ultralytics 8.3.10__py3-none-any.whl → 8.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.10"
3
+ __version__ = "8.3.11"
4
4
 
5
5
  import os
6
6
 
@@ -21,7 +21,7 @@ def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="",
21
21
 
22
22
  Examples:
23
23
  >>> from ultralytics.data.annotator import auto_annotate
24
- >>> auto_annotate(data="ultralytics/assets", det_model="yolov8n.pt", sam_model="mobile_sam.pt")
24
+ >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
25
25
 
26
26
  Notes:
27
27
  - The function creates a new directory for output if not specified.
@@ -1,52 +1,52 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
  """
3
- Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
3
+ Export a YOLO PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
4
4
 
5
5
  Format | `format=argument` | Model
6
6
  --- | --- | ---
7
- PyTorch | - | yolov8n.pt
8
- TorchScript | `torchscript` | yolov8n.torchscript
9
- ONNX | `onnx` | yolov8n.onnx
10
- OpenVINO | `openvino` | yolov8n_openvino_model/
11
- TensorRT | `engine` | yolov8n.engine
12
- CoreML | `coreml` | yolov8n.mlpackage
13
- TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
14
- TensorFlow GraphDef | `pb` | yolov8n.pb
15
- TensorFlow Lite | `tflite` | yolov8n.tflite
16
- TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
17
- TensorFlow.js | `tfjs` | yolov8n_web_model/
18
- PaddlePaddle | `paddle` | yolov8n_paddle_model/
19
- NCNN | `ncnn` | yolov8n_ncnn_model/
7
+ PyTorch | - | yolo11n.pt
8
+ TorchScript | `torchscript` | yolo11n.torchscript
9
+ ONNX | `onnx` | yolo11n.onnx
10
+ OpenVINO | `openvino` | yolo11n_openvino_model/
11
+ TensorRT | `engine` | yolo11n.engine
12
+ CoreML | `coreml` | yolo11n.mlpackage
13
+ TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolo11n.pb
15
+ TensorFlow Lite | `tflite` | yolo11n.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolo11n_web_model/
18
+ PaddlePaddle | `paddle` | yolo11n_paddle_model/
19
+ NCNN | `ncnn` | yolo11n_ncnn_model/
20
20
 
21
21
  Requirements:
22
22
  $ pip install "ultralytics[export]"
23
23
 
24
24
  Python:
25
25
  from ultralytics import YOLO
26
- model = YOLO('yolov8n.pt')
26
+ model = YOLO('yolo11n.pt')
27
27
  results = model.export(format='onnx')
28
28
 
29
29
  CLI:
30
- $ yolo mode=export model=yolov8n.pt format=onnx
30
+ $ yolo mode=export model=yolo11n.pt format=onnx
31
31
 
32
32
  Inference:
33
- $ yolo predict model=yolov8n.pt # PyTorch
34
- yolov8n.torchscript # TorchScript
35
- yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
36
- yolov8n_openvino_model # OpenVINO
37
- yolov8n.engine # TensorRT
38
- yolov8n.mlpackage # CoreML (macOS-only)
39
- yolov8n_saved_model # TensorFlow SavedModel
40
- yolov8n.pb # TensorFlow GraphDef
41
- yolov8n.tflite # TensorFlow Lite
42
- yolov8n_edgetpu.tflite # TensorFlow Edge TPU
43
- yolov8n_paddle_model # PaddlePaddle
44
- yolov8n_ncnn_model # NCNN
33
+ $ yolo predict model=yolo11n.pt # PyTorch
34
+ yolo11n.torchscript # TorchScript
35
+ yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
36
+ yolo11n_openvino_model # OpenVINO
37
+ yolo11n.engine # TensorRT
38
+ yolo11n.mlpackage # CoreML (macOS-only)
39
+ yolo11n_saved_model # TensorFlow SavedModel
40
+ yolo11n.pb # TensorFlow GraphDef
41
+ yolo11n.tflite # TensorFlow Lite
42
+ yolo11n_edgetpu.tflite # TensorFlow Edge TPU
43
+ yolo11n_paddle_model # PaddlePaddle
44
+ yolo11n_ncnn_model # NCNN
45
45
 
46
46
  TensorFlow.js:
47
47
  $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
48
48
  $ npm install
49
- $ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
49
+ $ ln -s ../../yolo11n_web_model public/yolo11n_web_model
50
50
  $ npm start
51
51
  """
52
52
 
@@ -124,7 +124,7 @@ def gd_outputs(gd):
124
124
 
125
125
 
126
126
  def try_export(inner_func):
127
- """YOLOv8 export decorator, i.e. @try_export."""
127
+ """YOLO export decorator, i.e. @try_export."""
128
128
  inner_args = get_default_args(inner_func)
129
129
 
130
130
  def outer_func(*args, **kwargs):
@@ -378,7 +378,7 @@ class Exporter:
378
378
 
379
379
  @try_export
380
380
  def export_torchscript(self, prefix=colorstr("TorchScript:")):
381
- """YOLOv8 TorchScript model export."""
381
+ """YOLO TorchScript model export."""
382
382
  LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
383
383
  f = self.file.with_suffix(".torchscript")
384
384
 
@@ -395,7 +395,7 @@ class Exporter:
395
395
 
396
396
  @try_export
397
397
  def export_onnx(self, prefix=colorstr("ONNX:")):
398
- """YOLOv8 ONNX export."""
398
+ """YOLO ONNX export."""
399
399
  requirements = ["onnx>=1.12.0"]
400
400
  if self.args.simplify:
401
401
  requirements += ["onnxslim==0.1.34", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
@@ -452,7 +452,7 @@ class Exporter:
452
452
 
