ultralytics 8.3.136__py3-none-any.whl → 8.3.137__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_cuda.py +2 -7
- tests/test_exports.py +1 -6
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +2 -2
- ultralytics/models/yolo/world/train.py +65 -19
- ultralytics/models/yolo/world/train_world.py +1 -0
- ultralytics/models/yolo/yoloe/train.py +10 -39
- ultralytics/nn/tasks.py +41 -24
- ultralytics/nn/text_model.py +1 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.137.dist-info}/METADATA +1 -1
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.137.dist-info}/RECORD +15 -15
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.137.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.137.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.137.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.136.dist-info → ultralytics-8.3.137.dist-info}/top_level.txt +0 -0
tests/test_cuda.py
CHANGED
@@ -41,7 +41,7 @@ def test_amp():
|
|
41
41
|
|
42
42
|
|
43
43
|
@pytest.mark.slow
|
44
|
-
|
44
|
+
@pytest.mark.skipif(IS_JETSON, reason="Temporary disable ONNX for Jetson")
|
45
45
|
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
|
46
46
|
@pytest.mark.parametrize(
|
47
47
|
"task, dynamic, int8, half, batch, simplify, nms",
|
@@ -50,12 +50,7 @@ def test_amp():
|
|
50
50
|
for task, dynamic, int8, half, batch, simplify, nms in product(
|
51
51
|
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
|
52
52
|
)
|
53
|
-
if not (
|
54
|
-
(int8 and half)
|
55
|
-
or (task == "classify" and nms)
|
56
|
-
or (task == "obb" and nms and (not TORCH_1_13 or IS_JETSON)) # obb nms fails on NVIDIA Jetson
|
57
|
-
or (simplify and dynamic) # onnxslim is slow when dynamic=True
|
58
|
-
)
|
53
|
+
if not ((int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and not TORCH_1_13))
|
59
54
|
],
|
60
55
|
)
|
61
56
|
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
tests/test_exports.py
CHANGED
@@ -83,12 +83,7 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
|
|
83
83
|
for task, dynamic, int8, half, batch, simplify, nms in product(
|
84
84
|
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
|
85
85
|
)
|
86
|
-
if not (
|
87
|
-
(int8 and half)
|
88
|
-
or (task == "classify" and nms)
|
89
|
-
or (task == "obb" and nms and not TORCH_1_13)
|
90
|
-
or (simplify and dynamic) # onnxslim is slow when dynamic=True
|
91
|
-
)
|
86
|
+
if not ((int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and not TORCH_1_13))
|
92
87
|
],
|
93
88
|
)
|
94
89
|
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
ultralytics/__init__.py
CHANGED
ultralytics/engine/exporter.py
CHANGED
@@ -557,7 +557,7 @@ class Exporter:
|
|
557
557
|
"""YOLO ONNX export."""
|
558
558
|
requirements = ["onnx>=1.12.0,<1.18.0"]
|
559
559
|
if self.args.simplify:
|
560
|
-
requirements += ["onnxslim>=0.1.
|
560
|
+
requirements += ["onnxslim>=0.1.53", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
|
561
561
|
check_requirements(requirements)
|
562
562
|
import onnx # noqa
|
563
563
|
|
@@ -928,7 +928,7 @@ class Exporter:
|
|
928
928
|
"ai-edge-litert>=1.2.0", # required by 'onnx2tf' package
|
929
929
|
"onnx>=1.12.0,<1.18.0",
|
930
930
|
"onnx2tf>=1.26.3",
|
931
|
-
"onnxslim>=0.1.
