ultralytics 8.3.126__py3-none-any.whl → 8.3.128__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_cuda.py +7 -2
- tests/test_python.py +3 -3
- tests/test_solutions.py +11 -0
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +2 -0
- ultralytics/engine/trainer.py +2 -1
- ultralytics/models/yolo/detect/predict.py +1 -3
- ultralytics/nn/autobackend.py +2 -2
- ultralytics/solutions/__init__.py +3 -0
- ultralytics/solutions/config.py +2 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +49 -48
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/trackers/bot_sort.py +1 -1
- ultralytics/trackers/track.py +2 -1
- ultralytics/utils/benchmarks.py +2 -2
- {ultralytics-8.3.126.dist-info → ultralytics-8.3.128.dist-info}/METADATA +2 -1
- {ultralytics-8.3.126.dist-info → ultralytics-8.3.128.dist-info}/RECORD +22 -20
- {ultralytics-8.3.126.dist-info → ultralytics-8.3.128.dist-info}/WHEEL +1 -1
- {ultralytics-8.3.126.dist-info → ultralytics-8.3.128.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.126.dist-info → ultralytics-8.3.128.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.126.dist-info → ultralytics-8.3.128.dist-info}/top_level.txt +0 -0
tests/test_cuda.py
CHANGED
@@ -71,8 +71,13 @@ def test_export_engine_matrix(task, dynamic, int8, half, batch):
|
|
71
71
|
@pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
|
72
72
|
def test_train():
|
73
73
|
"""Test model training on a minimal dataset using available CUDA devices."""
|
74
|
-
|
75
|
-
|
74
|
+
import os
|
75
|
+
|
76
|
+
device = tuple(DEVICES) if len(DEVICES) > 1 else DEVICES[0]
|
77
|
+
results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64
|
78
|
+
visible = eval(os.environ["CUDA_VISIBLE_DEVICES"])
|
79
|
+
assert visible == device, f"Passed GPUs '{device}', but used GPUs '{visible}'"
|
80
|
+
assert results is (None if len(DEVICES) > 1 else not None) # DDP returns None, single-GPU returns metrics
|
76
81
|
|
77
82
|
|
78
83
|
@pytest.mark.slow
|
tests/test_python.py
CHANGED
@@ -188,11 +188,11 @@ def test_track_stream():
|
|
188
188
|
model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
|
189
189
|
model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also
|
190
190
|
|
191
|
-
# Test Global Motion Compensation (GMC) methods
|
192
|
-
for gmc in "orb", "sift", "ecc":
|
191
|
+
# Test Global Motion Compensation (GMC) methods and ReID
|
192
|
+
for gmc, reidm in zip(["orb", "sift", "ecc"], ["auto", "auto", "yolo11n-cls.pt"]):
|
193
193
|
default_args = YAML.load(ROOT / "cfg/trackers/botsort.yaml")
|
194
194
|
custom_yaml = TMP / f"botsort-{gmc}.yaml"
|
195
|
-
YAML.save(custom_yaml, {**default_args, "gmc_method": gmc})
|
195
|
+
YAML.save(custom_yaml, {**default_args, "gmc_method": gmc, "with_reid": True, "model": reidm})
|
196
196
|
model.track(video_url, imgsz=160, tracker=custom_yaml)
|
197
197
|
|
198
198
|
|
tests/test_solutions.py
CHANGED
@@ -174,3 +174,14 @@ def test_solution(name, solution_class, needs_frame_count, video, kwargs):
|
|
174
174
|
video_path=str(TMP / video),
|
175
175
|
needs_frame_count=needs_frame_count,
|
176
176
|
)
|
177
|
+
|
178
|
+
|
179
|
+
@pytest.mark.slow
|
180
|
+
@pytest.mark.skipif(checks.IS_PYTHON_3_8, reason="Disabled due to unsupported CLIP dependencies.")
|
181
|
+
@pytest.mark.skipif(IS_RASPBERRYPI, reason="Disabled due to slow performance on Raspberry Pi.")
|
182
|
+
def test_similarity_search():
|
183
|
+
"""Test similarity search solution."""
|
184
|
+
from ultralytics import solutions
|
185
|
+
|
186
|
+
searcher = solutions.VisualAISearch()
|
187
|
+
_ = searcher("a dog sitting on a bench") # Returns the results in format "- img name | similarity score"
|
ultralytics/__init__.py
CHANGED
ultralytics/engine/exporter.py
CHANGED
@@ -82,6 +82,7 @@ from ultralytics.utils import (
|
|
82
82
|
ARM64,
|
83
83
|
DEFAULT_CFG,
|
84
84
|
IS_COLAB,
|
85
|
+
IS_JETSON,
|
85
86
|
LINUX,
|
86
87
|
LOGGER,
|
87
88
|
MACOS,
|
@@ -682,6 +683,7 @@ class Exporter:
|
|
682
683
|
@try_export
|
683
684
|
def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
|
684
685
|
"""YOLO Paddle export."""
|
686
|
+
assert not IS_JETSON, "Jetson Paddle exports not supported yet"
|
685
687
|
check_requirements(("paddlepaddle-gpu" if torch.cuda.is_available() else "paddlepaddle>=3.0.0", "x2paddle"))
|
686
688
|
import x2paddle # noqa
|
687
689
|
from x2paddle.convert import pytorch2paddle # noqa
|
ultralytics/engine/trainer.py
CHANGED
@@ -105,7 +105,8 @@ class BaseTrainer:
|
|
105
105
|
self.args = get_cfg(cfg, overrides)
|
106
106
|
self.check_resume(overrides)
|
107
107
|
self.device = select_device(self.args.device, self.args.batch)
|
108
|
-
|
108
|
+
# update "-1" devices so post-training val does not repeat search
|
109
|
+
self.args.device = os.getenv("CUDA_VISIBLE_DEVICES") if "cuda" in str(self.device) else str(self.device)
|
109
110
|
self.validator = None
|
110
111
|
self.metrics = None
|
111
112
|
self.plots = {}
|
@@ -82,11 +82,9 @@ class DetectionPredictor(BasePredictor):
|
|
82
82
|
|
83
83
|
def get_obj_feats(self, feat_maps, idxs):
|
84
84
|
"""Extract object features from the feature maps."""
