ultralytics 8.3.101__py3-none-any.whl → 8.3.103__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. tests/test_exports.py +14 -5
  2. tests/test_solutions.py +140 -76
  3. ultralytics/__init__.py +1 -1
  4. ultralytics/cfg/__init__.py +1 -1
  5. ultralytics/engine/exporter.py +23 -8
  6. ultralytics/engine/tuner.py +8 -2
  7. ultralytics/hub/__init__.py +29 -2
  8. ultralytics/hub/google/__init__.py +18 -1
  9. ultralytics/models/fastsam/predict.py +12 -1
  10. ultralytics/models/nas/predict.py +21 -3
  11. ultralytics/models/rtdetr/val.py +26 -2
  12. ultralytics/models/sam/amg.py +22 -1
  13. ultralytics/models/sam/modules/encoders.py +85 -4
  14. ultralytics/models/sam/modules/memory_attention.py +61 -3
  15. ultralytics/models/sam/modules/utils.py +108 -5
  16. ultralytics/models/utils/loss.py +38 -2
  17. ultralytics/models/utils/ops.py +15 -1
  18. ultralytics/models/yolo/classify/predict.py +11 -1
  19. ultralytics/models/yolo/classify/train.py +17 -1
  20. ultralytics/models/yolo/classify/val.py +82 -6
  21. ultralytics/models/yolo/detect/predict.py +20 -1
  22. ultralytics/models/yolo/model.py +55 -4
  23. ultralytics/models/yolo/obb/predict.py +16 -1
  24. ultralytics/models/yolo/obb/train.py +35 -2
  25. ultralytics/models/yolo/obb/val.py +87 -6
  26. ultralytics/models/yolo/pose/predict.py +18 -1
  27. ultralytics/models/yolo/pose/train.py +48 -3
  28. ultralytics/models/yolo/pose/val.py +113 -8
  29. ultralytics/models/yolo/segment/predict.py +27 -2
  30. ultralytics/models/yolo/segment/train.py +61 -3
  31. ultralytics/models/yolo/segment/val.py +10 -1
  32. ultralytics/models/yolo/world/train_world.py +29 -1
  33. ultralytics/models/yolo/yoloe/train.py +47 -3
  34. ultralytics/nn/autobackend.py +9 -8
  35. ultralytics/nn/modules/activation.py +26 -3
  36. ultralytics/nn/modules/block.py +89 -0
  37. ultralytics/nn/modules/head.py +3 -92
  38. ultralytics/nn/modules/utils.py +70 -4
  39. ultralytics/nn/tasks.py +3 -0
  40. ultralytics/nn/text_model.py +93 -17
  41. ultralytics/solutions/instance_segmentation.py +15 -7
  42. ultralytics/solutions/solutions.py +2 -47
  43. ultralytics/utils/benchmarks.py +1 -1
  44. ultralytics/utils/callbacks/base.py +22 -5
  45. ultralytics/utils/callbacks/comet.py +93 -5
  46. ultralytics/utils/callbacks/dvc.py +64 -5
  47. ultralytics/utils/callbacks/neptune.py +25 -2
  48. ultralytics/utils/callbacks/tensorboard.py +30 -2
  49. ultralytics/utils/callbacks/wb.py +16 -1
  50. ultralytics/utils/dist.py +35 -2
  51. ultralytics/utils/errors.py +27 -6
  52. ultralytics/utils/metrics.py +1 -1
  53. ultralytics/utils/patches.py +33 -5
  54. ultralytics/utils/torch_utils.py +14 -6
  55. ultralytics/utils/triton.py +16 -3
  56. ultralytics/utils/tuner.py +17 -9
  57. {ultralytics-8.3.101.dist-info → ultralytics-8.3.103.dist-info}/METADATA +3 -4
  58. {ultralytics-8.3.101.dist-info → ultralytics-8.3.103.dist-info}/RECORD +62 -62
  59. {ultralytics-8.3.101.dist-info → ultralytics-8.3.103.dist-info}/WHEEL +0 -0
  60. {ultralytics-8.3.101.dist-info → ultralytics-8.3.103.dist-info}/entry_points.txt +0 -0
  61. {ultralytics-8.3.101.dist-info → ultralytics-8.3.103.dist-info}/licenses/LICENSE +0 -0
  62. {ultralytics-8.3.101.dist-info → ultralytics-8.3.103.dist-info}/top_level.txt +0 -0
@@ -24,14 +24,42 @@ except (ImportError, AssertionError, TypeError, AttributeError):
24
24
 