|
931
|
+
"onnxslim>=0.1.53",
|
932
932
|
"onnxruntime-gpu" if cuda else "onnxruntime",
|
933
933
|
"protobuf>=5",
|
934
934
|
),
|
@@ -1,11 +1,14 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
import itertools
|
4
|
+
from pathlib import Path
|
5
|
+
|
6
|
+
import torch
|
4
7
|
|
5
8
|
from ultralytics.data import build_yolo_dataset
|
6
|
-
from ultralytics.models import
|
9
|
+
from ultralytics.models.yolo.detect import DetectionTrainer
|
7
10
|
from ultralytics.nn.tasks import WorldModel
|
8
|
-
from ultralytics.utils import DEFAULT_CFG,
|
11
|
+
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK
|
9
12
|
from ultralytics.utils.torch_utils import de_parallel
|
10
13
|
|
11
14
|
|
@@ -15,13 +18,9 @@ def on_pretrain_routine_end(trainer):
|
|
15
18
|
# Set class names for evaluation
|
16
19
|
names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())]
|
17
20
|
de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False)
|
18
|
-
device = next(trainer.model.parameters()).device
|
19
|
-
trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device)
|
20
|
-
for p in trainer.text_model.parameters():
|
21
|
-
p.requires_grad_(False)
|
22
21
|
|
23
22
|
|
24
|
-
class WorldTrainer(
|
23
|
+
class WorldTrainer(DetectionTrainer):
|
25
24
|
"""
|
26
25
|
A class to fine-tune a world model on a close-set dataset.
|
27
26
|
|
@@ -54,14 +53,7 @@ class WorldTrainer(yolo.detect.DetectionTrainer):
|
|
54
53
|
if overrides is None:
|
55
54
|
overrides = {}
|
56
55
|
super().__init__(cfg, overrides, _callbacks)
|
57
|
-
|
58
|
-
# Import and assign clip
|
59
|
-
try:
|
60
|
-
import clip
|
61
|
-
except ImportError:
|
62
|
-
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
63
|
-
import clip
|
64
|
-
self.clip = clip
|
56
|
+
self.text_embeddings = None
|
65
57
|
|
66
58
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
67
59
|
"""
|
@@ -102,18 +94,72 @@ class WorldTrainer(yolo.detect.DetectionTrainer):
|
|
102
94
|
(Dataset): YOLO dataset configured for training or validation.
|
103
95
|
"""
|
104
96
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
105
|
-
|
97
|
+
dataset = build_yolo_dataset(
|
106
98
|
self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs, multi_modal=mode == "train"
|
107
99
|
)
|
100
|
+
if mode == "train":
|
101
|
+
self.set_text_embeddings([dataset], batch) # cache text embeddings to accelerate training
|
102
|
+
return dataset
|
103
|
+
|
104
|
+
def set_text_embeddings(self, datasets, batch):
|
105
|
+
"""
|
106
|
+
Set text embeddings for datasets to accelerate training by caching category names.
|
107
|
+
|
108
|
+
This method collects unique category names from all datasets, then generates and caches text embeddings
|
109
|
+
for these categories to improve training efficiency.
|
110
|
+
|
111
|
+
Args:
|
112
|
+
datasets (List[Dataset]): List of datasets from which to extract category names.
|
113
|
+
batch (int | None): Batch size used for processing.
|
114
|
+
|
115
|
+
Notes:
|
116
|
+
This method collects category names from datasets that have the 'category_names' attribute,
|
117
|
+
then uses the first dataset's image path to determine where to cache the generated text embeddings.
|
118
|
+
"""
|
119
|
+
text_embeddings = {}
|
120
|
+
for dataset in datasets:
|
121
|
+
if not hasattr(dataset, "category_names"):
|
122
|
+
continue
|
123
|
+
text_embeddings.update(
|
124
|
+
self.generate_text_embeddings(
|
125
|
+
list(dataset.category_names), batch, cache_dir=Path(dataset.img_path).parent
|
126
|
+
)
|
127
|
+
)
|
128
|
+
self.text_embeddings = text_embeddings
|
129
|
+
|
130
|
+
def generate_text_embeddings(self, texts, batch, cache_dir):
|
131
|
+
"""
|
132
|
+
Generate text embeddings for a list of text samples.
|
133
|
+
|
134
|
+
Args:
|
135
|
+
texts (List[str]): List of text samples to encode.
|
136
|
+
batch (int): Batch size for processing.
|
137
|
+
cache_dir (Path): Directory to save/load cached embeddings.
