ultralytics 8.3.110__py3-none-any.whl → 8.3.111__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.110"
3
+ __version__ = "8.3.111"
4
4
 
5
5
  import os
6
6
 
@@ -1796,6 +1796,9 @@ class Albumentations:
1796
1796
  prefix = colorstr("albumentations: ")
1797
1797
 
1798
1798
  try:
1799
+ import os
1800
+
1801
+ os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1" # suppress Albumentations upgrade message
1799
1802
  import albumentations as A
1800
1803
 
1801
1804
  check_version(A.__version__, "1.0.3", hard=True) # version requirement
@@ -110,14 +110,14 @@ class AutoBackend(nn.Module):
110
110
  Initialize the AutoBackend for inference.
111
111
 
112
112
  Args:
113
- weights (str | torch.nn.Module): Path to the model weights file or a module instance. Defaults to 'yolo11n.pt'.
114
- device (torch.device): Device to run the model on. Defaults to CPU.
115
- dnn (bool): Use OpenCV DNN module for ONNX inference. Defaults to False.
113
+ weights (str | List[str] | torch.nn.Module): Path to the model weights file or a module instance.
114
+ device (torch.device): Device to run the model on.
115
+ dnn (bool): Use OpenCV DNN module for ONNX inference.
116
116
  data (str | Path | optional): Path to the additional data.yaml file containing class names.
117
- fp16 (bool): Enable half-precision inference. Supported only on specific backends. Defaults to False.
117
+ fp16 (bool): Enable half-precision inference. Supported only on specific backends.
118
118
  batch (int): Batch-size to assume for inference.
119
- fuse (bool): Fuse Conv2D + BatchNorm layers for optimization. Defaults to True.
120
- verbose (bool): Enable verbose logging. Defaults to True.
119
+ fuse (bool): Fuse Conv2D + BatchNorm layers for optimization.
120
+ verbose (bool): Enable verbose logging.
121
121
  """
122
122
  super().__init__()
123
123
  w = str(weights[0] if isinstance(weights, list) else weights)
@@ -288,8 +288,8 @@ class AutoBackend(nn.Module):
288
288
  # fix error: `np.bool` was a deprecated alias for the builtin `bool` for JetPack 4 with Python <= 3.8.0
289
289
  check_requirements("numpy==1.23.5")
290
290
 
291
- try:
292
- import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
291
+ try: # https://developer.nvidia.com/nvidia-tensorrt-download
292
+ import tensorrt as trt # noqa
293
293
  except ImportError:
294
294
  if LINUX:
295
295
  check_requirements("tensorrt>7.0.0,!=10.1.0")
@@ -562,9 +562,9 @@ class AutoBackend(nn.Module):
562
562
 
563
563
  Args:
564
564
  im (torch.Tensor): The image tensor to perform inference on.
565
- augment (bool): Whether to perform data augmentation during inference. Defaults to False.
566
- visualize (bool): Whether to visualize the output predictions. Defaults to False.
567
- embed (list, optional): A list of feature vectors/embeddings to return.
565
+ augment (bool): Whether to perform data augmentation during inference.
566
+ visualize (bool): Whether to visualize the output predictions.
567
+ embed (list | None): A list of feature vectors/embeddings to return.
568
568
  **kwargs (Any): Additional keyword arguments for model configuration.
569
569
 
570
570
  Returns:
@@ -799,11 +799,10 @@ class AutoBackend(nn.Module):
799
799
  @staticmethod
800
800
  def _model_type(p="path/to/model.pt"):
801
801
  """
802
- Takes a path to a model file and returns the model type. Possibles types are pt, jit, onnx, xml, engine, coreml,
803
- saved_model, pb, tflite, edgetpu, tfjs, ncnn, mnn, imx or paddle.
802
+ Takes a path to a model file and returns the model type.
804
803
 
805
804
  Args:
806
- p (str): Path to the model file. Defaults to path/to/model.pt
805
+ p (str): Path to the model file.
807
806
 
808
807
  Returns:
809
808
  (List[bool]): List of booleans indicating the model type.
@@ -603,7 +603,7 @@ class MaxSigmoidAttnBlock(nn.Module):
603
603
  bs, _, h, w = x.shape
604
604
 