25
25
 
26
26
  def _log_scalars(scalars: dict, step: int = 0) -> None:
27
- """Logs scalar values to TensorBoard."""
27
+ """
28
+ Log scalar values to TensorBoard.
29
+
30
+ Args:
31
+ scalars (dict): Dictionary of scalar values to log to TensorBoard. Keys are scalar names and values are the
32
+ corresponding scalar values.
33
+ step (int): Global step value to record with the scalar values. Used for x-axis in TensorBoard graphs.
34
+
35
+ Examples:
36
+ >>> # Log training metrics
37
+ >>> metrics = {"loss": 0.5, "accuracy": 0.95}
38
+ >>> _log_scalars(metrics, step=100)
39
+ """
28
40
  if WRITER:
29
41
  for k, v in scalars.items():
30
42
  WRITER.add_scalar(k, v, step)
31
43
 
32
44
 
33
45
  def _log_tensorboard_graph(trainer) -> None:
34
- """Log model graph to TensorBoard."""
46
+ """
47
+ Log model graph to TensorBoard.
48
+
49
+ This function attempts to visualize the model architecture in TensorBoard by tracing the model with a dummy input
50
+ tensor. It first tries a simple method suitable for YOLO models, and if that fails, falls back to a more complex
51
+ approach for models like RTDETR that may require special handling.
52
+
53
+ Args:
54
+ trainer (BaseTrainer): The trainer object containing the model to visualize. Must have attributes:
55
+ - model: PyTorch model to visualize
56
+ - args: Configuration arguments with 'imgsz' attribute
57
+
58
+ Notes:
59
+ This function requires TensorBoard integration to be enabled and the global WRITER to be initialized.
60
+ It handles potential warnings from the PyTorch JIT tracer and attempts to gracefully handle different
61
+ model architectures.
62
+ """
35
63
  # Input image
36
64
  imgsz = trainer.args.imgsz
37
65
  imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz
@@ -99,7 +99,22 @@ def _plot_curve(
99
99
 
100
100
 
101
101
  def _log_plots(plots, step):
102
- """Logs plots from the input dictionary if they haven't been logged already at the specified step."""
102
+ """
103
+ Log plots to WandB at a specific step if they haven't been logged already.
104
+
105
+ This function checks each plot in the input dictionary against previously processed plots and logs
106
+ new or updated plots to WandB at the specified step.
107
+
108
+ Args:
109
+ plots (dict): Dictionary of plots to log, where keys are plot names and values are dictionaries
110
+ containing plot metadata including timestamps.
111
+ step (int): The step/epoch at which to log the plots in the WandB run.
112
+
113
+ Notes:
114
+ - The function uses a shallow copy of the plots dictionary to prevent modification during iteration
115
+ - Plots are identified by their stem name (filename without extension)
116
+ - Each plot is logged as a WandB Image object
117
+ """
103
118
  for name, params in plots.copy().items(): # shallow copy to prevent plots dict changing during iteration
104
119
  timestamp = params["timestamp"]
105
120
  if _processed_plots.get(name) != timestamp:
ultralytics/utils/dist.py CHANGED
@@ -26,7 +26,26 @@ def find_free_network_port() -> int:
26
26
 
