|
299
|
+
assert f.read() == b"fake video content"
|
300
|
+
os.remove("ultralytics.mp4")
|
301
|
+
|
302
|
+
|
303
|
+
def test_similarity_search_app_init():
|
304
|
+
"""Test SearchApp initializes with required attributes."""
|
305
|
+
app = solutions.SearchApp(device="cpu")
|
306
|
+
assert hasattr(app, "searcher")
|
307
|
+
assert hasattr(app, "run")
|
308
|
+
|
309
|
+
|
310
|
+
def test_similarity_search_complete(tmp_path):
|
311
|
+
"""Test VisualAISearch end-to-end with sample image and query."""
|
312
|
+
from PIL import Image
|
313
|
+
|
314
|
+
image_dir = tmp_path / "images"
|
315
|
+
os.makedirs(image_dir, exist_ok=True)
|
316
|
+
for i in range(2):
|
317
|
+
img = Image.fromarray(np.uint8(np.random.rand(224, 224, 3) * 255))
|
318
|
+
img.save(image_dir / f"test_image_{i}.jpg")
|
319
|
+
searcher = solutions.VisualAISearch(data=str(image_dir))
|
320
|
+
results = searcher("a red and white object")
|
321
|
+
assert results
|
322
|
+
|
323
|
+
|
324
|
+
def test_distance_calculation_process_method():
|
325
|
+
"""Test DistanceCalculation.process() computes distance between selected boxes."""
|
326
|
+
from ultralytics.solutions.solutions import SolutionResults
|
327
|
+
|
328
|
+
dc = solutions.DistanceCalculation()
|
329
|
+
dc.boxes, dc.track_ids, dc.clss, dc.confs = (
|
330
|
+
[[100, 100, 200, 200], [300, 300, 400, 400]],
|
331
|
+
[1, 2],
|
332
|
+
[0, 0],
|
333
|
+
[0.9, 0.95],
|
334
|
+
)
|
335
|
+
dc.selected_boxes = {1: dc.boxes[0], 2: dc.boxes[1]}
|
336
|
+
frame = np.zeros((480, 640, 3), dtype=np.uint8)
|
337
|
+
with patch.object(dc, "extract_tracks"), patch.object(dc, "display_output"), patch("cv2.setMouseCallback"):
|
338
|
+
result = dc.process(frame)
|
339
|
+
assert isinstance(result, SolutionResults)
|
340
|
+
assert result.total_tracks == 2
|
341
|
+
assert result.pixels_distance > 0
|
342
|
+
|
343
|
+
|
344
|
+
def test_object_crop_with_show_True():
|
345
|
+
"""Test ObjectCropper init with show=True to cover display warning."""
|
346
|
+
solutions.ObjectCropper(show=True)
|
347
|
+
|
348
|
+
|
349
|
+
def test_display_output_method():
|
350
|
+
"""Test that display_output triggers imshow, waitKey, and destroyAllWindows when enabled."""
|
351
|
+
counter = solutions.ObjectCounter(show=True)
|
352
|
+
counter.env_check = True
|
353
|
+
frame = np.zeros((100, 100, 3), dtype=np.uint8)
|
354
|
+
with patch("cv2.imshow") as mock_imshow, patch("cv2.waitKey", return_value=ord("q")) as mock_wait, patch(
|
355
|
+
"cv2.destroyAllWindows"
|
356
|
+
) as mock_destroy:
|
357
|
+
counter.display_output(frame)
|
358
|
+
mock_imshow.assert_called_once()
|
359
|
+
mock_wait.assert_called_once()
|
360
|
+
mock_destroy.assert_called_once()
|
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
@@ -311,7 +311,7 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, ove
|
|
311
311
|
if k in cfg and isinstance(cfg[k], (int, float)):
|
312
312
|
cfg[k] = str(cfg[k])
|
313
313
|
if cfg.get("name") == "model": # assign model to 'name' arg
|
314
|
-
cfg["name"] = str(cfg.get("model", "")).
|
314
|
+
cfg["name"] = str(cfg.get("model", "")).partition(".")[0]
|
315
315
|
LOGGER.warning(f"'name=model' automatically updated to 'name={cfg['name']}'.")