|
85
|
-
from math import gcd
|
86
|
-
|
87
85
|
import torch
|
88
86
|
|
89
|
-
s =
|
87
|
+
s = min([x.shape[1] for x in feat_maps]) # find smallest vector length
|
90
88
|
obj_feats = torch.cat(
|
91
89
|
[x.permute(0, 2, 3, 1).reshape(x.shape[0], -1, s, x.shape[1] // s).mean(dim=-1) for x in feat_maps], dim=1
|
92
90
|
) # mean reduce all vectors to same length
|
ultralytics/nn/autobackend.py
CHANGED
@@ -290,8 +290,8 @@ class AutoBackend(nn.Module):
|
|
290
290
|
elif engine:
|
291
291
|
LOGGER.info(f"Loading {w} for TensorRT inference...")
|
292
292
|
|
293
|
-
if IS_JETSON and check_version(PYTHON_VERSION, "<=3.8.
|
294
|
-
# fix error: `np.bool` was a deprecated alias for the builtin `bool` for JetPack 4 with Python <= 3.8.
|
293
|
+
if IS_JETSON and check_version(PYTHON_VERSION, "<=3.8.10"):
|
294
|
+
# fix error: `np.bool` was a deprecated alias for the builtin `bool` for JetPack 4 and JetPack 5 with Python <= 3.8.10
|
295
295
|
check_requirements("numpy==1.23.5")
|
296
296
|
|
297
297
|
try: # https://developer.nvidia.com/nvidia-tensorrt-download
|
@@ -12,6 +12,7 @@ from .parking_management import ParkingManagement, ParkingPtsSelection
|
|
12
12
|
from .queue_management import QueueManager
|
13
13
|
from .region_counter import RegionCounter
|
14
14
|
from .security_alarm import SecurityAlarm
|
15
|
+
from .similarity_search import SearchApp, VisualAISearch
|
15
16
|
from .speed_estimation import SpeedEstimator
|
16
17
|
from .streamlit_inference import Inference
|
17
18
|
from .trackzone import TrackZone
|
@@ -35,4 +36,6 @@ __all__ = (
|
|
35
36
|
"Analytics",
|
36
37
|
"Inference",
|
37
38
|
"TrackZone",
|
39
|
+
"SearchApp",
|
40
|
+
"VisualAISearch",
|
38
41
|
)
|
ultralytics/solutions/config.py
CHANGED
@@ -48,6 +48,7 @@ class SolutionConfig:
|
|
48
48
|
half (bool): Whether to use FP16 precision (requires a supported CUDA device).
|
49
49
|
tracker (str): Path to tracking configuration YAML file (e.g., 'botsort.yaml').
|
50
50
|
verbose (bool): Enable verbose logging output for debugging or diagnostics.
|
51
|
+
data (str): Path to image directory used for similarity search.
|
51
52
|
|
52
53
|
Methods:
|
53
54
|
update: Update the configuration with user-defined keyword arguments and raise error on invalid keys.
|
@@ -91,6 +92,7 @@ class SolutionConfig:
|
|
91
92
|
half: bool = False
|
92
93
|
tracker: str = "botsort.yaml"
|
93
94
|
verbose: bool = True
|
95
|
+
data: str = "images"
|
94
96
|
|
95
97
|
def update(self, **kwargs):
|
96
98
|
"""Update configuration parameters with new values provided as keyword arguments."""
|
@@ -0,0 +1,172 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import os
|
4
|
+
from pathlib import Path
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
import torch
|
8
|
+
from PIL import Image
|
9
|
+
|
10
|
+
from ultralytics.data.utils import IMG_FORMATS
|
11
|
+
from ultralytics.solutions.solutions import BaseSolution
|
12
|
+
from ultralytics.utils.checks import check_requirements
|
13
|
+
from ultralytics.utils.torch_utils import select_device
|
14
|
+
|
15
|
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Avoid OpenMP conflict on some systems
|
16
|
+
|
17
|
+
|
18
|
+
class VisualAISearch(BaseSolution):
|
19
|
+
"""
|
20
|
+
VisualAISearch leverages OpenCLIP to generate high-quality image and text embeddings, aligning them in a shared
|
21
|
+
semantic space. It then uses FAISS to perform fast and scalable similarity-based retrieval, allowing users to search
|
22
|
+
large collections of images using natural language queries with high accuracy and speed.
|
23
|
+
|
24
|
+
Attributes:
|
25
|
+
data (str): Directory containing images.
|
26
|
+
device (str): Computation device, e.g., 'cpu' or 'cuda'.
|
27
|
+
"""
|
28
|
+
|
29
|
+
def __init__(self, **kwargs):
|
30
|
+
"""Initializes the VisualAISearch class with the FAISS index file and CLIP model."""