|
138
|
+
|
139
|
+
Returns:
|
140
|
+
(dict): Dictionary mapping text samples to their embeddings.
|
141
|
+
"""
|
142
|
+
model = "clip:ViT-B/32"
|
143
|
+
cache_path = cache_dir / f"text_embeddings_{model.replace(':', '_').replace('/', '_')}.pt"
|
144
|
+
if cache_path.exists():
|
145
|
+
LOGGER.info(f"Reading existed cache from '{cache_path}'")
|
146
|
+
txt_map = torch.load(cache_path)
|
147
|
+
if sorted(txt_map.keys()) == sorted(texts):
|
148
|
+
return txt_map
|
149
|
+
LOGGER.info(f"Caching text embeddings to '{cache_path}'")
|
150
|
+
assert self.model is not None
|
151
|
+
txt_feats = self.model.get_text_pe(texts, batch, cache_clip_model=False)
|
152
|
+
txt_map = dict(zip(texts, txt_feats.squeeze(0)))
|
153
|
+
torch.save(txt_map, cache_path)
|
154
|
+
return txt_map
|
108
155
|
|
109
156
|
def preprocess_batch(self, batch):
|
110
157
|
"""Preprocess a batch of images and text for YOLOWorld training."""
|
111
|
-
batch =
|
158
|
+
batch = DetectionTrainer.preprocess_batch(self, batch)
|
112
159
|
|
113
160
|
# Add text features
|
114
161
|
texts = list(itertools.chain(*batch["texts"]))
|
115
|
-
|
116
|
-
txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype) # torch.float32
|
162
|
+
txt_feats = torch.stack([self.text_embeddings[text] for text in texts]).to(self.device)
|
117
163
|
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
|
118
164
|
batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1])
|
119
165
|
return batch
|
@@ -100,6 +100,7 @@ class WorldTrainerFromScratch(WorldTrainer):
|
|
100
100
|
else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
|
101
101
|
for im_path in img_path
|
102
102
|
]
|
103
|
+
self.set_text_embeddings(datasets, batch) # cache text embeddings to accelerate training
|
103
104
|
return YOLOConcatDataset(datasets) if len(datasets) > 1 else datasets[0]
|
104
105
|
|
105
106
|
def get_dataset(self):
|
@@ -2,7 +2,6 @@
|
|
2
2
|
|
3
3
|
import itertools
|
4
4
|
from copy import copy, deepcopy
|
5
|
-
from pathlib import Path
|
6
5
|
|
7
6
|
import torch
|
8
7
|
|
@@ -157,40 +156,7 @@ class YOLOETrainerFromScratch(YOLOETrainer, WorldTrainerFromScratch):
|
|
157
156
|
Returns:
|
158
157
|
(YOLOConcatDataset | Dataset): The constructed dataset for training or validation.
|
159
158
|
"""
|
160
|
-
|
161
|
-
if mode == "train":
|
162
|
-
self.set_text_embeddings(
|
163
|
-
datasets.datasets if hasattr(datasets, "datasets") else [datasets], batch
|
164
|
-
) # cache text embeddings to accelerate training
|
165
|
-
return datasets
|
166
|
-
|
167
|
-
def set_text_embeddings(self, datasets, batch):
|
168
|
-
"""
|
169
|
-
Set text embeddings for datasets to accelerate training by caching category names.
|
170
|
-
|
171
|
-
This method collects unique category names from all datasets, then generates and caches text embeddings
|
172
|
-
for these categories to improve training efficiency.
|
173
|
-
|
174
|
-
Args:
|
175
|
-
datasets (List[Dataset]): List of datasets from which to extract category names.
|
176
|
-
batch (int | None): Batch size used for processing.
|
177
|
-
|
178
|
-
Notes:
|
179
|
-
This method collects category names from datasets that have the 'category_names' attribute,
|
180
|
-
then uses the first dataset's image path to determine where to cache the generated text embeddings.
