ultralytics 8.3.105__py3-none-any.whl → 8.3.107__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +31 -140
- ultralytics/nn/autobackend.py +3 -3
- ultralytics/utils/__init__.py +1 -0
- ultralytics/utils/export.py +217 -0
- ultralytics/utils/torch_utils.py +5 -1
- ultralytics/utils/tuner.py +6 -1
- {ultralytics-8.3.105.dist-info → ultralytics-8.3.107.dist-info}/METADATA +2 -2
- {ultralytics-8.3.105.dist-info → ultralytics-8.3.107.dist-info}/RECORD +13 -21
- tests/__init__.py +0 -22
- tests/conftest.py +0 -83
- tests/test_cli.py +0 -124
- tests/test_cuda.py +0 -164
- tests/test_engine.py +0 -131
- tests/test_exports.py +0 -231
- tests/test_integrations.py +0 -146
- tests/test_python.py +0 -674
- tests/test_solutions.py +0 -167
- {ultralytics-8.3.105.dist-info → ultralytics-8.3.107.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.105.dist-info → ultralytics-8.3.107.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.105.dist-info → ultralytics-8.3.107.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.105.dist-info → ultralytics-8.3.107.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py
CHANGED
ultralytics/engine/exporter.py
CHANGED
@@ -55,7 +55,6 @@ TensorFlow.js:
|
|
55
55
|
$ npm start
|
56
56
|
"""
|
57
57
|
|
58
|
-
import gc
|
59
58
|
import json
|
60
59
|
import os
|
61
60
|
import re
|
@@ -86,7 +85,7 @@ from ultralytics.utils import (
|
|
86
85
|
LINUX,
|
87
86
|
LOGGER,
|
88
87
|
MACOS,
|
89
|
-
|
88
|
+
MACOS_VERSION,
|
90
89
|
RKNN_CHIPS,
|
91
90
|
ROOT,
|
92
91
|
WINDOWS,
|
@@ -104,6 +103,7 @@ from ultralytics.utils.checks import (
|
|
104
103
|
is_sudo_available,
|
105
104
|
)
|
106
105
|
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
|
106
|
+
from ultralytics.utils.export import export_engine, export_onnx
|
107
107
|
from ultralytics.utils.files import file_size, spaces_in_path
|
108
108
|
from ultralytics.utils.ops import Profile, nms_rotated, xywh2xyxy
|
109
109
|
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
|
@@ -578,16 +578,14 @@ class Exporter:
|
|
578
578
|
check_requirements("onnxslim>=0.1.46") # Older versions has bug with OBB
|
579
579
|
|
580
580
|
with arange_patch(self.args):
|
581
|
-
|
581
|
+
export_onnx(
|
582
582
|
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
583
583
|
self.im,
|
584
584
|
f,
|
585
|
-
|
586
|
-
opset_version=opset_version,
|
587
|
-
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
585
|
+
opset=opset_version,
|
588
586
|
input_names=["images"],
|
589
587
|
output_names=output_names,
|
590
|
-
|
588
|
+
dynamic=dynamic or None,
|
591
589
|
)
|
592
590
|
|
593
591
|
# Checks
|
@@ -615,7 +613,10 @@ class Exporter:
|
|
615
613
|
@try_export
|
616
614
|
def export_openvino(self, prefix=colorstr("OpenVINO:")):
|
617
615
|
"""YOLO OpenVINO export."""
|
618
|
-
|
616
|
+
if MACOS:
|
617
|
+
msg = "OpenVINO error in macOS>=15.4 https://github.com/openvinotoolkit/openvino/issues/30023"
|
618
|
+
check_version(MACOS_VERSION, "<15.4", name="macOS ", hard=True, msg=msg)
|
619
|
+
check_requirements("openvino>=2024.0.0")
|
619
620
|
import openvino as ov
|
620
621
|
|
621
622
|
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
@@ -795,7 +796,7 @@ class Exporter:
|
|
795
796
|
def export_coreml(self, prefix=colorstr("CoreML:")):
|
796
797
|
"""YOLO CoreML export."""