453
453
  @try_export
454
454
  def export_openvino(self, prefix=colorstr("OpenVINO:")):
455
- """YOLOv8 OpenVINO export."""
455
+ """YOLO OpenVINO export."""
456
456
  check_requirements(f'openvino{"<=2024.0.0" if ARM64 else ">=2024.0.0"}') # fix OpenVINO issue on ARM64
457
457
  import openvino as ov
458
458
 
@@ -466,7 +466,7 @@ class Exporter:
466
466
 
467
467
  def serialize(ov_model, file):
468
468
  """Set RT info, serialize and save metadata YAML."""
469
- ov_model.set_rt_info("YOLOv8", ["model_info", "model_type"])
469
+ ov_model.set_rt_info("YOLO", ["model_info", "model_type"])
470
470
  ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
471
471
  ov_model.set_rt_info(114, ["model_info", "pad_value"])
472
472
  ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
@@ -524,7 +524,7 @@ class Exporter:
524
524
 
525
525
  @try_export
526
526
  def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
527
- """YOLOv8 Paddle export."""
527
+ """YOLO Paddle export."""
528
528
  check_requirements(("paddlepaddle", "x2paddle"))
529
529
  import x2paddle # noqa
530
530
  from x2paddle.convert import pytorch2paddle # noqa
@@ -538,7 +538,7 @@ class Exporter:
538
538
 
539
539
  @try_export
540
540
  def export_ncnn(self, prefix=colorstr("NCNN:")):
541
- """YOLOv8 NCNN export using PNNX https://github.com/pnnx/pnnx."""
541
+ """YOLO NCNN export using PNNX https://github.com/pnnx/pnnx."""
542
542
  check_requirements("ncnn")
543
543
  import ncnn # noqa
544
544
 
@@ -606,7 +606,7 @@ class Exporter:
606
606
 
607
607
  @try_export
608
608
  def export_coreml(self, prefix=colorstr("CoreML:")):
609
- """YOLOv8 CoreML export."""
609
+ """YOLO CoreML export."""
610
610
  mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
611
611
  check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0")
612
612
  import coremltools as ct # noqa
@@ -683,7 +683,7 @@ class Exporter:
683
683
 
684
684
  @try_export
685
685
  def export_engine(self, prefix=colorstr("TensorRT:")):
686
- """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
686
+ """YOLO TensorRT export https://developer.nvidia.com/tensorrt."""
687
687
  assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
688
688
  f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
689
689
 
@@ -817,7 +817,7 @@ class Exporter:
817
817
 
818
818
  @try_export
819
819
  def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
820
- """YOLOv8 TensorFlow SavedModel export."""
820
+ """YOLO TensorFlow SavedModel export."""
821
821
  cuda = torch.cuda.is_available()
822
822
  try:
823
823
  import tensorflow as tf # noqa
@@ -869,22 +869,19 @@ class Exporter:
869
869
  np_data = None
870
870
  if self.args.int8:
871
871
  tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
872
- verbosity = "info"
873
872
  if self.args.data:
874
873
  f.mkdir()
875
874
  images = [batch["img"].permute(0, 2, 3, 1) for batch in self.get_int8_calibration_dataloader(prefix)]
876
875
  images = torch.cat(images, 0).float()
877
876
  np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC
878
877
  np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
879
- else:
880
- verbosity = "error"
881
878
 
882
879
  LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
883
- onnx2tf.convert(
880
+ keras_model = onnx2tf.convert(
884
881
  input_onnx_file_path=f_onnx,
885
882
  output_folder_path=str(f),
886
883
  not_use_onnxsim=True,
887
- verbosity=verbosity,
884
+ verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
888
885
  output_integer_quantized_tflite=self.args.int8,
889
886
  quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate)
890
887
  custom_input_op_name_np_data_path=np_data,
@@ -905,11 +902,11 @@ class Exporter:
905
902
  for file in f.rglob("*.tflite"):
906
903
  f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file)
907
904
 
908
- return str(f), tf.saved_model.load(f, tags=None, options=None) # load saved_model as Keras model
905
+ return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
909
906
 
910
907
  @try_export
911
908
  def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
912
- """YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
909
+ """YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
913
910
  import tensorflow as tf # noqa
914
911
  from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
915
912
 
@@ -925,7 +922,7 @@ class Exporter:
925
922
 
926
923
  @try_export
927
924
  def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
928
- """YOLOv8 TensorFlow Lite export."""
925
+ """YOLO TensorFlow Lite export."""
929
926
  # BUG https://github.com/ultralytics/ultralytics/issues/13436
930
927
  import tensorflow as tf # noqa
931
928
 
@@ -941,7 +938,7 @@ class Exporter:
941
938
 
942
939
  @try_export
943
940
  def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
944
- """YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
941
+ """YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
945
942
  LOGGER.warning(f"{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185")
946
943
 
947
944
  cmd = "edgetpu_compiler --version"
@@ -971,7 +968,7 @@ class Exporter:
971
968
 
972
969
  @try_export
973
970
  def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
974
- """YOLOv8 TensorFlow.js export."""
971
+ """YOLO TensorFlow.js export."""
975
972
  check_requirements("tensorflowjs")
976
973
  if ARM64:
977
974
  # Fix error: `np.object` was a deprecated alias for the builtin `object` when exporting to TF.js on ARM64
@@ -1070,7 +1067,7 @@ class Exporter:
1070
1067
  tmp_file.unlink()
1071
1068
 