|
181
|
-
"""
|
182
|
-
# TODO: open up an interface to determine whether to do cache
|
183
|
-
category_names = set()
|
184
|
-
for dataset in datasets:
|
185
|
-
if not hasattr(dataset, "category_names"):
|
186
|
-
continue
|
187
|
-
category_names |= dataset.category_names
|
188
|
-
|
189
|
-
# TODO: enable to update the path or use a more general way to get the path
|
190
|
-
img_path = datasets[0].img_path
|
191
|
-
self.text_embeddings = self.generate_text_embeddings(
|
192
|
-
category_names, batch, cache_path=Path(img_path).parent / "text_embeddings.pt"
|
193
|
-
)
|
159
|
+
return WorldTrainerFromScratch.build_dataset(self, img_path, mode, batch)
|
194
160
|
|
195
161
|
def preprocess_batch(self, batch):
|
196
162
|
"""Process batch for training, moving text features to the appropriate device."""
|
@@ -202,23 +168,28 @@ class YOLOETrainerFromScratch(YOLOETrainer, WorldTrainerFromScratch):
|
|
202
168
|
batch["txt_feats"] = txt_feats
|
203
169
|
return batch
|
204
170
|
|
205
|
-
def generate_text_embeddings(self, texts, batch,
|
171
|
+
def generate_text_embeddings(self, texts, batch, cache_dir):
|
206
172
|
"""
|
207
173
|
Generate text embeddings for a list of text samples.
|
208
174
|
|
209
175
|
Args:
|
210
176
|
texts (List[str]): List of text samples to encode.
|
211
177
|
batch (int): Batch size for processing.
|
212
|
-
|
178
|
+
cache_dir (Path): Directory to save/load cached embeddings.
|
213
179
|
|
214
180
|
Returns:
|
215
181
|
(dict): Dictionary mapping text samples to their embeddings.
|
216
182
|
"""
|
183
|
+
model = "mobileclip:blt"
|
184
|
+
cache_path = cache_dir / f"text_embeddings_{model.replace(':', '_').replace('/', '_')}.pt"
|
217
185
|
if cache_path.exists():
|
218
186
|
LOGGER.info(f"Reading existed cache from '{cache_path}'")
|
219
|
-
|
187
|
+
txt_map = torch.load(cache_path)
|
188
|
+
if sorted(txt_map.keys()) == sorted(texts):
|
189
|
+
return txt_map
|
190
|
+
LOGGER.info(f"Caching text embeddings to '{cache_path}'")
|
220
191
|
assert self.model is not None
|
221
|
-
txt_feats = self.model.get_text_pe(texts, batch, without_reprta=True)
|
192
|
+
txt_feats = self.model.get_text_pe(texts, batch, without_reprta=True, cache_clip_model=False)
|
222
193
|
txt_map = dict(zip(texts, txt_feats.squeeze(0)))
|
223
194
|
torch.save(txt_map, cache_path)
|
224
195
|
return txt_map
|
ultralytics/nn/tasks.py
CHANGED
@@ -146,6 +146,8 @@ class BaseModel(torch.nn.Module):
|
|
146
146
|
(torch.Tensor): The last output of the model.
|
147
147
|
"""
|
148
148
|
y, dt, embeddings = [], [], [] # outputs
|
149
|
+
embed = frozenset(embed) if embed is not None else {-1}
|
150
|
+
max_idx = max(embed)
|
149
151
|
for m in self.model:
|
150
152
|
if m.f != -1: # if not from previous layer
|
151
153
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
@@ -155,9 +157,9 @@ class BaseModel(torch.nn.Module):
|
|
155
157
|
y.append(x if m.i in self.save else None) # save output
|
156
158
|
if visualize:
|
157
159
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
158
|
-
if
|
160
|
+
if m.i in embed:
|
159
161
|
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
|
160
|
-
if m.i ==
|
162
|
+
if m.i == max_idx:
|
161
163
|
return torch.unbind(torch.cat(embeddings, 1), dim=0)
|
162
164
|
return x
|
163
165
|
|
@@ -677,6 +679,8 @@ class RTDETRDetectionModel(DetectionModel):
|
|
677
679
|
(torch.Tensor): Model's output tensor.