|
31
|
+
super().__init__(**kwargs)
|
32
|
+
check_requirements(["git+https://github.com/ultralytics/CLIP.git", "faiss-cpu"])
|
33
|
+
import clip
|
34
|
+
import faiss
|
35
|
+
|
36
|
+
self.faiss = faiss
|
37
|
+
self.clip = clip
|
38
|
+
|
39
|
+
self.faiss_index = "faiss.index"
|
40
|
+
self.data_path_npy = "paths.npy"
|
41
|
+
self.model_name = "ViT-B/32"
|
42
|
+
self.data_dir = Path(self.CFG["data"])
|
43
|
+
self.device = select_device(self.CFG["device"])
|
44
|
+
|
45
|
+
if not self.data_dir.exists():
|
46
|
+
from ultralytics.utils import ASSETS_URL
|
47
|
+
|
48
|
+
self.LOGGER.warning(f"{self.data_dir} not found. Downloading images.zip from {ASSETS_URL}/images.zip")
|
49
|
+
from ultralytics.utils.downloads import safe_download
|
50
|
+
|
51
|
+
safe_download(url=f"{ASSETS_URL}/images.zip", unzip=True, retry=3)
|
52
|
+
self.data_dir = Path("images")
|
53
|
+
|
54
|
+
self.model, self.preprocess = clip.load(self.model_name, device=self.device)
|
55
|
+
|
56
|
+
self.index = None
|
57
|
+
self.image_paths = []
|
58
|
+
|
59
|
+
self.load_or_build_index()
|
60
|
+
|
61
|
+
def extract_image_feature(self, path):
|
62
|
+
"""Extract CLIP image embedding."""
|
63
|
+
image = Image.open(path)
|
64
|
+
tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
65
|
+
with torch.no_grad():
|
66
|
+
return self.model.encode_image(tensor).cpu().numpy()
|
67
|
+
|
68
|
+
def extract_text_feature(self, text):
|
69
|
+
"""Extract CLIP text embedding."""
|
70
|
+
tokens = self.clip.tokenize([text]).to(self.device)
|
71
|
+
with torch.no_grad():
|
72
|
+
return self.model.encode_text(tokens).cpu().numpy()
|
73
|
+
|
74
|
+
def load_or_build_index(self):
|
75
|
+
"""Loads FAISS index or builds a new one from image features."""
|
76
|
+
# Check if the FAISS index and corresponding image paths already exist
|
77
|
+
if Path(self.faiss_index).exists() and Path(self.data_path_npy).exists():
|
78
|
+
self.LOGGER.info("Loading existing FAISS index...")
|
79
|
+
self.index = self.faiss.read_index(self.faiss_index) # Load the FAISS index from disk
|
80
|
+
self.image_paths = np.load(self.data_path_npy) # Load the saved image path list
|
81
|
+
return # Exit the function as the index is successfully loaded
|
82
|
+
|
83
|
+
# If the index doesn't exist, start building it from scratch
|
84
|
+
self.LOGGER.info("Building FAISS index from images...")
|
85
|
+
vectors = [] # List to store feature vectors of images
|
86
|
+
|
87
|
+
# Iterate over all image files in the data directory
|
88
|
+
for file in self.data_dir.iterdir():
|
89
|
+
# Skip files that are not valid image formats
|
90
|
+
if file.suffix.lower().lstrip(".") not in IMG_FORMATS:
|
91
|
+
continue
|
92
|
+
try:
|
93
|
+
# Extract feature vector for the image and add to the list
|
94
|
+
vectors.append(self.extract_image_feature(file))
|
95
|
+
self.image_paths.append(file.name) # Store the corresponding image name
|
96
|
+
except Exception as e:
|
97
|
+
self.LOGGER.warning(f"Skipping {file.name}: {e}")
|
98
|
+
|
99
|
+
# If no vectors were successfully created, raise an error
|
100
|
+
if not vectors:
|
101
|
+
raise RuntimeError("No image embeddings could be generated.")
|
102
|
+
|
103
|
+
vectors = np.vstack(vectors).astype("float32") # Stack all vectors into a NumPy array and convert to float32
|
104
|
+
self.faiss.normalize_L2(vectors) # Normalize vectors to unit length for cosine similarity
|
105
|
+
|
106
|
+
self.index = self.faiss.IndexFlatIP(vectors.shape[1]) # Create a new FAISS index using inner product
|
107
|
+
self.index.add(vectors) # Add the normalized vectors to the FAISS index
|
108
|
+
self.faiss.write_index(self.index, self.faiss_index) # Save the newly built FAISS index to disk
|
109
|
+
np.save(self.data_path_npy, np.array(self.image_paths)) # Save the list of image paths to disk
|
110
|
+
|
111
|
+
self.LOGGER.info(f"Indexed {len(self.image_paths)} images.")
|
112
|
+
|
113
|
+
def search(self, query, k=30, similarity_thresh=0.1):
|
114
|
+
"""Returns top-k semantically similar images to the given query."""
|
115
|
+
text_feat = self.extract_text_feature(query).astype("float32")
|
116
|
+
self.faiss.normalize_L2(text_feat)
|
117
|
+
|
118
|
+
D, index = self.index.search(text_feat, k)
|
119
|
+
results = [
|
120
|
+
(self.image_paths[i], float(D[0][idx])) for idx, i in enumerate(index[0]) if D[0][idx] >= similarity_thresh
|
121
|
+
]
|
122
|
+
results.sort(key=lambda x: x[1], reverse=True)
|
123
|
+
|
124
|
+
self.LOGGER.info("\nRanked Results:")
|
125
|
+
for name, score in results:
|
126
|
+
self.LOGGER.info(f" - {name} | Similarity: {score:.4f}")
|
127
|
+
|
128
|
+
return [r[0] for r in results]
|
129
|
+
|
130
|
+
def __call__(self, query):
|
131
|
+
"""Direct call for search function."""
|
132
|
+
return self.search(query)
|
133
|
+
|
134
|
+
|
135
|
+
class SearchApp:
|
136
|
+
"""
|
137
|
+
A Flask-based web interface powers the semantic image search experience, enabling users to input natural language
|
138
|
+
queries and instantly view the most relevant images retrieved from the indexed database—all through a clean,
|
139
|
+
responsive, and easily customizable frontend.
|
140
|
+
|
141
|
+
Args:
|
142
|
+
data (str): Path to images to index and search.
|
143
|
+
device (str): Device to run inference on (e.g. 'cpu', 'cuda').
|
144
|
+
"""
|
145
|
+
|
146
|
+
def __init__(self, data="images", device=None):
|
147
|
+
"""Initialization of the VisualAISearch class for performing semantic image search."""