1072
1069
  def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
1073
- """YOLOv8 CoreML pipeline."""
1070
+ """YOLO CoreML pipeline."""
1074
1071
  import coremltools as ct # noqa
1075
1072
 
1076
1073
  LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
@@ -72,16 +72,16 @@ class Model(nn.Module):
72
72
 
73
73
  Examples:
74
74
  >>> from ultralytics import YOLO
75
- >>> model = YOLO("yolov8n.pt")
75
+ >>> model = YOLO("yolo11n.pt")
76
76
  >>> results = model.predict("image.jpg")
77
- >>> model.train(data="coco128.yaml", epochs=3)
77
+ >>> model.train(data="coco8.yaml", epochs=3)
78
78
  >>> metrics = model.val()
79
79
  >>> model.export(format="onnx")
80
80
  """
81
81
 
82
82
  def __init__(
83
83
  self,
84
- model: Union[str, Path] = "yolov8n.pt",
84
+ model: Union[str, Path] = "yolo11n.pt",
85
85
  task: str = None,
86
86
  verbose: bool = False,
87
87
  ) -> None:
@@ -106,7 +106,7 @@ class Model(nn.Module):
106
106
  ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
107
107
 
108
108
  Examples:
109
- >>> model = Model("yolov8n.pt")
109
+ >>> model = Model("yolo11n.pt")
110
110
  >>> model = Model("path/to/model.yaml", task="detect")
111
111
  >>> model = Model("hub_model", verbose=True)
112
112
  """
@@ -168,7 +168,7 @@ class Model(nn.Module):
168
168
  Results object.
169
169
 
170
170
  Examples:
171
- >>> model = YOLO("yolov8n.pt")
171
+ >>> model = YOLO("yolo11n.pt")
172
172
  >>> results = model("https://ultralytics.com/images/bus.jpg")
173
173
  >>> for r in results:
174
174
  ... print(f"Detected {len(r)} objects in image")
@@ -192,7 +192,7 @@ class Model(nn.Module):
192
192
  Examples:
193
193
  >>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n")
194
194
  True
195
- >>> Model.is_triton_model("yolov8n.pt")
195
+ >>> Model.is_triton_model("yolo11n.pt")
196
196
  False
197
197
  """
198
198
  from urllib.parse import urlsplit
@@ -217,7 +217,7 @@ class Model(nn.Module):
217
217
  Examples:
218
218
  >>> Model.is_hub_model("https://hub.ultralytics.com/models/MODEL")
219
219
  True
220
- >>> Model.is_hub_model("yolov8n.pt")
220
+ >>> Model.is_hub_model("yolo11n.pt")
221
221
  False
222
222
  """
223
223
  return model.startswith(f"{HUB_WEB_ROOT}/models/")
@@ -274,7 +274,7 @@ class Model(nn.Module):
274
274
 
275
275
  Examples:
276
276
  >>> model = Model()
277
- >>> model._load("yolov8n.pt")
277
+ >>> model._load("yolo11n.pt")
278
278
  >>> model._load("path/to/weights.pth", task="detect")
279
279
  """
280
280
  if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
@@ -307,7 +307,7 @@ class Model(nn.Module):
307
307
  information about supported model formats and operations.
308
308
 
309
309
  Examples:
310
- >>> model = Model("yolov8n.pt")
310
+ >>> model = Model("yolo11n.pt")
311
311
  >>> model._check_is_pytorch_model() # No error raised
312
312
  >>> model = Model("yolov8n.onnx")
313
313
  >>> model._check_is_pytorch_model() # Raises TypeError
@@ -338,7 +338,7 @@ class Model(nn.Module):
338
338
  AssertionError: If the model is not a PyTorch model.
339
339
 
340
340
  Examples:
341
- >>> model = Model("yolov8n.pt")
341
+ >>> model = Model("yolo11n.pt")
342
342
  >>> model.reset_weights()
343
343
  """
344
344
  self._check_is_pytorch_model()
@@ -349,7 +349,7 @@ class Model(nn.Module):
349
349
  p.requires_grad = True
350
350
  return self
351
351
 
352
- def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model":
352
+ def load(self, weights: Union[str, Path] = "yolo11n.pt") -> "Model":
353
353
  """
354
354
  Loads parameters from the specified weights file into the model.
355
355
 
@@ -367,7 +367,7 @@ class Model(nn.Module):
367
367
 
368
368
  Examples:
369
369
  >>> model = Model()
370
- >>> model.load("yolov8n.pt")
370
+ >>> model.load("yolo11n.pt")
371
371
  >>> model.load(Path("path/to/weights.pt"))
372
372
  """
373
373
  self._check_is_pytorch_model()
@@ -391,7 +391,7 @@ class Model(nn.Module):
391
391
  AssertionError: If the model is not a PyTorch model.
392
392
 
393
393
  Examples:
394
- >>> model = Model("yolov8n.pt")
394
+ >>> model = Model("yolo11n.pt")
395
395
  >>> model.save("my_model.pt")
396
396
  """
397
397
  self._check_is_pytorch_model()
@@ -428,7 +428,7 @@ class Model(nn.Module):
428
428
  TypeError: If the model is not a PyTorch model.
429
429
 
430
430
  Examples:
431
- >>> model = Model("yolov8n.pt")
431
+ >>> model = Model("yolo11n.pt")
432
432
  >>> model.info() # Prints model summary
433
433
  >>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list
434
434
  """
@@ -451,7 +451,7 @@ class Model(nn.Module):
451
451
  TypeError: If the model is not a PyTorch nn.Module.
452
452
 