|
678
680
|
"""
|
679
681
|
y, dt, embeddings = [], [], [] # outputs
|
682
|
+
embed = frozenset(embed) if embed is not None else {-1}
|
683
|
+
max_idx = max(embed)
|
680
684
|
for m in self.model[:-1]: # except the head part
|
681
685
|
if m.f != -1: # if not from previous layer
|
682
686
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
@@ -686,9 +690,9 @@ class RTDETRDetectionModel(DetectionModel):
|
|
686
690
|
y.append(x if m.i in self.save else None) # save output
|
687
691
|
if visualize:
|
688
692
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
689
|
-
if
|
693
|
+
if m.i in embed:
|
690
694
|
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
|
691
|
-
if m.i ==
|
695
|
+
if m.i == max_idx:
|
692
696
|
return torch.unbind(torch.cat(embeddings, 1), dim=0)
|
693
697
|
head = self.model[-1]
|
694
698
|
x = head([y[j] for j in head.f], batch) # head inference
|
@@ -721,24 +725,33 @@ class WorldModel(DetectionModel):
|
|
721
725
|
batch (int): Batch size for processing text tokens.
|
722
726
|
cache_clip_model (bool): Whether to cache the CLIP model.
|
723
727
|
"""
|
724
|
-
|
725
|
-
|
726
|
-
|
727
|
-
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
|
728
|
+
self.txt_feats = self.get_text_pe(text, batch=batch, cache_clip_model=cache_clip_model)
|
729
|
+
self.model[-1].nc = len(text)
|
730
|
+
|
731
|
+
@smart_inference_mode()
|
732
|
+
def get_text_pe(self, text, batch=80, cache_clip_model=True):
|
733
|
+
"""
|
734
|
+
Set classes in advance so that model could do offline-inference without clip model.
|
735
|
+
|
736
|
+
Args:
|
737
|
+
text (List[str]): List of class names.
|
738
|
+
batch (int): Batch size for processing text tokens.
|
739
|
+
cache_clip_model (bool): Whether to cache the CLIP model.
|
740
|
+
|
741
|
+
Returns:
|
742
|
+
(torch.Tensor): Text positional embeddings.
|
743
|
+
"""
|
744
|
+
from ultralytics.nn.text_model import build_text_model
|
745
|
+
|
746
|
+
device = next(self.model.parameters()).device
|
747
|
+
if not getattr(self, "clip_model", None) and cache_clip_model:
|
748
|
+
# For backwards compatibility of models lacking clip_model attribute
|
749
|
+
self.clip_model = build_text_model("clip:ViT-B/32", device=device)
|
750
|
+
model = self.clip_model if cache_clip_model else build_text_model("clip:ViT-B/32", device=device)
|
751
|
+
text_token = model.tokenize(text)
|
737
752
|
txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]
|
738
753
|
txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)
|
739
|
-
|
740
|
-
self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
|
741
|
-
self.model[-1].nc = len(text)
|
754
|
+
return txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
|
742
755
|
|
743
756
|
def predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None):
|
744
757
|
"""
|
@@ -760,6 +773,8 @@ class WorldModel(DetectionModel):
|
|
760
773
|
txt_feats = txt_feats.expand(x.shape[0], -1, -1)
|
761
774
|
ori_txt_feats = txt_feats.clone()
|
762
775
|
y, dt, embeddings = [], [], [] # outputs
|
776
|
+
embed = frozenset(embed) if embed is not None else {-1}
|
777
|
+
max_idx = max(embed)
|
763
778
|
for m in self.model: # except the head part
|
764
779
|
if m.f != -1: # if not from previous layer