|
148
|
+
check_requirements("flask")
|
149
|
+
from flask import Flask, render_template, request
|
150
|
+
|
151
|
+
self.render_template = render_template
|
152
|
+
self.request = request
|
153
|
+
self.searcher = VisualAISearch(data=data, device=device)
|
154
|
+
self.app = Flask(
|
155
|
+
__name__,
|
156
|
+
template_folder="templates",
|
157
|
+
static_folder=Path(data).resolve(), # Absolute path to serve images
|
158
|
+
static_url_path="/images", # URL prefix for images
|
159
|
+
)
|
160
|
+
self.app.add_url_rule("/", view_func=self.index, methods=["GET", "POST"])
|
161
|
+
|
162
|
+
def index(self):
|
163
|
+
"""Function to process the user query and display output."""
|
164
|
+
results = []
|
165
|
+
if self.request.method == "POST":
|
166
|
+
query = self.request.form.get("query", "").strip()
|
167
|
+
results = self.searcher(query)
|
168
|
+
return self.render_template("similarity-search.html", results=results)
|
169
|
+
|
170
|
+
def run(self, debug=False):
|
171
|
+
"""Runs the Flask web app."""
|
172
|
+
self.app.run(debug=debug)
|
@@ -54,55 +54,56 @@ class BaseSolution:
|
|
54
54
|
is_cli (bool): Enables CLI mode if set to True.
|
55
55
|
**kwargs (Any): Additional configuration parameters that override defaults.
|
56
56
|
"""
|
57
|
-
check_requirements("shapely>=2.0.0")
|
58
|
-
from shapely.geometry import LineString, Point, Polygon
|
59
|
-
from shapely.prepared import prep
|
60
|
-
|
61
|
-
self.LineString = LineString
|
62
|
-
self.Polygon = Polygon
|
63
|
-
self.Point = Point
|
64
|
-
self.prep = prep
|
65
|
-
self.annotator = None # Initialize annotator
|
66
|
-
self.tracks = None
|
67
|
-
self.track_data = None
|
68
|
-
self.boxes = []
|
69
|
-
self.clss = []
|
70
|
-
self.track_ids = []
|
71
|
-
self.track_line = None
|
72
|
-
self.masks = None
|
73
|
-
self.r_s = None
|
74
|
-
|
75
|
-
self.LOGGER = LOGGER # Store logger object to be used in multiple solution classes
|
76
57
|
self.CFG = vars(SolutionConfig().update(**kwargs))
|
77
|
-
self.LOGGER
|
78
|
-
|
79
|
-
self.
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
self.
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
58
|
+
self.LOGGER = LOGGER # Store logger object to be used in multiple solution classes
|
59
|
+
|
60
|
+
if self.__class__.__name__ != "VisualAISearch":
|
61
|
+
check_requirements("shapely>=2.0.0")
|
62
|
+
from shapely.geometry import LineString, Point, Polygon
|
63
|
+
from shapely.prepared import prep
|
64
|
+
|
65
|
+
self.LineString = LineString
|
66
|
+
self.Polygon = Polygon
|
67
|
+
self.Point = Point
|
68
|
+
self.prep = prep
|
69
|
+
self.annotator = None # Initialize annotator
|
70
|
+
self.tracks = None
|
71
|
+
self.track_data = None
|
72
|
+
self.boxes = []
|
73
|
+
self.clss = []
|
74
|
+
self.track_ids = []
|
75
|
+
self.track_line = None
|
76
|
+
self.masks = None
|
77
|
+
self.r_s = None
|
78
|
+
|
79
|
+
self.LOGGER.info(f"Ultralytics Solutions: ✅ {self.CFG}")
|
80
|
+
self.region = self.CFG["region"] # Store region data for other classes usage
|
81
|
+
self.line_width = self.CFG["line_width"]
|
82
|
+
|
83
|
+
# Load Model and store additional information (classes, show_conf, show_label)
|
84
|
+
if self.CFG["model"] is None:
|
85
|
+
self.CFG["model"] = "yolo11n.pt"
|
86
|
+
self.model = YOLO(self.CFG["model"])
|
87
|
+
self.names = self.model.names
|
88
|
+
self.classes = self.CFG["classes"]
|
89
|
+
self.show_conf = self.CFG["show_conf"]
|
90
|
+
self.show_labels = self.CFG["show_labels"]
|
91
|
+
|
92
|
+
self.track_add_args = { # Tracker additional arguments for advance configuration
|
93
|
+
k: self.CFG[k] for k in ["iou", "conf", "device", "max_det", "half", "tracker", "device", "verbose"]
|
94
|
+
} # verbose must be passed to track method; setting it False in YOLO still logs the track information.