453
453
  Examples:
454
- >>> model = Model("yolov8n.pt")
454
+ >>> model = Model("yolo11n.pt")
455
455
  >>> model.fuse()
456
456
  >>> # Model is now fused and ready for optimized inference
457
457
  """
@@ -483,7 +483,7 @@ class Model(nn.Module):
483
483
  AssertionError: If the model is not a PyTorch model.
484
484
 
485
485
  Examples:
486
- >>> model = YOLO("yolov8n.pt")
486
+ >>> model = YOLO("yolo11n.pt")
487
487
  >>> image = "https://ultralytics.com/images/bus.jpg"
488
488
  >>> embeddings = model.embed(image)
489
489
  >>> print(embeddings[0].shape)
@@ -520,7 +520,7 @@ class Model(nn.Module):
520
520
  Results object.
521
521
 
522
522
  Examples:
523
- >>> model = YOLO("yolov8n.pt")
523
+ >>> model = YOLO("yolo11n.pt")
524
524
  >>> results = model.predict(source="path/to/image.jpg", conf=0.25)
525
525
  >>> for r in results:
526
526
  ... print(r.boxes.data) # print detection bounding boxes
@@ -581,7 +581,7 @@ class Model(nn.Module):
581
581
  AttributeError: If the predictor does not have registered trackers.
582
582
 
583
583
  Examples:
584
- >>> model = YOLO("yolov8n.pt")
584
+ >>> model = YOLO("yolo11n.pt")
585
585
  >>> results = model.track(source="path/to/video.mp4", show=True)
586
586
  >>> for r in results:
587
587
  ... print(r.boxes.id) # print tracking IDs
@@ -624,8 +624,8 @@ class Model(nn.Module):
624
624
  AssertionError: If the model is not a PyTorch model.
625
625
 
626
626
  Examples:
627
- >>> model = YOLO("yolov8n.pt")
628
- >>> results = model.val(data="coco128.yaml", imgsz=640)
627
+ >>> model = YOLO("yolo11n.pt")
628
+ >>> results = model.val(data="coco8.yaml", imgsz=640)
629
629
  >>> print(results.box.map) # Print mAP50-95
630
630
  """
631
631
  custom = {"rect": True} # method defaults
@@ -666,7 +666,7 @@ class Model(nn.Module):
666
666
  AssertionError: If the model is not a PyTorch model.
667
667
 
668
668
  Examples:
669
- >>> model = YOLO("yolov8n.pt")
669
+ >>> model = YOLO("yolo11n.pt")
670
670
  >>> results = model.benchmark(data="coco8.yaml", imgsz=640, half=True)
671
671
  >>> print(results)
672
672
  """
@@ -716,7 +716,7 @@ class Model(nn.Module):
716
716
  RuntimeError: If the export process fails due to errors.
717
717
 
718
718
  Examples:
719
- >>> model = YOLO("yolov8n.pt")
719
+ >>> model = YOLO("yolo11n.pt")
720
720
  >>> model.export(format="onnx", dynamic=True, simplify=True)
721
721
  'path/to/exported/model.onnx'
722
722
  """
@@ -771,8 +771,8 @@ class Model(nn.Module):
771
771
  ModuleNotFoundError: If the HUB SDK is not installed.
772
772
 
773
773
  Examples:
774
- >>> model = YOLO("yolov8n.pt")
775
- >>> results = model.train(data="coco128.yaml", epochs=3)
774
+ >>> model = YOLO("yolo11n.pt")
775
+ >>> results = model.train(data="coco8.yaml", epochs=3)
776
776
  """
777
777
  self._check_is_pytorch_model()
778
778
  if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
@@ -836,7 +836,7 @@ class Model(nn.Module):
836
836
  AssertionError: If the model is not a PyTorch model.
837
837
 
838
838
  Examples:
839
- >>> model = YOLO("yolov8n.pt")
839
+ >>> model = YOLO("yolo11n.pt")
840
840
  >>> results = model.tune(use_ray=True, iterations=20)
841
841
  >>> print(results)
842
842
  """
@@ -871,7 +871,7 @@ class Model(nn.Module):
871
871
  AssertionError: If the model is not a PyTorch model.
872
872
 
873
873
  Examples:
874
- >>> model = Model("yolov8n.pt")
874
+ >>> model = Model("yolo11n.pt")
875
875
  >>> model = model._apply(lambda t: t.cuda()) # Move model to GPU
876
876
  """
877
877
  self._check_is_pytorch_model()
@@ -896,7 +896,7 @@ class Model(nn.Module):
896
896
  AttributeError: If the model or predictor does not have a 'names' attribute.
897
897
 
898
898
  Examples:
899
- >>> model = YOLO("yolov8n.pt")
899
+ >>> model = YOLO("yolo11n.pt")
900
900
  >>> print(model.names)
901
901
  {0: 'person', 1: 'bicycle', 2: 'car', ...}
902
902
  """
@@ -924,7 +924,7 @@ class Model(nn.Module):
924
924
  AttributeError: If the model is not a PyTorch nn.Module instance.
925
925
 
926
926
  Examples:
927
- >>> model = YOLO("yolov8n.pt")
927
+ >>> model = YOLO("yolo11n.pt")
928
928
  >>> print(model.device)
929
929
  device(type='cuda', index=0) # if CUDA is available
930
930
  >>> model = model.to("cpu")
@@ -946,7 +946,7 @@ class Model(nn.Module):
946
946
  (object | None): The transform object of the model if available, otherwise None.
947
947
 