|
797
798
|
mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
|
798
|
-
check_requirements("coremltools>=
|
799
|
+
check_requirements("coremltools>=8.0")
|
799
800
|
import coremltools as ct # noqa
|
800
801
|
|
801
802
|
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
|
@@ -819,11 +820,15 @@ class Exporter:
|
|
819
820
|
# TODO CoreML Segment and Pose model pipelining
|
820
821
|
model = self.model
|
821
822
|
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
|
823
|
+
|
824
|
+
# Based on apple's documentation it is better to leave out the minimum_deployment target and let that get set
|
825
|
+
# Internally based on the model conversion and output type.
|
826
|
+
# Setting minimum_depoloyment_target >= iOS16 will require setting compute_precision=ct.precision.FLOAT32.
|
827
|
+
# iOS16 adds in better support for FP16, but none of the CoreML NMS specifications handle FP16 as input.
|
822
828
|
ct_model = ct.convert(
|
823
829
|
ts,
|
824
830
|
inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)], # expects ct.TensorType
|
825
831
|
classifier_config=classifier_config,
|
826
|
-
minimum_deployment_target=ct.target.iOS15, # warning: >=16 causes pipeline errors
|
827
832
|
convert_to="neuralnetwork" if mlmodel else "mlprogram",
|
828
833
|
)
|
829
834
|
bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
|
@@ -840,8 +845,6 @@ class Exporter:
|
|
840
845
|
ct_model = cto.palettize_weights(ct_model, config=config)
|
841
846
|
if self.args.nms and self.model.task == "detect":
|
842
847
|
if mlmodel:
|
843
|
-
# coremltools<=6.2 NMS export requires Python<3.11
|
844
|
-
check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True)
|
845
848
|
weights_dir = None
|
846
849
|
else:
|
847
850
|
ct_model.save(str(f)) # save otherwise weights_dir does not exist
|
@@ -882,134 +885,22 @@ class Exporter:
|
|
882
885
|
|
883
886
|
# Setup and checks
|
884
887
|
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
|
885
|
-
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
|
886
888
|
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
|
887
889
|
f = self.file.with_suffix(".engine") # TensorRT engine file
|
888
|
-
|
889
|
-
|
890
|
-
|
891
|
-
|
892
|
-
|
893
|
-
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
901
|
-
|
902
|
-
half = builder.platform_has_fast_fp16 and self.args.half
|
903
|
-
int8 = builder.platform_has_fast_int8 and self.args.int8
|
904
|
-
|
905
|
-
# Optionally switch to DLA if enabled
|
906
|
-
if dla is not None:
|
907
|
-
if not IS_JETSON:
|
908
|
-
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
909
|
-
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
910
|
-
if not self.args.half and not self.args.int8:
|
911
|
-
raise ValueError(
|
912
|
-
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
913
|
-
)
|
914
|
-
config.default_device_type = trt.DeviceType.DLA
|
915
|
-
config.DLA_core = int(dla)
|
916
|
-
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
917
|
-
|
918
|
-
# Read ONNX file
|
919
|
-
parser = trt.OnnxParser(network, logger)
|
920
|
-
if not parser.parse_from_file(f_onnx):
|
921
|
-
raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
|
922
|
-
|
923
|
-
# Network inputs
|
924
|
-
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
925
|
-
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
926
|
-
for inp in inputs:
|
927
|
-
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
928
|
-
for out in outputs:
|
929
|
-
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
930
|
-
|
931
|
-
if self.args.dynamic:
|
932
|
-
shape = self.im.shape
|
933
|
-
if shape[0] <= 1:
|
934
|
-
LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
|
935
|
-
profile = builder.create_optimization_profile()
|
936
|
-
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
937
|
-
max_shape = (*shape[:2], *(int(max(1, self.args.workspace or 1) * d) for d in shape[2:])) # max input shape
|
938
|
-
for inp in inputs:
|
939
|
-
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
940
|
-
config.add_optimization_profile(profile)
|
941
|
-
|
942
|
-
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
|
943
|
-
if int8:
|
944
|
-
config.set_flag(trt.BuilderFlag.INT8)
|
945
|
-
config.set_calibration_profile(profile)
|
946
|
-
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
947
|
-
|
948
|
-
class EngineCalibrator(trt.IInt8Calibrator):
|
949
|
-
def __init__(
|
950
|
-
self,
|
951
|
-
dataset, # ultralytics.data.build.InfiniteDataLoader
|
952
|
-
batch: int,
|
953
|
-
cache: str = "",
|
954
|
-
) -> None:
|
955
|
-
trt.IInt8Calibrator.__init__(self)
|
956
|
-
self.dataset = dataset
|
957
|
-
self.data_iter = iter(dataset)
|
958
|
-
self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
|
959
|
-
self.batch = batch
|
960
|
-
self.cache = Path(cache)
|
961
|
-
|
962
|
-
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
963
|
-
"""Get the calibration algorithm to use."""
|
964
|
-
return self.algo
|
965
|
-
|
966
|
-
def get_batch_size(self) -> int:
|
967
|
-
"""Get the batch size to use for calibration."""