|
95
|
+
|
96
|
+
if is_cli and self.CFG["source"] is None:
|
97
|
+
d_s = "solutions_ci_demo.mp4" if "-pose" not in self.CFG["model"] else "solution_ci_pose_demo.mp4"
|
98
|
+
self.LOGGER.warning(f"source not provided. using default source {ASSETS_URL}/{d_s}")
|
99
|
+
from ultralytics.utils.downloads import safe_download
|
100
|
+
|
101
|
+
safe_download(f"{ASSETS_URL}/{d_s}") # download source from ultralytics assets
|
102
|
+
self.CFG["source"] = d_s # set default source
|
103
|
+
|
104
|
+
# Initialize environment and region setup
|
105
|
+
self.env_check = check_imshow(warn=True)
|
106
|
+
self.track_history = defaultdict(list)
|
106
107
|
|
107
108
|
def adjust_box_label(self, cls, conf, track_id=None):
|
108
109
|
"""
|
@@ -0,0 +1,160 @@
|
|
1
|
+
<!-- Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license -->
|
2
|
+
|
3
|
+
<!--Similarity search webpage-->
|
4
|
+
<!doctype html>
|
5
|
+
<html lang="en">
|
6
|
+
<head>
|
7
|
+
<meta charset="UTF-8" />
|
8
|
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9
|
+
<title>Semantic Image Search</title>
|
10
|
+
<link
|
11
|
+
href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap"
|
12
|
+
rel="stylesheet"
|
13
|
+
/>
|
14
|
+
<style>
|
15
|
+
body {
|
16
|
+
background: linear-gradient(135deg, #f0f4ff, #f9fbff);
|
17
|
+
font-family: "Inter", sans-serif;
|
18
|
+
color: #111e68;
|
19
|
+
padding: 2rem;
|
20
|
+
margin: 0;
|
21
|
+
min-height: 100vh;
|
22
|
+
}
|
23
|
+
|
24
|
+
h1 {
|
25
|
+
text-align: center;
|
26
|
+
margin-bottom: 2rem;
|
27
|
+
font-size: 2.5rem;
|
28
|
+
font-weight: 600;
|
29
|
+
}
|
30
|
+
|
31
|
+
form {
|
32
|
+
display: flex;
|
33
|
+
flex-wrap: wrap;
|
34
|
+
justify-content: center;
|
35
|
+
align-items: center;
|
36
|
+
gap: 1rem;
|
37
|
+
margin-bottom: 3rem;
|
38
|
+
animation: fadeIn 1s ease-in-out;
|
39
|
+
}
|
40
|
+
|
41
|
+
input[type="text"] {
|
42
|
+
width: 300px;
|
43
|
+
padding: 0.75rem 1rem;
|
44
|
+
font-size: 1rem;
|
45
|
+
border-radius: 10px;
|
46
|
+
border: 1px solid #ccc;
|
47
|
+
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.05);
|
48
|
+
transition: box-shadow 0.3s ease;
|
49
|
+
}
|
50
|
+
|
51
|
+
input[type="text"]:focus {
|
52
|
+
outline: none;
|
53
|
+
box-shadow: 0 0 0 3px rgba(17, 30, 104, 0.2);
|
54
|
+
}
|
55
|
+
|
56
|
+
button {
|
57
|
+
background-color: #111e68;
|
58
|
+
color: white;
|
59
|
+
font-weight: 600;
|
60
|
+
font-size: 1rem;
|
61
|
+
padding: 0.75rem 1.5rem;
|
62
|
+
border-radius: 10px;
|
63
|
+
border: none;
|
64
|
+
cursor: pointer;
|
65
|
+
transition:
|
66
|
+
background-color 0.3s ease,
|
67
|
+
transform 0.2s ease;
|
68
|
+
}
|
69
|
+
|
70
|
+
button:hover {
|
71
|
+
background-color: #1f2e9f;
|
72
|
+
transform: translateY(-2px);
|
73
|
+
}
|
74
|
+
|
75
|
+
.grid {
|
76
|
+
display: grid;
|
77
|
+
grid-template-columns: repeat(auto-fill, minmax(260px, 1fr));
|
78
|
+
gap: 1.5rem;
|
79
|
+
max-width: 1600px;
|
80
|
+
margin: auto;
|
81
|
+
animation: fadeInUp 1s ease-in-out;
|
82
|
+
}
|
83
|
+
|
84
|
+
.card {
|
85
|
+
background: white;
|
86
|
+
border-radius: 16px;
|
87
|
+
overflow: hidden;
|
88
|
+
box-shadow: 0 6px 14px rgba(0, 0, 0, 0.08);
|
89
|
+
transition:
|
90
|
+
transform 0.3s ease,
|
91
|
+
box-shadow 0.3s ease;
|
92
|
+
}
|
93
|
+
|
94
|
+
.card:hover {
|
95
|
+
transform: translateY(-6px);
|
96
|
+
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.1);
|
97
|
+
}
|
98
|
+
|
99
|
+
.card img {
|
100
|
+
width: 100%;
|
101
|
+
height: 100%;
|
102
|
+
object-fit: cover;
|
103
|
+
display: block;
|
104
|
+
}
|
105
|
+
|
106
|
+
@keyframes fadeIn {
|
107
|
+
0% {
|
108
|
+
opacity: 0;
|
109
|
+
transform: scale(0.95);
|
110
|
+
}
|
111
|
+
100% {
|
112
|
+
opacity: 1;
|
113
|
+
transform: scale(1);
|
114
|
+
}
|
115
|
+
}
|
116
|
+
|
117
|
+
@keyframes fadeInUp {
|
118
|
+
0% {
|
119
|
+
opacity: 0;
|
120
|
+
transform: translateY(20px);
|
121
|
+
}
|
122
|
+
100% {
|
123
|
+
opacity: 1;
|
124
|
+
transform: translateY(0);
|
125
|
+
}
|
126
|
+
}
|
127
|
+
</style>
|
128
|
+
</head>
|
129
|
+
<body>
|
130
|
+
<div style="text-align: center; margin-bottom: 1rem">
|
131
|
+
<img
|
132
|
+
src="https://raw.githubusercontent.com/ultralytics/assets/main/logo/favicon.png"
|
133
|
+
alt="Ultralytics Logo"
|
134
|
+
style="height: 40px"
|
135
|
+
/>
|
136
|
+
</div>
|
137
|
+
<h1>Semantic Image Search with AI</h1>
|
138
|
+
|
139
|
+
<!-- Search box -->
|
140
|
+
<form method="POST">
|
141
|
+
<input
|
142
|
+
type="text"
|
143
|
+
name="query"
|
144
|
+
placeholder="Describe the scene (e.g., man walking)"
|
145
|
+
value="{{ request.form['query'] }}"
|
146
|
+
required
|
147
|
+
/>
|
148
|
+
<button type="submit">Search</button>
|
149
|
+
</form>
|
150
|
+
|
151
|
+
<!-- Search results grid -->
|
152
|
+
<div class="grid">
|
153
|
+
{% for img in results %}
|
154
|
+
<div class="card">
|
155
|
+
<img src="{{ url_for('static', filename=img) }}" alt="Result Image" />
|
156
|
+
</div>
|
157
|
+
{% endfor %}
|
158
|
+
</div>
|
159
|
+
</body>
|
160
|
+
</html>
|
ultralytics/trackers/bot_sort.py
CHANGED
@@ -255,6 +255,6 @@ class ReID:
|
|
255
255
|
def __call__(self, img, dets):
|
256
256
|
"""Extract embeddings for detected objects."""