948
948
  Examples:
949
- >>> model = YOLO("yolov8n.pt")
949
+ >>> model = YOLO("yolo11n.pt")
950
950
  >>> transforms = model.transforms
951
951
  >>> if transforms:
952
952
  ... print(f"Model transforms: {transforms}")
@@ -975,9 +975,9 @@ class Model(nn.Module):
975
975
  Examples:
976
976
  >>> def on_train_start(trainer):
977
977
  ... print("Training is starting!")
978
- >>> model = YOLO("yolov8n.pt")
978
+ >>> model = YOLO("yolo11n.pt")
979
979
  >>> model.add_callback("on_train_start", on_train_start)
980
- >>> model.train(data="coco128.yaml", epochs=1)
980
+ >>> model.train(data="coco8.yaml", epochs=1)
981
981
  """
982
982
  self.callbacks[event].append(func)
983
983
 
@@ -994,7 +994,7 @@ class Model(nn.Module):
994
994
  recognized by the Ultralytics callback system.
995
995
 
996
996
  Examples:
997
- >>> model = YOLO("yolov8n.pt")
997
+ >>> model = YOLO("yolo11n.pt")
998
998
  >>> model.add_callback("on_train_start", lambda: print("Training started"))
999
999
  >>> model.clear_callback("on_train_start")
1000
1000
  >>> # All callbacks for 'on_train_start' are now removed
@@ -1024,7 +1024,7 @@ class Model(nn.Module):
1024
1024
  modifications, ensuring consistent behavior across different runs or experiments.
1025
1025
 
1026
1026
  Examples:
1027
- >>> model = YOLO("yolov8n.pt")
1027
+ >>> model = YOLO("yolo11n.pt")
1028
1028
  >>> model.add_callback("on_train_start", custom_function)
1029
1029
  >>> model.reset_callbacks()
1030
1030
  # All callbacks are now reset to their default functions
@@ -676,7 +676,7 @@ class Results(SimpleClass):
676
676
 
677
677
  Examples:
678
678
  >>> from ultralytics import YOLO
679
- >>> model = YOLO("yolov8n.pt")
679
+ >>> model = YOLO("yolo11n.pt")
680
680
  >>> results = model("path/to/image.jpg")
681
681
  >>> for result in results:
682
682
  ... result.save_txt("output.txt")
@@ -12,7 +12,7 @@ Example:
12
12
  ```python
13
13
  from ultralytics import YOLO
14
14
 
15
- model = YOLO("yolov8n.pt")
15
+ model = YOLO("yolo11n.pt")
16
16
  model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
17
17
  ```
18
18
  """
@@ -54,7 +54,7 @@ class Tuner:
54
54
  ```python
55
55
  from ultralytics import YOLO
56
56
 
57
- model = YOLO("yolov8n.pt")
57
+ model = YOLO("yolo11n.pt")
58
58
  model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
59
59
  ```
60
60
 
@@ -62,7 +62,7 @@ class Tuner:
62
62
  ```python
63
63
  from ultralytics import YOLO
64
64
 
65
- model = YOLO("yolov8n.pt")
65
+ model = YOLO("yolo11n.pt")
66
66
  model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
67
67
  ```
68
68
  """
@@ -14,7 +14,7 @@ class DetectionPredictor(BasePredictor):
14
14
  from ultralytics.utils import ASSETS
15
15
  from ultralytics.models.yolo.detect import DetectionPredictor
16
16
 
17
- args = dict(model="yolov8n.pt", source=ASSETS)
17
+ args = dict(model="yolo11n.pt", source=ASSETS)
18
18
  predictor = DetectionPredictor(overrides=args)
19
19
  predictor.predict_cli()
20
20
  ```
@@ -24,7 +24,7 @@ class DetectionTrainer(BaseTrainer):
24
24
  ```python
25
25
  from ultralytics.models.yolo.detect import DetectionTrainer
26
26
 
27
- args = dict(model="yolov8n.pt", data="coco8.yaml", epochs=3)
27
+ args = dict(model="yolo11n.pt", data="coco8.yaml", epochs=3)
28
28
  trainer = DetectionTrainer(overrides=args)
29
29
  trainer.train()
30
30
  ```
@@ -22,7 +22,7 @@ class DetectionValidator(BaseValidator):
22
22
  ```python
23
23
  from ultralytics.models.yolo.detect import DetectionValidator
24
24
 