605
605
  guide = self.gl(guide)
606
- guide = guide.view(bs, -1, self.nh, self.hc)
606
+ guide = guide.view(bs, guide.shape[1], self.nh, self.hc)
607
607
  embed = self.ec(x) if self.ec is not None else x
608
608
  embed = embed.view(bs, self.nh, self.hc, h, w)
609
609
 
@@ -872,3 +872,7 @@ class v10Detect(Detect):
872
872
  for x in ch
873
873
  )
874
874
  self.one2one_cv3 = copy.deepcopy(self.cv3)
875
+
876
+ def fuse(self):
877
+ """Removes the one2many head."""
878
+ self.cv2 = self.cv3 = nn.ModuleList([nn.Identity()] * self.nl)
ultralytics/nn/tasks.py CHANGED
@@ -221,6 +221,8 @@ class BaseModel(torch.nn.Module):
221
221
  if isinstance(m, RepVGGDW):
222
222
  m.fuse()
223
223
  m.forward = m.forward_fuse
224
+ if isinstance(m, v10Detect):
225
+ m.fuse() # remove one2many head
224
226
  self.info(verbose=verbose)
225
227
 
226
228
  return self
@@ -1243,7 +1243,7 @@ class SettingsManager(JSONDict):
1243
1243
  "mlflow": True, # MLflow integration
1244
1244
  "neptune": True, # Neptune integration
1245
1245
  "raytune": True, # Ray Tune integration
1246
- "tensorboard": True, # TensorBoard logging
1246
+ "tensorboard": False, # TensorBoard logging
1247
1247
  "wandb": False, # Weights & Biases logging
1248
1248
  "vscode_msg": True, # VSCode messaging
1249
1249
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.110
3
+ Version: 8.3.111
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,4 +1,4 @@
1
- ultralytics/__init__.py,sha256=d49pdkawY70527DKA-stvgRvkhGPDCMMglotCnaHB04,730
1
+ ultralytics/__init__.py,sha256=9P1_68FgBArHsZgetmn6x3YgT5w2nN3NCw57F0BoSEI,730
2
2
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
3
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
4
  ultralytics/cfg/__init__.py,sha256=HZdpo0m_8NynZLmTie2dDx-OEZH7WoM8YtALjB7lKgM,39838
@@ -93,7 +93,7 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=D9doE5GQUe6HrAFzr7OfQFIGPFk0M_vJ0B_
93
93
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
94
94
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
95
95
  ultralytics/data/annotator.py,sha256=VEwb11FsEZm75qlEp8XDHFGKW0_rGsEaFDaBVd771Kw,2902
96
- ultralytics/data/augment.py,sha256=JsliREHEOQzjipY8iLF1TNP0nuAfix3DKV4AoB4R4fM,124738
96
+ ultralytics/data/augment.py,sha256=1Q-dXQlBBxj04uugI8s6uV5OSGsfjKDZHsp_uDgIYA0,124861
97
97
  ultralytics/data/base.py,sha256=G1S1koste1rCrSzPu4fG6lAwjWflX8Dl8_Q6Bx3IXQc,18551
98
98
  ultralytics/data/build.py,sha256=56pavLie6PDFEVYChMxnGQGtGsxozYZRpFqC70DRGls,9650
99
99
  ultralytics/data/converter.py,sha256=eaRqru-MZR8VEP-pL8EFSrH8dC6EkqVF4oEb551FXUw,24657
@@ -181,14 +181,14 @@ ultralytics/models/yolo/yoloe/train.py,sha256=7JxJkMN9bkUGsO-RojFG2Q3yfdKhb-TXlB
181
181
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=JguKB1ez8Rf7XBu_D_mWHMLJto7y7Kr2m0Tq2NwDtwU,5269
182
182
  ultralytics/models/yolo/yoloe/val.py,sha256=utdt8wZvvW9OPxO5rx8KsFlkLG0FXj0YMD7Jhyk54D8,8440
183
183
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
184
- ultralytics/nn/autobackend.py,sha256=_ww4j-KnNwRPQZmtsArg0_CXVbc4U2WZj5C4nmnKGQc,38949
185
- ultralytics/nn/tasks.py,sha256=r9CoXW9owNK5UWH2ufM5cyG3DB5TEEIX-JmhTSECCN8,62991
184
+ ultralytics/nn/autobackend.py,sha256=YPYgeV2gc-Ab8TdPD31rbK-DZzEveTf-_TIz6b-dQyM,38647