|
257
257
|
feats = self.model([save_one_box(det, img, save=False) for det in xywh2xyxy(torch.from_numpy(dets[:, :4]))])
|
258
|
-
if feats
|
258
|
+
if len(feats) != dets.shape[0] and feats[0].shape[0] == dets.shape[0]:
|
259
259
|
feats = feats[0] # batched prediction with non-PyTorch backend
|
260
260
|
return [f.cpu().numpy() for f in feats]
|
ultralytics/trackers/track.py
CHANGED
@@ -44,6 +44,8 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
|
|
44
44
|
if cfg.tracker_type not in {"bytetrack", "botsort"}:
|
45
45
|
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
|
46
46
|
|
47
|
+
predictor._feats = None # reset in case used earlier
|
48
|
+
predictor.save_feats = False
|
47
49
|
if cfg.tracker_type == "botsort" and cfg.with_reid and cfg.model == "auto":
|
48
50
|
from ultralytics.nn.modules.head import Detect
|
49
51
|
|
@@ -55,7 +57,6 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
|
|
55
57
|
cfg.model = "yolo11n-cls.pt"
|
56
58
|
else:
|
57
59
|
predictor.save_feats = True
|
58
|
-
predictor._feats = None
|
59
60
|
|
60
61
|
# Register hook to extract input of Detect layer
|
61
62
|
def pre_hook(module, input):
|
ultralytics/utils/benchmarks.py
CHANGED
@@ -40,7 +40,7 @@ import torch.cuda
|
|
40
40
|
from ultralytics import YOLO, YOLOWorld
|
41
41
|
from ultralytics.cfg import TASK2DATA, TASK2METRIC
|
42
42
|
from ultralytics.engine.exporter import export_formats
|
43
|
-
from ultralytics.utils import ARM64, ASSETS, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR, YAML
|
43
|
+
from ultralytics.utils import ARM64, ASSETS, IS_JETSON, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR, YAML
|
44
44
|
from ultralytics.utils.checks import IS_PYTHON_3_13, check_imgsz, check_requirements, check_yolo, is_rockchip
|
45
45
|
from ultralytics.utils.downloads import safe_download
|
46
46
|
from ultralytics.utils.files import file_size
|
@@ -126,7 +126,7 @@ def benchmark(
|
|
126
126
|
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
|
127
127
|
assert model.task != "obb", "Paddle OBB bug https://github.com/PaddlePaddle/Paddle/issues/72024"
|
128
128
|
assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
|
129
|
-
assert LINUX or MACOS, "Windows Paddle exports not supported yet"
|
129
|
+
assert (LINUX and not IS_JETSON) or MACOS, "Windows and Jetson Paddle exports not supported yet"
|
130
130
|
if i == 12: # MNN
|
131
131
|
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 MNN exports not supported yet"
|
132
132
|
if i == 13: # NCNN
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.128
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -70,6 +70,7 @@ Requires-Dist: h5py!=3.11.0; platform_machine == "aarch64" and extra == "export"
|
|
70
70
|
Provides-Extra: solutions
|
71
71
|
Requires-Dist: shapely>=2.0.0; extra == "solutions"
|
72
72
|
Requires-Dist: streamlit>=1.29.0; extra == "solutions"
|
73
|
+
Requires-Dist: flask; extra == "solutions"
|
73
74
|
Provides-Extra: logging
|
74
75
|
Requires-Dist: wandb; extra == "logging"
|
75
76
|
Requires-Dist: tensorboard; extra == "logging"
|
@@ -1,13 +1,13 @@
|
|
1
1
|
tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
|
2
2
|
tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
|
3
3
|
tests/test_cli.py,sha256=PtMFl5Lp_6ygBbYDJ1ndofz2k7ZYupMPEAiZw6aZVm8,5450
|
4
|
-
tests/test_cuda.py,sha256=
|
4
|
+
tests/test_cuda.py,sha256=7HKiXWQM4hUdouksEB7DJILos0gb6St7fIGqx6YMkLQ,6448
|
5
5
|
tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
6
6
|
tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
|
7
7
|
tests/test_integrations.py,sha256=dQteeRsRVuT_p5-T88-7jqT65Zm9iAXkyKg-KQ1_TQ8,6341
|
8
|
-
tests/test_python.py,sha256=
|
9
|
-
tests/test_solutions.py,sha256=
|
10
|
-
ultralytics/__init__.py,sha256=
|
8
|
+
tests/test_python.py,sha256=m3tV3atrc3DvXZ5S-_C1ief_pDo4KlLgudjc7rq26l0,25492
|
9
|
+
tests/test_solutions.py,sha256=IFlqyOUCvGbLe_YZqWmNCe_afg4as0p-SfAv3j7VURI,6205
|
10
|
+
ultralytics/__init__.py,sha256=eYHrIAy7F9bwg7pfP06EyjopprNxJRb4oqv7VuSEe8w,730
|
11
11