25
- args = dict(model="yolov8n.pt", data="coco8.yaml")
25
+ args = dict(model="yolo11n.pt", data="coco8.yaml")
26
26
  validator = DetectionValidator(args=args)
27
27
  validator()
28
28
  ```
@@ -11,7 +11,7 @@ from ultralytics.utils import ROOT, yaml_load
11
11
  class YOLO(Model):
12
12
  """YOLO (You Only Look Once) object detection model."""
13
13
 
14
- def __init__(self, model="yolov8n.pt", task=None, verbose=False):
14
+ def __init__(self, model="yolo11n.pt", task=None, verbose=False):
15
15
  """Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""
16
16
  path = Path(model)
17
17
  if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model
@@ -82,7 +82,7 @@ class AutoBackend(nn.Module):
82
82
  @torch.no_grad()
83
83
  def __init__(
84
84
  self,
85
- weights="yolov8n.pt",
85
+ weights="yolo11n.pt",
86
86
  device=torch.device("cpu"),
87
87
  dnn=False,
88
88
  data=None,
@@ -47,7 +47,7 @@ from ultralytics.utils.torch_utils import get_cpu_info, select_device
47
47
 
48
48
 
49
49
  def benchmark(
50
- model=WEIGHTS_DIR / "yolov8n.pt",
50
+ model=WEIGHTS_DIR / "yolo11n.pt",
51
51
  data=None,
52
52
  imgsz=160,
53
53
  half=False,
@@ -76,7 +76,7 @@ def benchmark(
76
76
  Examples:
77
77
  Benchmark a YOLO model with default settings:
78
78
  >>> from ultralytics.utils.benchmarks import benchmark
79
- >>> benchmark(model="yolov8n.pt", imgsz=640)
79
+ >>> benchmark(model="yolo11n.pt", imgsz=640)
80
80
  """
81
81
  import pandas as pd # scope for faster 'import ultralytics'
82
82
 
@@ -458,7 +458,7 @@ def check_torchvision():
458
458
  )
459
459
 
460
460
 
461
- def check_suffix(file="yolov8n.pt", suffix=".pt", msg=""):
461
+ def check_suffix(file="yolo11n.pt", suffix=".pt", msg=""):
462
462
  """Check file(s) for acceptable suffix."""
463
463
  if file and suffix:
464
464
  if isinstance(suffix, str):
@@ -425,7 +425,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.3.0", **
425
425
 
426
426
  Example:
427
427
  ```python
428
- file_path = attempt_download_asset("yolov8n.pt", repo="ultralytics/assets", release="latest")
428
+ file_path = attempt_download_asset("yolo11n.pt", repo="ultralytics/assets", release="latest")
429
429
  ```
430
430
  """
431
431
  from ultralytics.utils import SETTINGS # scoped for circular import
@@ -183,7 +183,7 @@ def get_latest_run(search_dir="."):
183
183
  return max(last_list, key=os.path.getctime) if last_list else ""
184
184
 
185
185
 
186
- def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_names=False):
186
+ def update_models(model_names=("yolo11n.pt",), source_dir=Path("."), update_names=False):
187
187
  """
188
188
  Updates and re-saves specified YOLO models in an 'updated_models' subdirectory.
189
189
 
@@ -195,7 +195,7 @@ def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_name
195
195
  Examples:
196
196
  Update specified YOLO models and save them in 'updated_models' subdirectory:
197
197
  >>> from ultralytics.utils.files import update_models
198
- >>> model_names = ("yolov8n.pt", "yolov8s.pt")
198
+ >>> model_names = ("yolo11n.pt", "yolov8s.pt")
199
199
  >>> update_models(model_names, source_dir=Path("/models"), update_names=True)
200
200
  """
201
201
  from ultralytics import YOLO
@@ -28,7 +28,7 @@ def run_ray_tune(
28
28
  from ultralytics import YOLO
29
29
 
30
30
  # Load a YOLOv8n model
31
- model = YOLO("yolov8n.pt")
31
+ model = YOLO("yolo11n.pt")
32
32
 
33
33
  # Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
34
34
  result_grid = model.tune(data="coco8.yaml", use_ray=True)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.10
3
+ Version: 8.3.11
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -7,7 +7,7 @@ tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
7
7
  tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
8
8
  tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
9
9
  tests/test_solutions.py,sha256=dpxWGKO-aJ3Yff4KR7BQGajX9VyFdGTWEtcbmFC3WwE,3005
10
- ultralytics/__init__.py,sha256=r6LeW7qfMLanc7g2MYd3t48Oqt6LLDRB_PJFMVyyK3E,753
10
+ ultralytics/__init__.py,sha256=19JcU9M-VZ6RCIz0c3u-8ynzEpeqhYIKNSN9t_kpNuI,753
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=N-XONBXwmD3vzoE4icBXznkV8LOLmf6ak6mRdGPucvw,33146
@@ -89,7 +89,7 @@ ultralytics/cfg/solutions/default.yaml,sha256=CByxINYMyoGzGKdurDk2GhYc8XOa8Z6H7C