|
968
|
-
return self.batch or 1
|
969
|
-
|
970
|
-
def get_batch(self, names) -> list:
|
971
|
-
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
972
|
-
try:
|
973
|
-
im0s = next(self.data_iter)["img"] / 255.0
|
974
|
-
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
975
|
-
return [int(im0s.data_ptr())]
|
976
|
-
except StopIteration:
|
977
|
-
# Return [] or None, signal to TensorRT there is no calibration data remaining
|
978
|
-
return None
|
979
|
-
|
980
|
-
def read_calibration_cache(self) -> bytes:
|
981
|
-
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
982
|
-
if self.cache.exists() and self.cache.suffix == ".cache":
|
983
|
-
return self.cache.read_bytes()
|
984
|
-
|
985
|
-
def write_calibration_cache(self, cache) -> None:
|
986
|
-
"""Write calibration cache to disk."""
|
987
|
-
_ = self.cache.write_bytes(cache)
|
988
|
-
|
989
|
-
# Load dataset w/ builder (for batching) and calibrate
|
990
|
-
config.int8_calibrator = EngineCalibrator(
|
991
|
-
dataset=self.get_int8_calibration_dataloader(prefix),
|
992
|
-
batch=2 * self.args.batch, # TensorRT INT8 calibration should use 2x batch size
|
993
|
-
cache=str(self.file.with_suffix(".cache")),
|
994
|
-
)
|
995
|
-
|
996
|
-
elif half:
|
997
|
-
config.set_flag(trt.BuilderFlag.FP16)
|
998
|
-
|
999
|
-
# Free CUDA memory
|
1000
|
-
del self.model
|
1001
|
-
gc.collect()
|
1002
|
-
torch.cuda.empty_cache()
|
1003
|
-
|
1004
|
-
# Write file
|
1005
|
-
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
1006
|
-
with build(network, config) as engine, open(f, "wb") as t:
|
1007
|
-
# Metadata
|
1008
|
-
meta = json.dumps(self.metadata)
|
1009
|
-
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
1010
|
-
t.write(meta.encode())
|
1011
|
-
# Model
|
1012
|
-
t.write(engine if is_trt10 else engine.serialize())
|
890
|
+
export_engine(
|
891
|
+
f_onnx,
|
892
|
+
f,
|
893
|
+
self.args.workspace,
|
894
|
+
self.args.half,
|
895
|
+
self.args.int8,
|
896
|
+
self.args.dynamic,
|
897
|
+
self.im.shape,
|
898
|
+
dla=dla,
|
899
|
+
dataset=self.get_int8_calibration_dataloader(prefix) if self.args.int8 else None,
|
900
|
+
metadata=self.metadata,
|
901
|
+
verbose=self.args.verbose,
|
902
|
+
prefix=prefix,
|
903
|
+
)
|
1013
904
|
|
1014
905
|
return f, None
|
1015
906
|
|
@@ -1469,7 +1360,7 @@ class Exporter:
|
|
1469
1360
|
|
1470
1361
|
# 3. Create NMS protobuf
|
1471
1362
|
nms_spec = ct.proto.Model_pb2.Model()
|
1472
|
-
nms_spec.specificationVersion =
|
1363
|
+
nms_spec.specificationVersion = spec.specificationVersion
|
1473
1364
|
for i in range(2):
|
1474
1365
|
decoder_output = model._spec.description.output[i].SerializeToString()
|
1475
1366
|
nms_spec.description.input.add()
|
@@ -1522,7 +1413,7 @@ class Exporter:
|
|
1522
1413
|
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
1523
1414
|
|
1524
1415
|
# Update metadata
|
1525
|
-
pipeline.spec.specificationVersion =
|
1416
|
+
pipeline.spec.specificationVersion = spec.specificationVersion
|
1526
1417
|
pipeline.spec.description.metadata.userDefined.update(
|
1527
1418
|
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
|
1528
1419
|
)
|
ultralytics/nn/autobackend.py
CHANGED
@@ -258,7 +258,7 @@ class AutoBackend(nn.Module):
|
|
258
258
|
# OpenVINO
|
259
259
|
elif xml:
|
260
260
|
LOGGER.info(f"Loading {w} for OpenVINO inference...")