|
316
316
|
|
317
317
|
# Type and Value checks
|
ultralytics/data/base.py
CHANGED
@@ -170,7 +170,7 @@ class BaseDataset(Dataset):
|
|
170
170
|
# F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
|
171
171
|
else:
|
172
172
|
raise FileNotFoundError(f"{self.prefix}{p} does not exist")
|
173
|
-
im_files = sorted(x.replace("/", os.sep) for x in f if x.
|
173
|
+
im_files = sorted(x.replace("/", os.sep) for x in f if x.rpartition(".")[-1].lower() in IMG_FORMATS)
|
174
174
|
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
175
175
|
assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}"
|
176
176
|
except Exception as e:
|
ultralytics/data/build.py
CHANGED
@@ -200,10 +200,11 @@ def check_source(source):
|
|
200
200
|
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
|
201
201
|
if isinstance(source, (str, int, Path)): # int for local usb camera
|
202
202
|
source = str(source)
|
203
|
-
|
204
|
-
|
203
|
+
source_lower = source.lower()
|
204
|
+
is_file = source_lower.rpartition(".")[-1] in (IMG_FORMATS | VID_FORMATS)
|
205
|
+
is_url = source_lower.startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
|
205
206
|
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
206
|
-
screenshot =
|
207
|
+
screenshot = source_lower == "screen"
|
207
208
|
if is_url and is_file:
|
208
209
|
source = check_file(source) # download
|
209
210
|
elif isinstance(source, LOADERS):
|
ultralytics/data/loaders.py
CHANGED
@@ -353,7 +353,7 @@ class LoadImagesAndVideos:
|
|
353
353
|
# Define files as images or videos
|
354
354
|
images, videos = [], []
|
355
355
|
for f in files:
|
356
|
-
suffix = f.
|
356
|
+
suffix = f.rpartition(".")[-1].lower() # Get file extension without the dot and lowercase
|
357
357
|
if suffix in IMG_FORMATS:
|
358
358
|
images.append(f)
|
359
359
|
elif suffix in VID_FORMATS:
|
@@ -427,7 +427,7 @@ class LoadImagesAndVideos:
|
|
427
427
|
else:
|
428
428
|
# Handle image files (including HEIC)
|
429
429
|
self.mode = "image"
|
430
|
-
if path.
|
430
|
+
if path.rpartition(".")[-1].lower() == "heic":
|
431
431
|
# Load HEIC image using Pillow with pillow-heif
|
432
432
|
check_requirements("pillow-heif")
|
433
433
|
|
ultralytics/engine/exporter.py
CHANGED
@@ -244,7 +244,6 @@ class Exporter:
|
|
244
244
|
|
245
245
|
def __call__(self, model=None) -> str:
|
246
246
|
"""Return list of exported files/dirs after running callbacks."""
|
247
|
-
self.run_callbacks("on_export_start")
|
248
247
|
t = time.time()
|
249
248
|
fmt = self.args.format.lower() # to lowercase
|
250
249
|
if fmt in {"tensorrt", "trt"}: # 'engine' aliases
|
@@ -277,7 +276,7 @@ class Exporter:
|
|
277
276
|
LOGGER.warning("TensorRT requires GPU export, automatically assigning device=0")
|
278
277
|
self.args.device = "0"
|
279
278
|
if fmt == "engine" and "dla" in str(self.args.device): # convert int/list to str first
|
280
|
-
dla = self.args.device.
|
279
|
+
dla = self.args.device.rsplit(":", 1)[-1]
|
281
280
|
self.args.device = "0" # update device to "0"
|
282
281
|
assert dla in {"0", "1"}, f"Expected self.args.device='dla:0' or 'dla:1, but got {self.args.device}."
|
283
282
|
if imx and self.args.device is None and torch.cuda.is_available():
|
@@ -450,7 +449,7 @@ class Exporter:
|
|
450
449
|
f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
|
451
450
|
f"output shape(s) {self.output_shape} ({file_size(file):.1f} MB)"
|
452
451
|
)
|
453
|
-
|
452
|
+
self.run_callbacks("on_export_start")
|
454
453
|
# Exports
|
455
454
|
f = [""] * len(fmts) # exported filenames
|
456
455
|
if jit or ncnn: # TorchScript
|
@@ -557,7 +556,7 @@ class Exporter:
|
|
557
556
|
"""YOLO ONNX export."""