27
27
 
28
28
  def generate_ddp_file(trainer):
29
- """Generates a DDP file and returns its file name."""
29
+ """
30
+ Generate a DDP (Distributed Data Parallel) file for multi-GPU training.
31
+
32
+ This function creates a temporary Python file that enables distributed training across multiple GPUs.
33
+ The file contains the necessary configuration to initialize the trainer in a distributed environment.
34
+
35
+ Args:
36
+ trainer (object): The trainer object containing training configuration and arguments.
37
+ Must have args attribute and be a class instance.
38
+
39
+ Returns:
40
+ (str): Path to the generated temporary DDP file.
41
+
42
+ Notes:
43
+ The generated file is saved in the USER_CONFIG_DIR/DDP directory and includes:
44
+ - Trainer class import
45
+ - Configuration overrides from the trainer arguments
46
+ - Model path configuration
47
+ - Training initialization code
48
+ """
30
49
  module, name = f"{trainer.__class__.__module__}.{trainer.__class__.__name__}".rsplit(".", 1)
31
50
 
32
51
  content = f"""
@@ -80,6 +99,20 @@ def generate_ddp_command(world_size, trainer):
80
99
 
81
100
 
82
101
  def ddp_cleanup(trainer, file):
83
- """Delete temp file if created."""
102
+ """
103
+ Delete temporary file if created during distributed data parallel (DDP) training.
104
+
105
+ This function checks if the provided file contains the trainer's ID in its name, indicating it was created
106
+ as a temporary file for DDP training, and deletes it if so.
107
+
108
+ Args:
109
+ trainer (object): The trainer object used for distributed training.
110
+ file (str): Path to the file that might need to be deleted.
111
+
112
+ Examples:
113
+ >>> trainer = YOLOTrainer()
114
+ >>> file = "/tmp/ddp_temp_123456789.py"
115
+ >>> ddp_cleanup(trainer, file)
116
+ """
84
117
  if f"{id(trainer)}.py" in file: # if temp_file suffix in file
85
118
  os.remove(file)
@@ -5,18 +5,39 @@ from ultralytics.utils import emojis
5
5
 
6
6
  class HUBModelError(Exception):
7
7
  """
8
- Custom exception class for handling errors related to model fetching in Ultralytics YOLO.
8
+ Exception raised when a model cannot be found or retrieved from Ultralytics HUB.
9
9
 
10
- This exception is raised when a requested model is not found or cannot be retrieved.
11
- The message is also processed to include emojis for better user experience.
10
+ This custom exception is used specifically for handling errors related to model fetching in Ultralytics YOLO.
11
+ The error message is processed to include emojis for better user experience.
12
12
 
13
13
  Attributes:
14
14
  message (str): The error message displayed when the exception is raised.
15
15
 
16
- Note:
17
- The message is automatically processed through the 'emojis' function from the 'ultralytics.utils' package.
16
+ Methods:
17
+ __init__: Initialize the HUBModelError with a custom message.
18
+
19
+ Examples:
20
+ >>> try:
21
+ >>> # Code that might fail to find a model
22
+ >>> raise HUBModelError("Custom model not found message")
23
+ >>> except HUBModelError as e:
24
+ >>> print(e) # Displays the emoji-enhanced error message
18
25
  """
19
26
 
20
27
  def __init__(self, message="Model not found. Please check model URL and try again."):
21
- """Create an exception for when a model is not found."""
28
+ """
29
+ Initialize a HUBModelError exception.
30
+
31
+ This exception is raised when a requested model is not found or cannot be retrieved from Ultralytics HUB.
32
+ The message is processed to include emojis for better user experience.
33
+
34
+ Args:
35
+ message (str, optional): The error message to display when the exception is raised.
36
+
37
+ Examples:
38
+ >>> try:
39
+ ... raise HUBModelError("Custom model error message")
40
+ ... except HUBModelError as e:
41
+ ... print(e)
42
+ """
22
43
  super().__init__(emojis(message))
@@ -523,7 +523,7 @@ def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names={}, xlabel="Confi
523
523
  else:
524
524
  ax.plot(px, py.T, linewidth=1, color="grey") # plot(confidence, metric)
525
525
 