|
261
|
-
check_requirements("openvino>=2024.0.0
|
261
|
+
check_requirements("openvino>=2024.0.0")
|
262
262
|
import openvino as ov
|
263
263
|
|
264
264
|
core = ov.Core()
|
@@ -511,9 +511,9 @@ class AutoBackend(nn.Module):
|
|
511
511
|
if not w.is_file(): # if not *.rknn
|
512
512
|
w = next(w.rglob("*.rknn")) # get *.rknn file from *_rknn_model dir
|
513
513
|
rknn_model = RKNNLite()
|
514
|
-
rknn_model.load_rknn(w)
|
514
|
+
rknn_model.load_rknn(str(w))
|
515
515
|
rknn_model.init_runtime()
|
516
|
-
metadata =
|
516
|
+
metadata = w.parent / "metadata.yaml"
|
517
517
|
|
518
518
|
# Any other format (unsupported)
|
519
519
|
else:
|
ultralytics/utils/__init__.py
CHANGED
@@ -48,6 +48,7 @@ VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbo
|
|
48
48
|
TQDM_BAR_FORMAT = "{l_bar}{bar:10}{r_bar}" if VERBOSE else None # tqdm bar format
|
49
49
|
LOGGING_NAME = "ultralytics"
|
50
50
|
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"]) # environment booleans
|
51
|
+
MACOS_VERSION = platform.mac_ver()[0] if MACOS else None
|
51
52
|
ARM64 = platform.machine() in {"arm64", "aarch64"} # ARM64 booleans
|
52
53
|
PYTHON_VERSION = platform.python_version()
|
53
54
|
TORCH_VERSION = torch.__version__
|
@@ -0,0 +1,217 @@
|
|
1
|
+
import json
|
2
|
+
from pathlib import Path
|
3
|
+
|
4
|
+
import torch
|
5
|
+
|
6
|
+
from ultralytics.utils import IS_JETSON, LOGGER
|
7
|
+
|
8
|
+
|
9
|
+
def export_onnx(
|
10
|
+
torch_model,
|
11
|
+
im,
|
12
|
+
onnx_file,
|
13
|
+
opset=14,
|
14
|
+
input_names=["images"],
|
15
|
+
output_names=["output0"],
|
16
|
+
dynamic=False,
|
17
|
+
):
|
18
|
+
"""
|
19
|
+
Exports a PyTorch model to ONNX format.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
torch_model (torch.nn.Module): The PyTorch model to export.
|
23
|
+
im (torch.Tensor): Example input tensor for the model.
|
24
|
+
onnx_file (str): Path to save the exported ONNX file.
|
25
|
+
opset (int): ONNX opset version to use for export.
|
26
|
+
input_names (list): List of input tensor names.
|
27
|
+
output_names (list): List of output tensor names.
|
28
|
+
dynamic (bool | dict, optional): Whether to enable dynamic axes. Defaults to False.
|
29
|
+
|
30
|
+
Notes:
|
31
|
+
- Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
32
|
+
"""
|
33
|
+
torch.onnx.export(
|
34
|
+
torch_model,
|
35
|
+
im,
|
36
|
+
onnx_file,
|
37
|
+
verbose=False,
|
38
|
+
opset_version=opset,
|
39
|
+
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
40
|
+
input_names=input_names,
|
41
|
+
output_names=output_names,
|
42
|
+
dynamic_axes=dynamic or None,
|
43
|
+
)
|
44
|
+
|
45
|
+
|
46
|
+
def export_engine(
|
47
|
+
onnx_file,
|
48
|
+
engine_file=None,
|
49
|
+
workspace=None,
|
50
|
+
half=False,
|
51
|
+
int8=False,
|
52
|
+
dynamic=False,
|
53
|
+
shape=(1, 3, 640, 640),
|
54
|
+
dla=None,
|
55
|
+
dataset=None,
|
56
|
+
metadata=None,
|
57
|
+
verbose=False,
|
58
|
+
prefix="",
|
59
|
+
):
|
60
|
+
"""
|
61
|
+
Exports a YOLO model to TensorRT engine format.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
onnx_file (str): Path to the ONNX file to be converted.
|
65
|
+
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
66
|
+
workspace (int, optional): Workspace size in GB for TensorRT. Defaults to None.
|
67
|
+
half (bool, optional): Enable FP16 precision. Defaults to False.
|
68
|
+
int8 (bool, optional): Enable INT8 precision. Defaults to False.
|
69
|
+
dynamic (bool, optional): Enable dynamic input shapes. Defaults to False.
|
70
|
+
shape (tuple, optional): Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).
|
71
|
+
dla (int, optional): DLA core to use (Jetson devices only). Defaults to None.
|
72
|
+
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration. Defaults to None.
|
73
|
+
metadata (dict, optional): Metadata to include in the engine file. Defaults to None.
|
74
|
+
verbose (bool, optional): Enable verbose logging. Defaults to False.
|
75
|
+
prefix (str, optional): Prefix for log messages. Defaults to "".