|
558
557
|
requirements = ["onnx>=1.12.0,<1.18.0"]
|
559
558
|
if self.args.simplify:
|
560
|
-
requirements += ["onnxslim>=0.1.
|
559
|
+
requirements += ["onnxslim>=0.1.53", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
|
561
560
|
check_requirements(requirements)
|
562
561
|
import onnx # noqa
|
563
562
|
|
@@ -789,7 +788,7 @@ class Exporter:
|
|
789
788
|
subprocess.run(cmd, check=True)
|
790
789
|
|
791
790
|
# Remove debug files
|
792
|
-
pnnx_files = [x.
|
791
|
+
pnnx_files = [x.rsplit("=", 1)[-1] for x in pnnx_args]
|
793
792
|
for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files):
|
794
793
|
Path(f_debug).unlink(missing_ok=True)
|
795
794
|
|
@@ -928,7 +927,7 @@ class Exporter:
|
|
928
927
|
"ai-edge-litert>=1.2.0", # required by 'onnx2tf' package
|
929
928
|
"onnx>=1.12.0,<1.18.0",
|
930
929
|
"onnx2tf>=1.26.3",
|
931
|
-
"onnxslim>=0.1.
|
930
|
+
"onnxslim>=0.1.53",
|
932
931
|
"onnxruntime-gpu" if cuda else "onnxruntime",
|
933
932
|
"protobuf>=5",
|
934
933
|
),
|
@@ -1048,7 +1047,7 @@ class Exporter:
|
|
1048
1047
|
"sudo apt-get install edgetpu-compiler",
|
1049
1048
|
):
|
1050
1049
|
subprocess.run(c if is_sudo_available() else c.replace("sudo ", ""), shell=True, check=True)
|
1051
|
-
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().
|
1050
|
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
|
1052
1051
|
|
1053
1052
|
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
|
1054
1053
|
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
|
ultralytics/engine/model.py
CHANGED
@@ -288,7 +288,7 @@ class Model(torch.nn.Module):
|
|
288
288
|
weights = checks.check_file(weights, download_dir=SETTINGS["weights_dir"]) # download and return local file
|
289
289
|
weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolo11n -> yolo11n.pt
|
290
290
|
|
291
|
-
if
|
291
|
+
if str(weights).rpartition(".")[-1] == "pt":
|
292
292
|
self.model, self.ckpt = attempt_load_one_weight(weights)
|
293
293
|
self.task = self.model.args["task"]
|
294
294
|
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
|
@@ -319,7 +319,7 @@ class Model(torch.nn.Module):
|
|
319
319
|
>>> model = Model("yolo11n.onnx")
|
320
320
|
>>> model._check_is_pytorch_model() # Raises TypeError
|
321
321
|
"""
|
322
|
-
pt_str = isinstance(self.model, (str, Path)) and
|
322
|
+
pt_str = isinstance(self.model, (str, Path)) and str(self.model).rpartition(".")[-1] == "pt"
|
323
323
|
pt_module = isinstance(self.model, torch.nn.Module)
|
324
324
|
if not (pt_module or pt_str):
|
325
325
|
raise TypeError(
|
ultralytics/engine/predictor.py
CHANGED
@@ -43,7 +43,7 @@ import torch
|
|
43
43
|
|
44
44
|
from ultralytics.cfg import get_cfg, get_save_dir
|
45
45
|
from ultralytics.data import load_inference_source
|
46
|
-
from ultralytics.data.augment import LetterBox
|
46
|
+
from ultralytics.data.augment import LetterBox
|
47
47
|
from ultralytics.nn.autobackend import AutoBackend
|
48
48
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
|
49
49
|
from ultralytics.utils.checks import check_imgsz, check_imshow
|
@@ -247,15 +247,6 @@ class BasePredictor:
|
|
247
247
|
Source for inference.