89
89
  ultralytics/cfg/trackers/botsort.yaml,sha256=8B0xNbnG_E-9DCUpap72PWkUgBb1AjuApEn7gHiVngE,916
90
90
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=8vpTZ2x9mhRXJymoJvs1G8kTXo_HxbSwHup2FQALT3A,721
91
91
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
92
- ultralytics/data/annotator.py,sha256=PniOxH2MScWKp539vuufk69uG1JsltDB5OMCUhxn2QY,2489
92
+ ultralytics/data/annotator.py,sha256=oy87bzQN6ZRYeucoLk8e-jDEo6YJ91FE_zMFtLEVC1I,2489
93
93
  ultralytics/data/augment.py,sha256=YCLrwx1mRGeidggo_7GeINay8KdxACqREHJofZeaTHA,120430
94
94
  ultralytics/data/base.py,sha256=ZCIhAyFfxXVp5fVnYD8mwbksNALJTayBKIR5FKGV7ZM,15168
95
95
  ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
@@ -104,12 +104,12 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
104
104
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
105
105
  ultralytics/data/explorer/gui/dash.py,sha256=6XOZy9NrkPEXREJPbi0EBkGgu78TAdHpdhSB2HuBOAo,10222
106
106
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
107
- ultralytics/engine/exporter.py,sha256=DeHW_T_Zd3A21BLQYV1-FnS5EcmepMOy9nrussYNieU,57505
108
- ultralytics/engine/model.py,sha256=Vtkza7cQrxvowb0PqGFhp7eC3cXRIKj6OUaR5d9w1-U,51464
107
+ ultralytics/engine/exporter.py,sha256=b3OIHAABVyqqSizJKQxiWPZvKzIvThK9kucN2iYWnwE,57487
108
+ ultralytics/engine/model.py,sha256=pvL1uf-wwdWL8Iph7VEAYn1-z7wEHzVug21V_0_gO6M,51456
109
109
  ultralytics/engine/predictor.py,sha256=keTelEeo23Dcbs-XvmRWAPIs4pbCNDtsMBz88WM1eK8,17534
110
- ultralytics/engine/results.py,sha256=8RJlN8J-_9w-mrDZm9wC-DZJTPBS7v1c_r_R173QyRM,75043
110
+ ultralytics/engine/results.py,sha256=BxanBI8PhBCfs-9cSy-GS6naScuiD3hdvUAJWPW2mS0,75043
111
111
  ultralytics/engine/trainer.py,sha256=6dGOEZvMo3o97SLpKlcR5XmhWhUHh05uLYpj3jNn0jU,36981
112
- ultralytics/engine/tuner.py,sha256=gPqDTHH7vRB2O3YyH26m1BjVKbXxuA2XAlPRzTKFZsc,11838
112
+ ultralytics/engine/tuner.py,sha256=WBj8iw1K1TK0hvanlA-wkwmfqh1SI8jEe2dGwUINeTg,11838
113
113
  ultralytics/engine/validator.py,sha256=2C_qXI36Z9rLOpmS0YR8Qe3ka4p23YiH2w5ai7-XBwE,14811
114
114
  ultralytics/hub/__init__.py,sha256=3SKvZ5aRina3h94xMPQIB3D4maF62qFcyIqPPHRHNAc,5644
115
115
  ultralytics/hub/auth.py,sha256=kDLakGa2NbzvMAeXc2UdzZ65r0AH-XeM_JfsDY97WGk,5545
@@ -149,15 +149,15 @@ ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8
149
149
  ultralytics/models/utils/loss.py,sha256=Ozi0Up7cmPAehXgqGuVSAtUS4XQxaX76KqE8Q0VHk7E,15840
150
150
  ultralytics/models/utils/ops.py,sha256=aPAPwWMLJLWq-I04wS_YrqJ_Vy_xBXtqQu6Aox15YDA,13221
151
151
  ultralytics/models/yolo/__init__.py,sha256=e1cZr9pbSbf3Ya2OvkTjGRwD_E2YZpe610xskBM8gEk,247
152
- ultralytics/models/yolo/model.py,sha256=CMh3_qYCm2mdFHVyZJDMu8eFCTMD0z1ZPmM8GmwTU7E,4233
152
+ ultralytics/models/yolo/model.py,sha256=E4TuJZZux0L_SG7sC0SDgxrmeBvuZRpxprPrCC26lvs,4233
153
153
  ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
154
154
  ultralytics/models/yolo/classify/predict.py,sha256=0CEJ4B4fXbOMUnJy79gRvG-qdszOzTSLOb1xxkgsKek,2444
155
155
  ultralytics/models/yolo/classify/train.py,sha256=THXSkQVQVBuw1QxcEVA8MtLHYYdaAEqepObJCXoLcZ8,6358
156
156
  ultralytics/models/yolo/classify/val.py,sha256=Tzizhp3ebzPvwJejrE8tb-TuXw4MdkEI9mOANV74eXQ,4909
157
157
  ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
158
- ultralytics/models/yolo/detect/predict.py,sha256=_kY6-_wsPCt9ZOf-iwusceikAM5TV_KnjYdv2koE45A,1471
159
- ultralytics/models/yolo/detect/train.py,sha256=cHlCTj39Tr6butQOQRreCFnVODK2IqaogBpTAQuGAPE,6363
160
- ultralytics/models/yolo/detect/val.py,sha256=qZDP1ETpZE1e7avZyOuBe3U8zuLpsBdKHUuN3YL-tQI,15152
158
+ ultralytics/models/yolo/detect/predict.py,sha256=-uZFLutxGYZX47RANcaxC-LFStRbv0nBv_8-ypadQoI,1471
159
+ ultralytics/models/yolo/detect/train.py,sha256=jayPByykRhJvUeDCN-oZ4M6Yx0rpjAWq9epjJgnHeYA,6363
160
+ ultralytics/models/yolo/detect/val.py,sha256=ulKYfViVU2WErDtFOU8FTGBlROR4p-jFK4Nf9O4LMV4,15152
161
161
  ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
162
162
  ultralytics/models/yolo/obb/predict.py,sha256=VxpKCKV5dWnOr0GyV1rJGH5SzzRouCYW_8T26xJ8MU8,2037
163
163
  ultralytics/models/yolo/obb/train.py,sha256=_FVYCvHJ5ECi2aN8k7AmVLxRUuun7acSqwWtCBRuL6Q,1473
@@ -174,7 +174,7 @@ ultralytics/models/yolo/world/__init__.py,sha256=3VTH0q4NOt2EWRom15yCymvmvm0Etp2
174
174
  ultralytics/models/yolo/world/train.py,sha256=gaDrAmLJpg9qDtmL5evA5HsV2yb4RTRSfk2EDYrHdRg,3686