|
76
|
+
|
77
|
+
Raises:
|
78
|
+
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
79
|
+
RuntimeError: If the ONNX file cannot be parsed.
|
80
|
+
|
81
|
+
Notes:
|
82
|
+
- TensorRT version compatibility is handled for workspace size and engine building.
|
83
|
+
- INT8 calibration requires a dataset and generates a calibration cache.
|
84
|
+
- Metadata is serialized and written to the engine file if provided.
|
85
|
+
"""
|
86
|
+
import tensorrt as trt # noqa
|
87
|
+
|
88
|
+
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
89
|
+
|
90
|
+
logger = trt.Logger(trt.Logger.INFO)
|
91
|
+
if verbose:
|
92
|
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
93
|
+
|
94
|
+
# Engine builder
|
95
|
+
builder = trt.Builder(logger)
|
96
|
+
config = builder.create_builder_config()
|
97
|
+
workspace = int((workspace or 0) * (1 << 30))
|
98
|
+
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
|
99
|
+
if is_trt10 and workspace > 0:
|
100
|
+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
|
101
|
+
elif workspace > 0: # TensorRT versions 7, 8
|
102
|
+
config.max_workspace_size = workspace
|
103
|
+
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
104
|
+
network = builder.create_network(flag)
|
105
|
+
half = builder.platform_has_fast_fp16 and half
|
106
|
+
int8 = builder.platform_has_fast_int8 and int8
|
107
|
+
|
108
|
+
# Optionally switch to DLA if enabled
|
109
|
+
if dla is not None:
|
110
|
+
if not IS_JETSON:
|
111
|
+
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
112
|
+
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
113
|
+
if not half and not int8:
|
114
|
+
raise ValueError(
|
115
|
+
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
116
|
+
)
|
117
|
+
config.default_device_type = trt.DeviceType.DLA
|
118
|
+
config.DLA_core = int(dla)
|
119
|
+
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
120
|
+
|
121
|
+
# Read ONNX file
|
122
|
+
parser = trt.OnnxParser(network, logger)
|
123
|
+
if not parser.parse_from_file(onnx_file):
|
124
|
+
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
125
|
+
|
126
|
+
# Network inputs
|
127
|
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
128
|
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
129
|
+
for inp in inputs:
|
130
|
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
131
|
+
for out in outputs:
|
132
|
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
133
|
+
|
134
|
+
if dynamic:
|
135
|
+
if shape[0] <= 1:
|
136
|
+
LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
|
137
|
+
profile = builder.create_optimization_profile()
|
138
|
+
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
139
|
+
max_shape = (*shape[:2], *(int(max(1, workspace or 1) * d) for d in shape[2:])) # max input shape
|
140
|
+
for inp in inputs:
|
141
|
+
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
142
|
+
config.add_optimization_profile(profile)
|
143
|
+
|
144
|
+
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
145
|
+
if int8:
|
146
|
+
config.set_flag(trt.BuilderFlag.INT8)
|
147
|
+
config.set_calibration_profile(profile)
|
148
|
+
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
149
|
+
|
150
|
+
class EngineCalibrator(trt.IInt8Calibrator):
|
151
|
+
"""
|
152
|
+
Custom INT8 calibrator for TensorRT.
|
153
|
+
|
154
|
+
Args:
|
155
|
+
dataset (object): Dataset for calibration.
|
156
|
+
batch (int): Batch size for calibration.
|
157
|
+
cache (str, optional): Path to save the calibration cache. Defaults to "".
|
158
|
+
"""
|
159
|
+
|
160
|
+
def __init__(
|
161
|
+
self,
|
162
|
+
dataset, # ultralytics.data.build.InfiniteDataLoader
|
163
|
+
cache: str = "",
|
164
|
+
) -> None:
|
165
|
+
trt.IInt8Calibrator.__init__(self)
|
166
|
+
self.dataset = dataset
|
167
|
+
self.data_iter = iter(dataset)
|
168
|
+
self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
|
169
|
+
self.batch = dataset.batch_size
|
170
|
+
self.cache = Path(cache)
|
171
|
+
|
172
|
+
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
173
|
+
"""Get the calibration algorithm to use."""
|
174
|
+
return self.algo
|
175
|
+
|
176
|
+
def get_batch_size(self) -> int:
|
177
|
+
"""Get the batch size to use for calibration."""