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
12
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
13
|
ultralytics/cfg/__init__.py,sha256=We3ti0mvUQrGRmUPcufDGboW0YAO3nSRYuoWxGagk3M,39462
|
@@ -117,11 +117,11 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
|
|
117
117
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
118
118
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
119
119
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
120
|
-
ultralytics/engine/exporter.py,sha256=
|
120
|
+
ultralytics/engine/exporter.py,sha256=XDJboUBDGDrFsppwTVujoGilf5vTkO14KYMhMu5YZQ0,70333
|
121
121
|
ultralytics/engine/model.py,sha256=37qGh6aqqPTUyMfpsvBQMaZ1Av7eJDe6mfRl9GvlfKg,52860
|
122
122
|
ultralytics/engine/predictor.py,sha256=YJ5l-0qIpr6JAJxowswtZ0IqmXBqVTvAA9vR40v0sCM,21752
|
123
123
|
ultralytics/engine/results.py,sha256=-JPBn_YMyZv6HhdlyhjRIZCcMf41LTyWID7JrEP64rc,79632
|
124
|
-
ultralytics/engine/trainer.py,sha256=
|
124
|
+
ultralytics/engine/trainer.py,sha256=aj41kXVeNfJOlMhSNrW_XwElQ5D0jtuX6ezJC2w8xa8,39046
|
125
125
|
ultralytics/engine/tuner.py,sha256=zEW1UpLlZ6N4xbvS7MxICkshRlaFgLNfuADA0VfRpao,12629
|
126
126
|
ultralytics/engine/validator.py,sha256=jfV81wuFDgrVVXEcPzgOpxAPrAZn-1LgpKwu9l_1-ts,17050
|
127
127
|
ultralytics/hub/__init__.py,sha256=wDtAUKdfqob95tfFHgDJFXcsNSDSdoIQkJTm-CfIUTI,6616
|
@@ -168,7 +168,7 @@ ultralytics/models/yolo/classify/predict.py,sha256=JV9szginTQ9Lpob0FozhKMiEIu1vV
|
|
168
168
|
ultralytics/models/yolo/classify/train.py,sha256=rv2CJv9fzvtHf2q4l5g0RsjplWKeLpz637kKqjtrLNY,9737
|
169
169
|
ultralytics/models/yolo/classify/val.py,sha256=xk-YwSQdl_oqyCBV0OOAOcXFL6CchebFOc36AkRSyjE,9992
|
170
170
|
ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
|
171
|
-
ultralytics/models/yolo/detect/predict.py,sha256=
|
171
|
+
ultralytics/models/yolo/detect/predict.py,sha256=DOjhYCHPFPPAwZLWWmNt0d7lGka8GFeriM0OA9PTEGU,5310
|
172
172
|
ultralytics/models/yolo/detect/train.py,sha256=YOEmUZkfJBq6hNbB_P10k-uy4_2fUgdPfVWzO4y8Egs,9538
|
173
173
|
ultralytics/models/yolo/detect/val.py,sha256=7AB_wZi7aQ9_V1pZQSWk5qiJYS34fuO3P5aX7_3eeFE,18471
|
174
174
|
ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
|
@@ -192,7 +192,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=St3zw_XWRol9pODWU4lvKlJnWYr1lmWQNu
|
|
192
192
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=l0SOMQQd0Y_EBBHhTNekgrQsftqhYyK4oWTdCg1dLrE,4633
|
193
193
|
ultralytics/models/yolo/yoloe/val.py,sha256=oA8cVT3pBXF6aPZy7ITq0mDcktRuIgks8tTtqMRISyY,8431
|
194
194
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
195
|
-
ultralytics/nn/autobackend.py,sha256=
|
195
|
+
ultralytics/nn/autobackend.py,sha256=9uuLVg5_1irhw2OYahkVoGWmcyB61jVFBVZEiN8GQ1A,39325
|
196
196
|
ultralytics/nn/tasks.py,sha256=0rnM6Z01BUnRtUwCkTwVsPxZ_D3A5tNbBjd7aEoxxns,62943
|
197
197
|
ultralytics/nn/text_model.py,sha256=8_7SRejKZA4Pi-ha0gjcWrQDDCDMBhtwlg8pPMWgjDE,13145
|
198
198
|
ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
|
@@ -202,10 +202,10 @@ ultralytics/nn/modules/conv.py,sha256=nxbfAxmvo6A9atuxY3LXTtzMXhihZapCSg1F5mI4sI
|
|
202
202
|
ultralytics/nn/modules/head.py,sha256=FbFB-e44Zvxgzdfy0FqeGWUn0DDahmEZvD1W_N2olcM,38442
|
203
203
|
ultralytics/nn/modules/transformer.py,sha256=tC80QKFaLtWZo0zVNTuORX4pOu6HVs2wS0vSM-3h5W4,28227
|
204
204
|
ultralytics/nn/modules/utils.py,sha256=rn8yTObZGkQoqVzjbZWLaHiytppG4ffjMME4Lw60glM,6092
|
205
|
-
ultralytics/solutions/__init__.py,sha256=
|
205
|
+
ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2aWkI,1209
|
206
206
|
ultralytics/solutions/ai_gym.py,sha256=QRrZGMka83NY4B9gU3N2GxTaomo0WmTMNLxkNZTxo9U,5763
|
207
207
|
ultralytics/solutions/analytics.py,sha256=u-khRAViGupjq9mkuAFCl9G3yE8hXfXASfKZd_SQZ-8,12111
|
208
|
-
ultralytics/solutions/config.py,sha256=
|
208
|
+
ultralytics/solutions/config.py,sha256=TLxQuZjqW-vhbS2OFmTT188-31ukHg1XP7l-BeOmqbU,5427
|
209
209
|
ultralytics/solutions/distance_calculation.py,sha256=E13siGlQTqaGCk0xULk5Q86PwxiBAL4XWp83kQPb0YE,5751
|
210
210
|
ultralytics/solutions/heatmap.py,sha256=lXYptA_EbypipF7YJMjsxxBzLAgsroLcdqypvNAhduA,5569