175
175
  ultralytics/models/yolo/world/train_world.py,sha256=IsnCEVt6DcM9lUskCKmIN-M8MM79xLpwTRqRoAHUnZ4,4857
176
176
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
177
- ultralytics/nn/autobackend.py,sha256=aBW_Z8XnSsD-vW7Ek873dyKX9h55XHIYwTG22M3eOIk,31599
177
+ ultralytics/nn/autobackend.py,sha256=xcbndT-esNu3Icx3SWRJXZ7JqWjj8H5hteUetYBliDo,31599
178
178
  ultralytics/nn/tasks.py,sha256=ssBZR4LY4rvaxYawXq5-yWSBAZ9oCz6BgxWYXB2YD68,48399
179
179
  ultralytics/nn/modules/__init__.py,sha256=xhW2BennT9U_VaMXVpRu-bdLgp1BXt9L8mkIUBE3idU,2625
180
180
  ultralytics/nn/modules/activation.py,sha256=chhn469wnRHEs5BMGNBYXwPYZc_7-urspTT8fnBd-xA,895
@@ -205,12 +205,12 @@ ultralytics/trackers/utils/kalman_filter.py,sha256=cH9zD3fwkuezP97H9mw8cSBN7a8hH
205
205
  ultralytics/trackers/utils/matching.py,sha256=3Ie1WNNRZ4_q3365F03XD7Nr9juZB_08mw4yUKC3w74,7162
206
206
  ultralytics/utils/__init__.py,sha256=du1Y1LMU0jQn_zWWnAIx9U8wn6Vh7ce-k7qMwi6y0po,48698
207
207
  ultralytics/utils/autobatch.py,sha256=BO9MCRtrLDtrDQaxqV0BdjaYsgXf-q07Y3_VdGp4URY,4330
208
- ultralytics/utils/benchmarks.py,sha256=8FYp5WPzcxcDaeg8ol2sgzRBHVGYatEO7f3MrmPF6nI,25097
209
- ultralytics/utils/checks.py,sha256=SsB3s1z9TtMjGelDkGZIi6B40VXmCtGw2hcOCyPikx4,29765
208
+ ultralytics/utils/benchmarks.py,sha256=R3_jtwLd48azPSXmtIhqlzduUvflk0FOY8GJOJ6mB6E,25097
209
+ ultralytics/utils/checks.py,sha256=iH5R-DQKhP7qnW8pQm-rlYPsMJ5KWvcn9imo-hamIqE,29765
210
210
  ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
211
- ultralytics/utils/downloads.py,sha256=o8RY9f0KrzWfueLs8DuJ5w8OWQ-ll4ZS9lX6MEFDi70,21977
211
+ ultralytics/utils/downloads.py,sha256=xxM9zTNCqo3PRFOxWCH1pJoKuFJKZFsb3sab6Hvabug,21977
212
212
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
213
- ultralytics/utils/files.py,sha256=YjfzbBDAq-nD3LKjtuMVwggnnv1dROMuVoo3Edm_tjU,8224
213
+ ultralytics/utils/files.py,sha256=uiXQSVABJRoI5ImnM6ndEBIFbECfksmWNEldBg8GnSo,8224
214
214
  ultralytics/utils/instance.py,sha256=QSms7mPHZ5e8JGuJYLohLWltzI0aBE8dob2rOUK4RtM,16249
215
215
  ultralytics/utils/loss.py,sha256=SW3FVFFp8Ki_LCT8wIdFbm6KmyPcQn3RmKNcvVAhMQI,34174
216
216
  ultralytics/utils/metrics.py,sha256=UgLGudWp57uXDMlMUJy4gsz6cfVjcq7tYmHeto3TqvM,53927
@@ -220,7 +220,7 @@ ultralytics/utils/plotting.py,sha256=aozAEwcbc447ume9bQrEBTU04AzyiZZrnzcTzA2S6j0
220
220
  ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
221
221
  ultralytics/utils/torch_utils.py,sha256=gVN-KSrAzJC1rW3woQd4FsTT693GD8rXiccToL2m4kM,30059
222
222
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
223
- ultralytics/utils/tuner.py,sha256=AtEtK6pOt9xVTyx864OpNRVxNdAxz5aKHzveiXwkD1A,6250
223
+ ultralytics/utils/tuner.py,sha256=mJdgvuE2StoFS13mEdsTbsxQgSZA4fSdSCgoyh8PvNw,6250
224
224
  ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
225
225
  ultralytics/utils/callbacks/base.py,sha256=PHjQ6RITwC2dylCQTB0bdPgAsHjxVeuDb5N1NPTbHGc,5775
226
226
  ultralytics/utils/callbacks/clearml.py,sha256=qbLbqzMVWAnjqg5YUM-Ue6CmGueFCvqKpHFKlw-MyVc,5933
@@ -232,9 +232,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=IbGQfEltamUKXJt93uSLQFn8c2rYh3DMTg
232
232
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
233
233
  ultralytics/utils/callbacks/tensorboard.py,sha256=bv4fkkesdgmZv_E2MU6wuaMBwEV5iI2G53RHPyD9quw,4170
234
234
  ultralytics/utils/callbacks/wb.py,sha256=upfbF8-LLXueUvulLaMDmKDhKCl_PWbNa_87PQ0L0Rc,6752
235
- ultralytics-8.3.10.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
236
- ultralytics-8.3.10.dist-info/METADATA,sha256=erZGLlFck6gorIKxGLLR-ymgpHCb5WiGGa89PyM_sQs,34700
237
- ultralytics-8.3.10.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
238
- ultralytics-8.3.10.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
239
- ultralytics-8.3.10.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
240
- ultralytics-8.3.10.dist-info/RECORD,,
235
+ ultralytics-8.3.11.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
236
+ ultralytics-8.3.11.dist-info/METADATA,sha256=bD92haGae0_AYj7u5Z8EE6OoUn5sAhwau3R0S-z6pVQ,34700
237
+ ultralytics-8.3.11.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
238
+ ultralytics-8.3.11.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
239
+ ultralytics-8.3.11.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
240
+ ultralytics-8.3.11.dist-info/RECORD,,