|
178
|
+
return self.batch or 1
|
179
|
+
|
180
|
+
def get_batch(self, names) -> list:
|
181
|
+
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
182
|
+
try:
|
183
|
+
im0s = next(self.data_iter)["img"] / 255.0
|
184
|
+
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
185
|
+
return [int(im0s.data_ptr())]
|
186
|
+
except StopIteration:
|
187
|
+
# Return [] or None, signal to TensorRT there is no calibration data remaining
|
188
|
+
return None
|
189
|
+
|
190
|
+
def read_calibration_cache(self) -> bytes:
|
191
|
+
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
192
|
+
if self.cache.exists() and self.cache.suffix == ".cache":
|
193
|
+
return self.cache.read_bytes()
|
194
|
+
|
195
|
+
def write_calibration_cache(self, cache) -> None:
|
196
|
+
"""Write calibration cache to disk."""
|
197
|
+
_ = self.cache.write_bytes(cache)
|
198
|
+
|
199
|
+
# Load dataset w/ builder (for batching) and calibrate
|
200
|
+
config.int8_calibrator = EngineCalibrator(
|
201
|
+
dataset=dataset,
|
202
|
+
cache=str(Path(onnx_file).with_suffix(".cache")),
|
203
|
+
)
|
204
|
+
|
205
|
+
elif half:
|
206
|
+
config.set_flag(trt.BuilderFlag.FP16)
|
207
|
+
|
208
|
+
# Write file
|
209
|
+
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
210
|
+
with build(network, config) as engine, open(engine_file, "wb") as t:
|
211
|
+
# Metadata
|
212
|
+
if metadata is not None:
|
213
|
+
meta = json.dumps(metadata)
|
214
|
+
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
215
|
+
t.write(meta.encode())
|
216
|
+
# Model
|
217
|
+
t.write(engine if is_trt10 else engine.serialize())
|
ultralytics/utils/torch_utils.py
CHANGED
@@ -260,7 +260,11 @@ def fuse_conv_and_bn(conv, bn):
|
|
260
260
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
261
261
|
|
262
262
|
# Prepare spatial bias
|
263
|
-
b_conv =
|
263
|
+
b_conv = (
|
264
|
+
torch.zeros(conv.weight.shape[0], dtype=conv.weight.dtype, device=conv.weight.device)
|
265
|
+
if conv.bias is None
|
266
|
+
else conv.bias
|
267
|
+
)
|
264
268
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
265
269
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
266
270
|
|
ultralytics/utils/tuner.py
CHANGED
@@ -137,7 +137,12 @@ def run_ray_tune(
|
|
137
137
|
tuner = tune.Tuner(
|
138
138
|
trainable_with_resources,
|
139
139
|
param_space=space,
|
140
|
-
tune_config=tune.TuneConfig(
|
140
|
+
tune_config=tune.TuneConfig(
|
141
|
+
scheduler=asha_scheduler,
|
142
|
+
num_samples=max_samples,
|
143
|
+
trial_name_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
|
144
|
+
trial_dirname_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
|
145
|
+
),
|
141
146
|
run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir.parent, name=tune_dir.name),
|
142
147
|
)
|
143
148
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.107
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -62,7 +62,7 @@ Provides-Extra: export
|
|
62
62
|
Requires-Dist: onnx>=1.12.0; extra == "export"
|
63
63
|
Requires-Dist: coremltools>=8.0; (platform_system != "Windows" and python_version <= "3.12") and extra == "export"
|
64
64
|
Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.12") and extra == "export"
|
65
|
-
Requires-Dist: openvino
|
65
|
+
Requires-Dist: openvino>=2024.0.0; extra == "export"
|
66
66
|
Requires-Dist: tensorflow>=2.0.0; extra == "export"
|
67
67
|
Requires-Dist: tensorflowjs>=4.0.0; extra == "export"
|
68
68
|
Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
|
@@ -1,13 +1,4 @@
|
|
1
|
-
|
2
|
-
tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
|
3
|
-
tests/test_cli.py,sha256=DPxUjcGAex_cmGMNaRIK7mT7wrILWaPBtlfXuHQpveI,5284
|
4
|
-
tests/test_cuda.py,sha256=0uvTF4bY_Grsd_Xgtp7TdIEgMpUqKv8_kWA82NYDl_g,6260
|
5
|
-
tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
6
|
-
tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
|
7
|
-
tests/test_integrations.py,sha256=ZgpddWHEVqiP4bGhVw8fLc2wdz0rCxuxr0FQ2dTgnIE,6067
|
8
|
-
tests/test_python.py,sha256=ij0MV87WtbY2WVs0uP41GdVxt_p_M5Rrkldna3M5nXY,24620
|
9
|
-
tests/test_solutions.py,sha256=428CUFC-ns0GDRZWt_er1Ma8Kb1jtDgSj3cw3T2HjWE,5530
|
10
|
-
ultralytics/__init__.py,sha256=70uClMXEl0zWqRYtxBGmqsXSqZT6XKCKR-m47cxzkGA,730
|
1
|
+
ultralytics/__init__.py,sha256=tIiMmD1lgop-6FXN0gw50mi9LmU73AZGjQSfh2uE0Aw,730
|
11
2
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
3
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
4
|
ultralytics/cfg/__init__.py,sha256=UCUFiZg-bqJwpuLLaGgy7RvAMxD-nbcVsPLxSo8x3ZA,39821
|
@@ -111,7 +102,7 @@ ultralytics/data/loaders.py,sha256=_Gyp_BfGTZwsFdn4UnolXxdU_sAYZLIrv0L2TRI9R5g,2
|
|
111
102
|
ultralytics/data/split_dota.py,sha256=p8eVGht9tABSVbf9vwvxA_AQYEva3IGHePKlMeNrn64,11872
|
112
103
|
ultralytics/data/utils.py,sha256=aRPwIoLrCML_Kcd0dI9B6c5Ct4dvhdF36rDHtuf7Ww4,33217
|
113
104
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
114
|
-
ultralytics/engine/exporter.py,sha256=
|
105
|
+
ultralytics/engine/exporter.py,sha256=G-It6VeXPxo7bxuLt8mEyXVx8uzjpooalJ1aSdI23VQ,72998
|
115
106
|
ultralytics/engine/model.py,sha256=YgQKYZrPENSTvLENspg-bXI9FinzzWARfb0U-C9vH-M,52916
|
116
107
|
ultralytics/engine/predictor.py,sha256=fRUh82EJlu_6ZlIy8NFovlCcgX53UbRYSXcLljOs7Sc,21669
|
117
108
|
ultralytics/engine/results.py,sha256=H3pFJhUjYKvVyOUqqZjfIn8vnCpl81aYNOnregMrBoQ,79716
|
@@ -186,7 +177,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=7JxJkMN9bkUGsO-RojFG2Q3yfdKhb-TXlB
|
|
186
177
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=JguKB1ez8Rf7XBu_D_mWHMLJto7y7Kr2m0Tq2NwDtwU,5269
|
187
178
|
ultralytics/models/yolo/yoloe/val.py,sha256=utdt8wZvvW9OPxO5rx8KsFlkLG0FXj0YMD7Jhyk54D8,8440
|
188
179
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
189
|
-
ultralytics/nn/autobackend.py,sha256=
|
180
|
+
ultralytics/nn/autobackend.py,sha256=XaPuvhfCz8l1x_Zw3F4ZV9SfQ1EhAuXNE1xpcUc7jzY,38859
|
190
181
|
ultralytics/nn/tasks.py,sha256=r9CoXW9owNK5UWH2ufM5cyG3DB5TEEIX-JmhTSECCN8,62991
|
191
182
|
ultralytics/nn/text_model.py,sha256=H6OiLe0FOyZY4pd7-ixRTxaBgx3lOc2GmGTmrFnoJd0,10136
|
192
183
|
ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
|
@@ -223,13 +214,14 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
223
214
|
ultralytics/trackers/utils/gmc.py,sha256=NnLxtgZIKdO5-C_J0xqeob1iRXgpubyJOgbIEeJz0Ps,14500
|
224
215
|
ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
|
225
216
|
ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
|
226
|
-
ultralytics/utils/__init__.py,sha256
|
217
|
+
ultralytics/utils/__init__.py,sha256=-OY2ZAJdN7XLPSG1dpnWWv63ZqmhzAxrio2dMGXuyEg,50254
|
227
218
|
ultralytics/utils/autobatch.py,sha256=KnvmNSAO_6H3ZLJ4fOFMTFbOaMlbp025LiJqrdKIz8c,4998
|
228
219
|
ultralytics/utils/benchmarks.py,sha256=7xJ7I0XqLXE-51_OCETKdfMKpk1zUkMTq0kCbdMsMks,30359
|
229
220
|
ultralytics/utils/checks.py,sha256=d30cJY1G3wBWWTlq3C3yGVmDhAUtfXa9U3nuTO4sXQo,32677
|
230
221
|