|
765
780
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
@@ -777,9 +792,9 @@ class WorldModel(DetectionModel):
|
|
777
792
|
y.append(x if m.i in self.save else None) # save output
|
778
793
|
if visualize:
|
779
794
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
780
|
-
if
|
795
|
+
if m.i in embed:
|
781
796
|
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
|
782
|
-
if m.i ==
|
797
|
+
if m.i == max_idx:
|
783
798
|
return torch.unbind(torch.cat(embeddings, 1), dim=0)
|
784
799
|
return x
|
785
800
|
|
@@ -976,6 +991,8 @@ class YOLOEModel(DetectionModel):
|
|
976
991
|
"""
|
977
992
|
y, dt, embeddings = [], [], [] # outputs
|
978
993
|
b = x.shape[0]
|
994
|
+
embed = frozenset(embed) if embed is not None else {-1}
|
995
|
+
max_idx = max(embed)
|
979
996
|
for m in self.model: # except the head part
|
980
997
|
if m.f != -1: # if not from previous layer
|
981
998
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
@@ -997,9 +1014,9 @@ class YOLOEModel(DetectionModel):
|
|
997
1014
|
y.append(x if m.i in self.save else None) # save output
|
998
1015
|
if visualize:
|
999
1016
|
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
1000
|
-
if
|
1017
|
+
if m.i in embed:
|
1001
1018
|
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
|
1002
|
-
if m.i ==
|
1019
|
+
if m.i == max_idx:
|
1003
1020
|
return torch.unbind(torch.cat(embeddings, 1), dim=0)
|
1004
1021
|
return x
|
1005
1022
|
|
ultralytics/nn/text_model.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.137
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,13 +1,13 @@
|
|
1
1
|
tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
|
2
2
|
tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
|
3
3
|
tests/test_cli.py,sha256=vXUC_EK0fa87JRhHsCOZf7AJQ5_Jm1sL8u-yhmsaQh0,5851
|
4
|
-
tests/test_cuda.py,sha256=
|
4
|
+
tests/test_cuda.py,sha256=L_2xp2TH-pInsdI8UrbZ5onRtHQGdUVoPXnyX6Ot4_U,7950
|
5
5
|
tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
6
|
-
tests/test_exports.py,sha256=
|
6
|
+
tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
|
7
7
|
tests/test_integrations.py,sha256=dQteeRsRVuT_p5-T88-7jqT65Zm9iAXkyKg-KQ1_TQ8,6341
|
8
8
|
tests/test_python.py,sha256=KWsncKpeDdRmjRftmJpsMl7bBLI3TG_I7Lb4kuemZzQ,25618
|
9
9
|
tests/test_solutions.py,sha256=IFlqyOUCvGbLe_YZqWmNCe_afg4as0p-SfAv3j7VURI,6205
|
10
|
-
ultralytics/__init__.py,sha256=
|
10
|
+
ultralytics/__init__.py,sha256=8hzZtbr1IMQwOTdqbcNED-RHZiqww--zXivCgQOzujQ,730
|
11
11
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
12
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
13
|
ultralytics/cfg/__init__.py,sha256=h0UVCvX6DIpoR4_pthpZD_Ihq7eCaS8HbXsPOm82G0E,39540
|
@@ -118,7 +118,7 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
|
|
118
118
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
119
119
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
120
120
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
121
|
-
ultralytics/engine/exporter.py,sha256=
|
121
|
+
ultralytics/engine/exporter.py,sha256=JucFVR_RAfzrRWM9kJK6MHALEbdzrf93ReTnAhiRTBo,70823
|
122
122
|
ultralytics/engine/model.py,sha256=fWhPNWUQzjjWfTEXzTaqSSearV4THRkEa_fl4dDvzWw,52930
|
123
123