185
+ ultralytics/nn/tasks.py,sha256=yjL0raxuO9oCgPw-cxnTldIqHevNxPRXI2T2GY4MVOI,63089
186
186
  ultralytics/nn/text_model.py,sha256=H6OiLe0FOyZY4pd7-ixRTxaBgx3lOc2GmGTmrFnoJd0,10136
187
187
  ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
188
188
  ultralytics/nn/modules/activation.py,sha256=PvXZkA9AzEntR575JkFORdmtcRwATyy0lje-uHA5_8w,2210
189
- ultralytics/nn/modules/block.py,sha256=hKjIM2UmJnfZeGKd92sPDv9TjwCbaW95ctxI_PEsPaY,66655
189
+ ultralytics/nn/modules/block.py,sha256=jGPMLa-FWYall7FmWvSLIduc2qu-A-lOcBjCaHqe4nk,66667
190
190
  ultralytics/nn/modules/conv.py,sha256=WeiLrtWYdfrhQPgDEKbimJmQMgzaOgFG87y6-jaeg_o,21459
191
- ultralytics/nn/modules/head.py,sha256=_b0O_IFino6NS25Lyk11UCtUb7q0VrZ_5Tyy-UhvI8A,38255
191
+ ultralytics/nn/modules/head.py,sha256=vVEDu4OkKsgRlGThMUKcE2nOtcmGxW66fkXMQoL1tRc,38388
192
192
  ultralytics/nn/modules/transformer.py,sha256=tC80QKFaLtWZo0zVNTuORX4pOu6HVs2wS0vSM-3h5W4,28227
193
193
  ultralytics/nn/modules/utils.py,sha256=rn8yTObZGkQoqVzjbZWLaHiytppG4ffjMME4Lw60glM,6092
194
194
  ultralytics/solutions/__init__.py,sha256=pjNYva0qnw-4hf_tTLx_dgIfg24XrYLLp3kygPj95rs,1113
@@ -218,7 +218,7 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
218
218
  ultralytics/trackers/utils/gmc.py,sha256=NnLxtgZIKdO5-C_J0xqeob1iRXgpubyJOgbIEeJz0Ps,14500
219
219
  ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
220
220
  ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
221
- ultralytics/utils/__init__.py,sha256=-OY2ZAJdN7XLPSG1dpnWWv63ZqmhzAxrio2dMGXuyEg,50254
221
+ ultralytics/utils/__init__.py,sha256=xpxAIiAhEByK5HoK2hBcs9uukLOCsnTPJnTBpKOIIpc,50255
222
222
  ultralytics/utils/autobatch.py,sha256=0QSSYfzZIcHbbE5udrhRofJiJru20YaO7I1D8nhJHhc,4950
223
223
  ultralytics/utils/benchmarks.py,sha256=7xJ7I0XqLXE-51_OCETKdfMKpk1zUkMTq0kCbdMsMks,30359
224
224
  ultralytics/utils/checks.py,sha256=J2ebkGG1QBbYIrBjwlfECiJtDJzqFkAg_Nn9pdRsW_c,32728
@@ -248,9 +248,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=XXnnKQ-MoLIexl8y2Vb0i-cCLyePE0n5BU
248
248
  ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
249
249
  ultralytics/utils/callbacks/tensorboard.py,sha256=7eUX21_Ym7i6iN4euZzrqglphyl5xak1yl_-wfFshbg,5502
250
250
  ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
251
- ultralytics-8.3.110.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
252
- ultralytics-8.3.110.dist-info/METADATA,sha256=8IVymarmcNdBGE1wTtKQ2I3_eHnd872PQJ-gUyB-dWI,37354
253
- ultralytics-8.3.110.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
254
- ultralytics-8.3.110.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
255
- ultralytics-8.3.110.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
256
- ultralytics-8.3.110.dist-info/RECORD,,
251
+ ultralytics-8.3.111.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
252
+ ultralytics-8.3.111.dist-info/METADATA,sha256=rI8LCdqIea1a2wj1yJs08OMCzeGWGKjjg1TPcHBgWQc,37354
253
+ ultralytics-8.3.111.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
254
+ ultralytics-8.3.111.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
255
+ ultralytics-8.3.111.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
256
+ ultralytics-8.3.111.dist-info/RECORD,,