|
248
248
|
"""
|
249
249
|
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
250
|
-
self.transforms = (
|
251
|
-
getattr(
|
252
|
-
self.model.model,
|
253
|
-
"transforms",
|
254
|
-
classify_transforms(self.imgsz[0]),
|
255
|
-
)
|
256
|
-
if self.args.task == "classify"
|
257
|
-
else None
|
258
|
-
)
|
259
250
|
self.dataset = load_inference_source(
|
260
251
|
source=source,
|
261
252
|
batch=self.args.batch,
|
@@ -395,6 +386,8 @@ class BasePredictor:
|
|
395
386
|
|
396
387
|
self.device = self.model.device # update device
|
397
388
|
self.args.half = self.model.fp16 # update half
|
389
|
+
if hasattr(self.model, "imgsz"):
|
390
|
+
self.args.imgsz = self.model.imgsz # reuse imgsz from export metadata
|
398
391
|
self.model.eval()
|
399
392
|
|
400
393
|
def write_results(self, i, p, im, s):
|
ultralytics/engine/trainer.py
CHANGED
@@ -578,7 +578,7 @@ class BaseTrainer:
|
|
578
578
|
try:
|
579
579
|
if self.args.task == "classify":
|
580
580
|
data = check_cls_dataset(self.args.data)
|
581
|
-
elif self.args.data.
|
581
|
+
elif self.args.data.rsplit(".", 1)[-1] in {"yaml", "yml"} or self.args.task in {
|
582
582
|
"detect",
|
583
583
|
"segment",
|
584
584
|
"pose",
|
ultralytics/engine/validator.py
CHANGED
@@ -175,7 +175,7 @@ class BaseValidator:
|
|
175
175
|
self.args.batch = model.metadata.get("batch", 1) # export.py models default to batch-size 1
|
176
176
|
LOGGER.info(f"Setting batch={self.args.batch} input of shape ({self.args.batch}, 3, {imgsz}, {imgsz})")
|
177
177
|
|
178
|
-
if str(self.args.data).
|
178
|
+
if str(self.args.data).rsplit(".", 1)[-1] in {"yaml", "yml"}:
|
179
179
|
self.data = check_det_dataset(self.args.data)
|
180
180
|
elif self.args.task == "classify":
|
181
181
|
self.data = check_cls_dataset(self.args.data, split=self.args.split)
|
ultralytics/hub/auth.py
CHANGED
@@ -37,7 +37,7 @@ class Auth:
|
|
37
37
|
verbose (bool): Enable verbose logging.
|
38
38
|
"""
|
39
39
|
# Split the input API key in case it contains a combined key_model and keep only the API key part
|
40
|
-
api_key = api_key.split("_")[0]
|
40
|
+
api_key = api_key.split("_", 1)[0]
|
41
41
|
|
42
42
|
# Set API key attribute as value passed or SETTINGS API key if none passed
|
43
43
|
self.api_key = api_key or SETTINGS.get("api_key", "")
|
@@ -77,7 +77,7 @@ class Auth:
|
|
77
77
|
for attempts in range(max_attempts):
|
78
78
|
LOGGER.info(f"{PREFIX}Login. Attempt {attempts + 1} of {max_attempts}")
|
79
79
|
input_key = getpass.getpass(f"Enter API key from {API_KEY_URL} ")
|
80
|
-
self.api_key = input_key.split("_")[0] # remove model id if present
|
80
|
+
self.api_key = input_key.split("_", 1)[0] # remove model id if present
|
81
81
|
if self.authenticate():
|
82
82
|
return True
|
83
83
|
raise ConnectionError(emojis(f"{PREFIX}Failed to authenticate ❌"))
|
ultralytics/hub/utils.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
import os
|
4
|
-
import platform
|
5
4
|
import random
|
6
5
|
import threading
|
7
6
|
import time
|
@@ -18,6 +17,7 @@ from ultralytics.utils import (
|
|
18
17
|
IS_PIP_PACKAGE,
|
19
18
|
LOGGER,
|
20
19
|
ONLINE,
|
20
|
+
PYTHON_VERSION,
|
21
21
|
RANK,
|
22
22
|
SETTINGS,
|
23
23
|
TESTS_RUNNING,
|
@@ -27,6 +27,7 @@ from ultralytics.utils import (
|
|
27
27
|
get_git_origin_url,
|
28
28
|
)
|
29
29
|
from ultralytics.utils.downloads import GITHUB_ASSETS_NAMES
|
30
|
+
from ultralytics.utils.torch_utils import get_cpu_info
|
30
31
|
|
31
32
|
HUB_API_ROOT = os.environ.get("ULTRALYTICS_HUB_API", "https://api.ultralytics.com")
|
32
33
|
HUB_WEB_ROOT = os.environ.get("ULTRALYTICS_HUB_WEB", "https://hub.ultralytics.com")
|
@@ -191,7 +192,9 @@ class Events:
|
|
191
192
|
self.metadata = {
|
192
193
|
"cli": Path(ARGV[0]).name == "yolo",
|
193
194
|
"install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
194
|
-
"python": "."