526
- y = smooth(py.mean(0), 0.05)
526
+ y = smooth(py.mean(0), 0.1)
527
527
  ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
528
528
  ax.set_xlabel(xlabel)
529
529
  ax.set_ylabel(ylabel)
@@ -18,10 +18,14 @@ def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
18
18
 
19
19
  Args:
20
20
  filename (str): Path to the file to read.
21
- flags (int, optional): Flag that can take values of cv2.IMREAD_*.
21
+ flags (int): Flag that can take values of cv2.IMREAD_*. Controls how the image is read.
22
22
 
23
23
  Returns:
24
24
  (np.ndarray): The read image.
25
+
26
+ Examples:
27
+ >>> img = imread("path/to/image.jpg")
28
+ >>> img = imread("path/to/image.jpg", cv2.IMREAD_GRAYSCALE)
25
29
  """
26
30
  return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
27
31
 
@@ -36,7 +40,14 @@ def imwrite(filename: str, img: np.ndarray, params=None):
36
40
  params (List[int], optional): Additional parameters for image encoding.
37
41
 
38
42
  Returns:
39
- (bool): True if the file was written, False otherwise.
43
+ (bool): True if the file was written successfully, False otherwise.
44
+
45
+ Examples:
46
+ >>> import numpy as np
47
+ >>> img = np.zeros((100, 100, 3), dtype=np.uint8) # Create a black image
48
+ >>> success = imwrite("output.jpg", img) # Write image to file
49
+ >>> print(success)
50
+ True
40
51
  """
41
52
  try:
42
53
  cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
@@ -49,9 +60,19 @@ def imshow(winname: str, mat: np.ndarray):
49
60
  """
50
61
  Display an image in the specified window.
51
62
 
63
+ This function is a wrapper around OpenCV's imshow function that displays an image in a named window. It is
64
+ particularly useful for visualizing images during development and debugging.
65
+
52
66
  Args:
53
- winname (str): Name of the window.
54
- mat (np.ndarray): Image to be shown.
67
+ winname (str): Name of the window where the image will be displayed. If a window with this name already
68
+ exists, the image will be displayed in that window.
69
+ mat (np.ndarray): Image to be shown. Should be a valid numpy array representing an image.
70
+
71
+ Examples:
72
+ >>> import numpy as np
73
+ >>> img = np.zeros((300, 300, 3), dtype=np.uint8) # Create a black image
74
+ >>> img[:100, :100] = [255, 0, 0] # Add a blue square
75
+ >>> imshow("Example Window", img) # Display the image
55
76
  """
56
77
  _imshow(winname.encode("unicode_escape").decode(), mat)
57
78
 
@@ -74,7 +95,7 @@ def torch_load(*args, **kwargs):
74
95
  Returns:
75
96
  (Any): The loaded PyTorch object.
76
97
 
77
- Note:
98
+ Notes:
78
99
  For PyTorch versions 2.0 and above, this function automatically sets 'weights_only=False'
79
100
  if the argument is not provided, to avoid deprecation warnings.
80
101
  """
@@ -96,6 +117,13 @@ def torch_save(*args, **kwargs):
96
117
  Args:
97
118
  *args (Any): Positional arguments to pass to torch.save.
98
119
  **kwargs (Any): Keyword arguments to pass to torch.save.
120
+
121
+ Returns:
122
+ (Any): Result of torch.save operation if successful, None otherwise.
123
+
124
+ Examples:
125
+ >>> model = torch.nn.Linear(10, 1)
126
+ >>> torch_save(model.state_dict(), "model.pt")
99
127
  """
100
128
  for i in range(4): # 3 retries
101
129
  try:
@@ -386,14 +386,18 @@ def model_info_for_loggers(trainer):
386
386
 