ultralytics/utils/dist.py,sha256=M8svPWdrRDcSmqIBGrqIaV8yi98Z3HUhXwsauDjVlkM,4090
|
231
222
|
ultralytics/utils/downloads.py,sha256=4P1JIc04tTd_oz3-AHlhRSGaVtnSQPg_gYlh__U27-4,22169
|
232
223
|
ultralytics/utils/errors.py,sha256=vY9h2evFSrHnZdHJVVrmm8Zzw4qVDLyo9DeYW5g0dFk,1573
|
224
|
+
ultralytics/utils/export.py,sha256=yv2CL_CfG_f6hO8-WC6fgdWrSfBc_iCp5dQ3uI1O1YM,8761
|
233
225
|
ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
|
234
226
|
ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
|
235
227
|
ultralytics/utils/loss.py,sha256=us3lwmSlIwEzoMztNjpet7Kb1r1-sMGyESykqgYPDVo,36945
|
@@ -238,9 +230,9 @@ ultralytics/utils/ops.py,sha256=Ag69Hvy8HxKLvewrtfQRseveboc_RGzlMYmO1B2U1Lk,3421
|
|
238
230
|
ultralytics/utils/patches.py,sha256=auTWwYBieowiwH7ww1FgR67JSPkKr_7-PGA1SCYXB4A,4569
|
239
231
|
ultralytics/utils/plotting.py,sha256=wAg_z9ik6Wi3XZCfKO2K6TWV1G0TcLEkjxxz2H42CX8,46703
|
240
232
|
ultralytics/utils/tal.py,sha256=B-NV9qC3WIiKDcRWgJB2RN1r6aA0UUp0lL7RFwYhYK4,20814
|
241
|
-
ultralytics/utils/torch_utils.py,sha256=
|
233
|
+
ultralytics/utils/torch_utils.py,sha256=3sm0oG9rmLfCWUeeiuqxSwrTGk4AnWPidEoM4vaRmYM,38951
|
242
234
|
ultralytics/utils/triton.py,sha256=xK9Db_ZUVDnIK1u76S2G-6ulIBsLfj9HN_YOaSrnMuU,5304
|
243
|
-
ultralytics/utils/tuner.py,sha256=
|
235
|
+
ultralytics/utils/tuner.py,sha256=eX238JDALFejbx-QMEQBLoNfXQvA7GzArqgVUa1l4nI,6712
|
244
236
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
245
237
|
ultralytics/utils/callbacks/base.py,sha256=p8YCeYDp4GLcyHWFZxC2Wxr2IXLw_MfIE5ef1fOQcWk,6848
|
246
238
|
ultralytics/utils/callbacks/clearml.py,sha256=jxTL2QSt8Cjp_BkK2XUDPg5t2XnykMYXJFRp6B66ulA,6005
|
@@ -252,9 +244,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=XXnnKQ-MoLIexl8y2Vb0i-cCLyePE0n5BU
|
|
252
244
|
ultralytics/utils/callbacks/raytune.py,sha256=omVZNNuzYxsZZXrF9xpbFv7R1Wjdx1j-gv0xXuZrQas,1122
|
253
245
|
ultralytics/utils/callbacks/tensorboard.py,sha256=7eUX21_Ym7i6iN4euZzrqglphyl5xak1yl_-wfFshbg,5502
|
254
246
|
ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
|
255
|
-
ultralytics-8.3.
|
256
|
-
ultralytics-8.3.
|
257
|
-
ultralytics-8.3.
|
258
|
-
ultralytics-8.3.
|
259
|
-
ultralytics-8.3.
|
260
|
-
ultralytics-8.3.
|
247
|
+
ultralytics-8.3.107.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
248
|
+
ultralytics-8.3.107.dist-info/METADATA,sha256=7CYps8WGNYgKPtFPnDZip1QagdZFeHHPhTd0gp3uZ-s,37344
|
249
|
+
ultralytics-8.3.107.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
250
|
+
ultralytics-8.3.107.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
251
|
+
ultralytics-8.3.107.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
252
|
+
ultralytics-8.3.107.dist-info/RECORD,,
|
tests/__init__.py
DELETED
@@ -1,22 +0,0 @@
|
|
1
|
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
-
|
3
|
-
from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
|
4
|
-
|
5
|
-
# Constants used in tests
|
6
|
-
MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
|
7
|
-
CFG = "yolo11n.yaml"
|
8
|
-
SOURCE = ASSETS / "bus.jpg"
|
9
|
-
SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
|
10
|
-
TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files
|
11
|
-
CUDA_IS_AVAILABLE = checks.cuda_is_available()
|
12
|
-
CUDA_DEVICE_COUNT = checks.cuda_device_count()
|
13
|
-
|
14
|
-
__all__ = (
|
15
|
-
"MODEL",
|
16
|
-
"CFG",
|
17
|
-
"SOURCE",
|
18
|
-
"SOURCES_LIST",
|
19
|
-
"TMP",
|
20
|
-
"CUDA_IS_AVAILABLE",
|
21
|
-
"CUDA_DEVICE_COUNT",
|
22
|
-
)
|