|
ultralytics/engine/predictor.py,sha256=AwKpOGY2G-thNNiRw4Kf_MBLamq5tbRhXLNSMRArqFo,21803
|
124
124
|
ultralytics/engine/results.py,sha256=MhbyMCwgslmtV53fqii4UJUaLQ4gKTKdkXi7vvmJDAE,79628
|
@@ -185,17 +185,17 @@ ultralytics/models/yolo/segment/predict.py,sha256=mIC3aHI7Jg4dU1k2UZnjVj4unE-5TW
|
|
185
185
|
ultralytics/models/yolo/segment/train.py,sha256=EIyIAjYp127Mb-DomyjPORaONu57OY_gOTK9p2MwW6E,5359
|
186
186
|
ultralytics/models/yolo/segment/val.py,sha256=cXJM1JNuzDraU0SJQRIdzNxabd0bfcxiRE8wozHZChY,18415
|
187
187
|
ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
|
188
|
-
ultralytics/models/yolo/world/train.py,sha256=
|
189
|
-
ultralytics/models/yolo/world/train_world.py,sha256=
|
188
|
+
ultralytics/models/yolo/world/train.py,sha256=4e54RghcrpdtpxG3n2Nicwo-tcj-wI4nLcUo8_4cf30,6898
|
189
|
+
ultralytics/models/yolo/world/train_world.py,sha256=fFhhI-toaEy1_-XcPM1_mF395WRQ26gZ4UxqyUAZmWw,8461
|
190
190
|
ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
|
191
191
|
ultralytics/models/yolo/yoloe/predict.py,sha256=N0oYcr_mdw8wyUAWprAwJhrA0r23BaTeYXEjw2e8_mI,6993
|
192
|
-
ultralytics/models/yolo/yoloe/train.py,sha256=
|
192
|
+
ultralytics/models/yolo/yoloe/train.py,sha256=xRPDJ3nUWxtqjESfmUtsZslVhpgzrZRw8z_QU5hV6nc,11710
|
193
193
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=BYFBd04k5WQaJPcFbCvVIbEf2IOQyW8_sGeoVT_74j0,4632
|
194
194
|
ultralytics/models/yolo/yoloe/val.py,sha256=oA8cVT3pBXF6aPZy7ITq0mDcktRuIgks8tTtqMRISyY,8431
|
195
195
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
196
196
|
ultralytics/nn/autobackend.py,sha256=X2cxCytBu9fmniy8uJ5aZb28IukQ-uxV1INXeS1lclA,39368
|
197
|
-
ultralytics/nn/tasks.py,sha256=
|
198
|
-
ultralytics/nn/text_model.py,sha256=
|
197
|
+
ultralytics/nn/tasks.py,sha256=iJWpwRr4yZg1dTT-9jXuzIqkdFmbZm1b7hejnO-CiZk,64337
|
198
|
+
ultralytics/nn/text_model.py,sha256=wr5yPRbMqtSr2N5Rzdd0vuv9PcQe8qw4uO596ZHZVGU,13236
|
199
199
|
ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
|
200
200
|
ultralytics/nn/modules/activation.py,sha256=PvXZkA9AzEntR575JkFORdmtcRwATyy0lje-uHA5_8w,2210
|
201
201
|
ultralytics/nn/modules/block.py,sha256=yd6Ao9T2UJNAWc8oB1-CSxyF6-exqbFcN3hTWUZNU3M,66701
|
@@ -264,9 +264,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=yYUgEgSv6L39sSev6vjwhAWU3DlPDsbSDV
|
|
264
264
|
ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
|
265
265
|
ultralytics/utils/callbacks/tensorboard.py,sha256=jgYnym3cUQFAgN1GzTyO7l3jINtfAh8zhrllDvnLuVQ,5339
|
266
266
|
ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
|
267
|
-
ultralytics-8.3.
|
268
|
-
ultralytics-8.3.
|
269
|
-
ultralytics-8.3.
|
270
|
-
ultralytics-8.3.
|
271
|
-
ultralytics-8.3.
|
272
|
-
ultralytics-8.3.
|
267
|
+
ultralytics-8.3.137.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
268
|
+
ultralytics-8.3.137.dist-info/METADATA,sha256=Bz_PCfMcXAGRbHyRMyfMC7bpsCsW-jIfnWBTnymx43k,37200
|
269
|
+
ultralytics-8.3.137.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
|
270
|
+
ultralytics-8.3.137.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
271
|
+
ultralytics-8.3.137.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
272
|
+
ultralytics-8.3.137.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|