387
387
  def get_flops(model, imgsz=640):
388
388
  """
389
- Return a YOLO model's FLOPs.
389
+ Calculate FLOPs (floating point operations) for a model in billions.
390
+
391
+ Attempts two calculation methods: first with a stride-based tensor for efficiency,
392
+ then falls back to full image size if needed (e.g., for RTDETR models). Returns 0.0
393
+ if thop library is unavailable or calculation fails.
390
394
 
391
395
  Args:
392
396
  model (nn.Module): The model to calculate FLOPs for.
393
397
  imgsz (int | List[int], optional): Input image size. Defaults to 640.
394
398
 
395
399
  Returns:
396
- (float): The model's FLOPs in billions.
400
+ (float): The model FLOPs in billions.
397
401
  """
398
402
  if not thop:
399
403
  return 0.0 # if not installed return 0.0 GFLOPs
@@ -404,13 +408,13 @@ def get_flops(model, imgsz=640):
404
408
  if not isinstance(imgsz, list):
405
409
  imgsz = [imgsz, imgsz] # expand if int/float
406
410
  try:
407
- # Use stride size for input tensor
411
+ # Method 1: Use stride-based input tensor
408
412
  stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32 # max stride
409
413
  im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
410
414
  flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # stride GFLOPs
411
415
  return flops * imgsz[0] / stride * imgsz[1] / stride # imgsz GFLOPs
412
416
  except Exception:
413
- # Use actual image size for input tensor (i.e. required for RTDETR models)
417
+ # Method 2: Use actual image size (required for RTDETR models)
414
418
  im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format
415
419
  return thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # imgsz GFLOPs
416
420
  except Exception:
@@ -611,10 +615,10 @@ def unset_deterministic():
611
615
 
612
616
  class ModelEMA:
613
617
  """
614
- Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models.
618
+ Updated Exponential Moving Average (EMA) implementation.
615
619
 
616
620
  Keeps a moving average of everything in the model state_dict (parameters and buffers).
617
- For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
621
+ For EMA details see References.
618
622
 
619
623
  To disable EMA set the `enabled` attribute to `False`.
620
624
 
@@ -623,6 +627,10 @@ class ModelEMA:
623
627
  updates (int): Number of EMA updates.
624
628
  decay (function): Decay function that determines the EMA weight.
625
629
  enabled (bool): Whether EMA is enabled.
630
+
631
+ References:
632
+ - https://github.com/rwightman/pytorch-image-models
633
+ - https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
626
634
  """
627
635
 
628
636
  def __init__(self, model, decay=0.9999, tau=2000, updates=0):
@@ -25,6 +25,9 @@ class TritonRemoteModel:
25
25
  output_names (List[str]): The names of the model outputs.
26
26
  metadata: The metadata associated with the model.
27
27
 
28
+ Methods:
29
+ __call__: Call the model with the given inputs and return the outputs.
30
+
28
31
  Examples:
29
32
  Initialize a Triton client with HTTP
30
33
  >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
@@ -34,7 +37,7 @@ class TritonRemoteModel:
34
37
 
35
38
  def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
36
39
  """
37
- Initialize the TritonRemoteModel.
40
+ Initialize the TritonRemoteModel for interacting with a remote Triton Inference Server.
38
41
 
39
42
  Arguments may be provided individually or parsed from a collective 'url' argument of the form
40
43
  <scheme>://<netloc>/<endpoint>/<task_name>
@@ -43,6 +46,10 @@ class TritonRemoteModel:
43
46
  url (str): The URL of the Triton server.
44
47
  endpoint (str): The name of the model on the Triton server.
45
48
  scheme (str): The communication scheme ('http' or 'grpc').
49
+
50
+ Examples:
51
+ >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
52
+ >>> model = TritonRemoteModel(url="http://localhost:8000/yolov8")
46
53
  """
47
54
  if not endpoint and not scheme: # Parse all args from URL string
48
55
  splits = urlsplit(url)
@@ -83,10 +90,16 @@ class TritonRemoteModel:
83
90
  Call the model with the given inputs.
84
91
 