|
195
|
+
"python": PYTHON_VERSION.rsplit(".", 1)[0], # i.e. 3.13
|
196
|
+
"CPU": get_cpu_info(),
|
197
|
+
# "GPU": get_gpu_info(index=0) if cuda else None,
|
195
198
|
"version": __version__,
|
196
199
|
"env": ENVIRONMENT,
|
197
200
|
"session_id": round(random.random() * 1e15),
|
@@ -205,12 +208,13 @@ class Events:
|
|
205
208
|
and (IS_PIP_PACKAGE or get_git_origin_url() == "https://github.com/ultralytics/ultralytics.git")
|
206
209
|
)
|
207
210
|
|
208
|
-
def __call__(self, cfg):
|
211
|
+
def __call__(self, cfg, device=None):
|
209
212
|
"""
|
210
213
|
Attempt to add a new event to the events list and send events if the rate limit is reached.
|
211
214
|
|
212
215
|
Args:
|
213
216
|
cfg (IterableSimpleNamespace): The configuration object containing mode and task information.
|
217
|
+
device (torch.device | str): The device type (e.g., 'cpu', 'cuda').
|
214
218
|
"""
|
215
219
|
if not self.enabled:
|
216
220
|
# Events disabled, do nothing
|
@@ -222,6 +226,7 @@ class Events:
|
|
222
226
|
**self.metadata,
|
223
227
|
"task": cfg.task,
|
224
228
|
"model": cfg.model if cfg.model in GITHUB_ASSETS_NAMES else "custom",
|
229
|
+
"device": str(device),
|
225
230
|
}
|
226
231
|
if cfg.mode == "export":
|
227
232
|
params["format"] = cfg.format
|
@@ -4,6 +4,7 @@ import cv2
|
|
4
4
|
import torch
|
5
5
|
from PIL import Image
|
6
6
|
|
7
|
+
from ultralytics.data.augment import classify_transforms
|
7
8
|
from ultralytics.engine.predictor import BasePredictor
|
8
9
|
from ultralytics.engine.results import Results
|
9
10
|
from ultralytics.utils import DEFAULT_CFG, ops
|
@@ -51,6 +52,16 @@ class ClassificationPredictor(BasePredictor):
|
|
51
52
|
self.args.task = "classify"
|
52
53
|
self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor"
|
53
54
|
|
55
|
+
def setup_source(self, source):
|
56
|
+
"""Sets up source and inference mode and classify transforms."""
|
57
|
+
super().setup_source(source)
|
58
|
+
updated = (
|
59
|
+
self.model.model.transforms.transforms[0].size != max(self.imgsz)
|
60
|
+
if hasattr(self.model.model, "transforms")
|
61
|
+
else True
|
62
|
+
)
|
63
|
+
self.transforms = self.model.model.transforms if not updated else classify_transforms(self.imgsz)
|
64
|
+
|
54
65
|
def preprocess(self, img):
|
55
66
|
"""Convert input images to model-compatible tensor format with appropriate normalization."""
|
56
67
|
if not isinstance(img, torch.Tensor):
|
@@ -252,7 +252,7 @@ class OBBValidator(DetectionValidator):
|
|
252
252
|
merged_results = defaultdict(list)
|
253
253
|
LOGGER.info(f"Saving merged predictions with DOTA format to {pred_merged_txt}...")
|
254
254
|
for d in data:
|
255
|
-
image_id = d["image_id"].split("__")[0]
|
255
|
+
image_id = d["image_id"].split("__", 1)[0]
|
256
256
|
pattern = re.compile(r"\d+___\d+")
|
257
257
|
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___"))
|
258
258
|
bbox, score, cls = d["rbox"], d["score"], d["category_id"] - 1
|