|
211
211
|
ultralytics/solutions/instance_segmentation.py,sha256=HxzFf752PwjAjZhrf8BzI-gEey_f9mjxTOqJsLHSIB8,3498
|
@@ -216,16 +216,18 @@ ultralytics/solutions/parking_management.py,sha256=BV-2lpSfgmK7fib3DnPSZ5rtLdy11
|
|
216
216
|
ultralytics/solutions/queue_management.py,sha256=p1-cuI_rs4ygtlBryXjE65NYG2bnZXhp3ylggFnWcRs,4344
|
217
217
|
ultralytics/solutions/region_counter.py,sha256=Zn35YRXNzhBk27D9MLOHBYe2L1o6H2ey3mEwCXofB_E,5418
|
218
218
|
ultralytics/solutions/security_alarm.py,sha256=cmUWvz7U9IAxlOr-QCIU_j95lc2c8eUx9wI04t1vDFU,6251
|
219
|
-
ultralytics/solutions/
|
219
|
+
ultralytics/solutions/similarity_search.py,sha256=WTYmHNHfFrRiJ6mrZhJvGPsjt3szQUiM6VRpw2eBRjA,7332
|
220
|
+
ultralytics/solutions/solutions.py,sha256=aXU5p6zv8UPyaC8v51tsE9L_KzmnRCP4M9PP6pAYMXQ,32715
|
220
221
|
ultralytics/solutions/speed_estimation.py,sha256=r7S5nGIx8PTV-zC4zCI36lQD2DVy5cen5cTXItfQIHo,5318
|
221
222
|
ultralytics/solutions/streamlit_inference.py,sha256=M0ppTFInqSPrdytZBLH8x-XoA7zFc7PaRQ51wHG9ppU,9846
|
222
223
|
ultralytics/solutions/trackzone.py,sha256=mfklnZcVRqI3bbhPiHF2iSoV6INcd10wwwGP4tlK7L0,3854
|
223
224
|
ultralytics/solutions/vision_eye.py,sha256=7YrMqZkR28LLNHWxX3Ye78GvPdXXuouQAmgMdGwRLQ4,2953
|
225
|
+
ultralytics/solutions/templates/similarity-search.html,sha256=DPoAO-1H-KXNt_T8mGtSCsYUEi_5Nrx01p0cZfX-E8Q,3790
|
224
226
|
ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0pFGI,255
|
225
227
|
ultralytics/trackers/basetrack.py,sha256=LYvWB5d7Woyrz_RlxaopjV07RQKH3sff_lZJfMcMxcA,4450
|
226
|
-
ultralytics/trackers/bot_sort.py,sha256=
|
228
|
+
ultralytics/trackers/bot_sort.py,sha256=fAMV6PJE19jXe-6u524bpcz7x3Ssauk3b3wKXUYpvoY,11462
|
227
229
|
ultralytics/trackers/byte_tracker.py,sha256=D7JQ_6V8OUMQryxTrAr010UXMSaboQnI7T1xppzHXYg,20921
|
228
|
-
ultralytics/trackers/track.py,sha256=
|
230
|
+
ultralytics/trackers/track.py,sha256=hTh-qRZvCrnmo8TsfMQK8sp1F7qeUi97jgtXX-xhX3I,4880
|
229
231
|
ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
230
232
|
ultralytics/trackers/utils/gmc.py,sha256=dz3I5LbIv7h1__Xg7rGHecQFE32VFTe54tUnxb8F0Z8,14466
|
231
233
|
ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
|
@@ -233,7 +235,7 @@ ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5
|
|
233
235
|
ultralytics/utils/__init__.py,sha256=YSBOQcgak2v6l03EHPjkpzH-ZtjVXrg2_4o0BF1cqDQ,52807
|
234
236
|
ultralytics/utils/autobatch.py,sha256=kg05q2qKg74y_Uq2vvr01i3KhLfpVR7sT0IXBt3_kyI,4921
|
235
237
|
ultralytics/utils/autodevice.py,sha256=OrLSk34UpW0I5ndxnkQEIWBxL--CvAON_W9Qw51zOGA,7233
|
236
|
-
ultralytics/utils/benchmarks.py,sha256=
|
238
|
+
ultralytics/utils/benchmarks.py,sha256=lDNNnLeLUzmqKrqrqlCOiau-q7A-gcLooZP2dbxCu-U,30214
|
237
239
|
ultralytics/utils/checks.py,sha256=Z87AuJ3C5JcTVYdhAn31BFErmF48bRyMc4_WZ9ku5-E,32711
|
238
240
|
ultralytics/utils/dist.py,sha256=aytW0JEkcA5ZTZucV92ot7Bn-apiej8aLk3QNWicjAc,4103
|
239
241
|
ultralytics/utils/downloads.py,sha256=Rn8xDwn2bzgBqiYz3Xn0rm3MWjk4T-QUd2Ajlu1EpQ4,22312
|
@@ -261,9 +263,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=JaI95Cj2kIjUhlEEOiDN0-Drc-fDelLhNI
|
|
261
263
|
ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
|
262
264
|
ultralytics/utils/callbacks/tensorboard.py,sha256=jgYnym3cUQFAgN1GzTyO7l3jINtfAh8zhrllDvnLuVQ,5339
|
263
265
|
ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
|
264
|
-
ultralytics-8.3.
|
265
|
-
ultralytics-8.3.
|
266
|
-
ultralytics-8.3.
|
267
|
-
ultralytics-8.3.
|
268
|
-
ultralytics-8.3.
|
269
|
-
ultralytics-8.3.
|
266
|
+
ultralytics-8.3.128.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
267
|
+
ultralytics-8.3.128.dist-info/METADATA,sha256=-IGLMF2lUP_NBqvLF8v0L8mTJX9DuFEiU5yxPFcXlhY,37223
|
268
|
+
ultralytics-8.3.128.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
|
269
|
+
ultralytics-8.3.128.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
270
|
+
ultralytics-8.3.128.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
271
|
+
ultralytics-8.3.128.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|