85
92
  Args:
86
- *inputs (np.ndarray): Input data to the model.
93
+ *inputs (np.ndarray): Input data to the model. Each array should match the expected shape and type
94
+ for the corresponding model input.
87
95
 
88
96
  Returns:
89
- (List[np.ndarray]): Model outputs with the same dtype as the input.
97
+ (List[np.ndarray]): Model outputs with the same dtype as the input. Each element in the list
98
+ corresponds to one of the model's output tensors.
99
+
100
+ Examples:
101
+ >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
102
+ >>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
90
103
  """
91
104
  infer_inputs = []
92
105
  input_format = inputs[0].dtype
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_cfg, get_save_dir
4
- from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS, checks
4
+ from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS, checks, colorstr
5
5
 
6
6
 
7
7
  def run_ray_tune(
@@ -95,7 +95,7 @@ def run_ray_tune(
95
95
  return results.results_dict
96
96
 
97
97
  # Get search space
98
- if not space:
98
+ if not space and not train_args.get("resume"):
99
99
  space = default_space
100
100
  LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.")
101
101
 
@@ -123,15 +123,23 @@ def run_ray_tune(
123
123
 
124
124
  # Create the Ray Tune hyperparameter search tuner
125
125
  tune_dir = get_save_dir(
126
- get_cfg(DEFAULT_CFG, train_args), name=train_args.pop("name", "tune")
126
+ get_cfg(
127
+ DEFAULT_CFG,
128
+ {**train_args, **{"exist_ok": train_args.pop("resume", False)}}, # resume w/ same tune_dir
129
+ ),
130
+ name=train_args.pop("name", "tune"), # runs/{task}/{tune_dir}
127
131
  ).resolve() # must be absolute dir
128
132
  tune_dir.mkdir(parents=True, exist_ok=True)
129
- tuner = tune.Tuner(
130
- trainable_with_resources,
131
- param_space=space,
132
- tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
133
- run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir),
134
- )
133
+ if tune.Tuner.can_restore(tune_dir):
134
+ LOGGER.info(f"{colorstr('Tuner: ')} Resuming tuning run {tune_dir}...")
135
+ tuner = tune.Tuner.restore(str(tune_dir), trainable=trainable_with_resources, resume_errored=True)
136
+ else:
137
+ tuner = tune.Tuner(
138
+ trainable_with_resources,
139
+ param_space=space,
140
+ tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
141
+ run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir.parent, name=tune_dir.name),
142
+ )
135
143
 
136
144
  # Run the hyperparameter search
137
145
  tuner.fit()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.101
3
+ Version: 8.3.103
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -56,7 +56,6 @@ Requires-Dist: coverage[toml]; extra == "dev"
56
56
  Requires-Dist: mkdocs>=1.6.0; extra == "dev"
57
57
  Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
58
58
  Requires-Dist: mkdocstrings[python]; extra == "dev"
59
- Requires-Dist: mkdocs-redirects; extra == "dev"
60
59
  Requires-Dist: mkdocs-ultralytics-plugin>=0.1.17; extra == "dev"
61
60
  Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
62
61
  Provides-Extra: export
@@ -71,8 +70,8 @@ Requires-Dist: keras; extra == "export"
71
70
  Requires-Dist: flatbuffers<100,>=23.5.26; platform_machine == "aarch64" and extra == "export"
72
71
  Requires-Dist: h5py!=3.11.0; platform_machine == "aarch64" and extra == "export"
73
72
  Provides-Extra: solutions
74
- Requires-Dist: shapely>=2.0.0; extra == "solutions"
75
- Requires-Dist: streamlit; extra == "solutions"
73
+ Requires-Dist: shapely<2.1.0,>=2.0.0; extra == "solutions"
74
+ Requires-Dist: streamlit<1.44.0,>=1.29.0; extra == "solutions"
76
75
  Provides-Extra: logging
77
76
  Requires-Dist: comet; extra == "logging"
78
77
  Requires-Dist: tensorboard>=2.13.0; extra == "logging"