ultralytics 8.3.101__py3-none-any.whl → 8.3.102__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_solutions.py +140 -76
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +20 -5
- ultralytics/hub/__init__.py +29 -2
- ultralytics/hub/google/__init__.py +18 -1
- ultralytics/models/fastsam/predict.py +12 -1
- ultralytics/models/nas/predict.py +21 -3
- ultralytics/models/rtdetr/val.py +26 -2
- ultralytics/models/sam/amg.py +22 -1
- ultralytics/models/sam/modules/encoders.py +85 -4
- ultralytics/models/sam/modules/memory_attention.py +61 -3
- ultralytics/models/sam/modules/utils.py +108 -5
- ultralytics/models/utils/loss.py +38 -2
- ultralytics/models/utils/ops.py +15 -1
- ultralytics/models/yolo/classify/predict.py +11 -1
- ultralytics/models/yolo/classify/train.py +17 -1
- ultralytics/models/yolo/classify/val.py +82 -6
- ultralytics/models/yolo/detect/predict.py +20 -1
- ultralytics/models/yolo/model.py +55 -4
- ultralytics/models/yolo/obb/predict.py +16 -1
- ultralytics/models/yolo/obb/train.py +35 -2
- ultralytics/models/yolo/obb/val.py +87 -6
- ultralytics/models/yolo/pose/predict.py +18 -1
- ultralytics/models/yolo/pose/train.py +48 -3
- ultralytics/models/yolo/pose/val.py +113 -8
- ultralytics/models/yolo/segment/predict.py +27 -2
- ultralytics/models/yolo/segment/train.py +61 -3
- ultralytics/models/yolo/segment/val.py +10 -1
- ultralytics/models/yolo/world/train_world.py +29 -1
- ultralytics/models/yolo/yoloe/train.py +47 -3
- ultralytics/nn/modules/activation.py +26 -3
- ultralytics/nn/modules/block.py +89 -0
- ultralytics/nn/modules/head.py +3 -92
- ultralytics/nn/modules/utils.py +70 -4
- ultralytics/nn/text_model.py +93 -17
- ultralytics/utils/benchmarks.py +1 -1
- ultralytics/utils/callbacks/base.py +22 -5
- ultralytics/utils/callbacks/comet.py +93 -5
- ultralytics/utils/callbacks/dvc.py +64 -5
- ultralytics/utils/callbacks/neptune.py +25 -2
- ultralytics/utils/callbacks/tensorboard.py +30 -2
- ultralytics/utils/callbacks/wb.py +16 -1
- ultralytics/utils/dist.py +35 -2
- ultralytics/utils/errors.py +27 -6
- ultralytics/utils/patches.py +33 -5
- ultralytics/utils/triton.py +16 -3
- {ultralytics-8.3.101.dist-info → ultralytics-8.3.102.dist-info}/METADATA +1 -2
- {ultralytics-8.3.101.dist-info → ultralytics-8.3.102.dist-info}/RECORD +52 -52
- {ultralytics-8.3.101.dist-info → ultralytics-8.3.102.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.101.dist-info → ultralytics-8.3.102.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.101.dist-info → ultralytics-8.3.102.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.101.dist-info → ultralytics-8.3.102.dist-info}/top_level.txt +0 -0
@@ -176,21 +176,38 @@ default_callbacks = {
|
|
176
176
|
|
177
177
|
def get_default_callbacks():
|
178
178
|
"""
|
179
|
-
|
179
|
+
Get the default callbacks for Ultralytics training, validation, prediction, and export processes.
|
180
180
|
|
181
181
|
Returns:
|
182
|
-
(
|
182
|
+
(dict): Dictionary of default callbacks for various training events. Each key in the dictionary represents an
|
183
|
+
event during the training process, and the corresponding value is a list of callback functions that are
|
184
|
+
executed when that event occurs.
|
185
|
+
|
186
|
+
Examples:
|
187
|
+
>>> callbacks = get_default_callbacks()
|
188
|
+
>>> print(list(callbacks.keys())) # show all available callback events
|
189
|
+
['on_pretrain_routine_start', 'on_pretrain_routine_end', ...]
|
183
190
|
"""
|
184
191
|
return defaultdict(list, deepcopy(default_callbacks))
|
185
192
|
|
186
193
|
|
187
194
|
def add_integration_callbacks(instance):
|
188
195
|
"""
|
189
|
-
Add integration callbacks
|
196
|
+
Add integration callbacks to the instance's callbacks dictionary.
|
197
|
+
|
198
|
+
This function loads and adds various integration callbacks to the provided instance. The specific callbacks added
|
199
|
+
depend on the type of instance provided. All instances receive HUB callbacks, while Trainer instances also receive
|
200
|
+
additional callbacks for various integrations like ClearML, Comet, DVC, MLflow, Neptune, Ray Tune, TensorBoard,
|
201
|
+
and Weights & Biases.
|
190
202
|
|
191
203
|
Args:
|
192
|
-
instance (Trainer | Predictor | Validator | Exporter):
|
193
|
-
|
204
|
+
instance (Trainer | Predictor | Validator | Exporter): The object instance to which callbacks will be added.
|
205
|
+
The type of instance determines which callbacks are loaded.
|
206
|
+
|
207
|
+
Examples:
|
208
|
+
>>> from ultralytics.engine.trainer import BaseTrainer
|
209
|
+
>>> trainer = BaseTrainer()
|
210
|
+
>>> add_integration_callbacks(trainer)
|
194
211
|
"""
|
195
212
|
# Load HUB callbacks
|
196
213
|
from .hub import callbacks as hub_cb
|
@@ -155,7 +155,32 @@ def _scale_bounding_box_to_original_image_shape(
|
|
155
155
|
|
156
156
|
|
157
157
|
def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None) -> Optional[dict]:
|
158
|
-
"""
|
158
|
+
"""
|
159
|
+
Format ground truth annotations for object detection.
|
160
|
+
|
161
|
+
This function processes ground truth annotations from a batch of images for object detection tasks. It extracts
|
162
|
+
bounding boxes, class labels, and other metadata for a specific image in the batch, and formats them for
|
163
|
+
visualization or evaluation.
|
164
|
+
|
165
|
+
Args:
|
166
|
+
img_idx (int): Index of the image in the batch to process.
|
167
|
+
image_path (str | Path): Path to the image file.
|
168
|
+
batch (dict): Batch dictionary containing detection data with keys:
|
169
|
+
- 'batch_idx': Tensor of batch indices
|
170
|
+
- 'bboxes': Tensor of bounding boxes in normalized xywh format
|
171
|
+
- 'cls': Tensor of class labels
|
172
|
+
- 'ori_shape': Original image shapes
|
173
|
+
- 'resized_shape': Resized image shapes
|
174
|
+
- 'ratio_pad': Ratio and padding information
|
175
|
+
class_name_map (dict | None, optional): Mapping from class indices to class names.
|
176
|
+
|
177
|
+
Returns:
|
178
|
+
(dict | None): Formatted ground truth annotations with the following structure:
|
179
|
+
- 'boxes': List of box coordinates [x, y, width, height]
|
180
|
+
- 'label': Label string with format "gt_{class_name}"
|
181
|
+
- 'score': Confidence score (always 1.0, scaled by _scale_confidence_score)
|
182
|
+
Returns None if no bounding boxes are found for the image.
|
183
|
+
"""
|
159
184
|
indices = batch["batch_idx"] == img_idx
|
160
185
|
bboxes = batch["bboxes"][indices]
|
161
186
|
if len(bboxes) == 0:
|
@@ -284,7 +309,22 @@ def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) -> None:
|
|
284
309
|
|
285
310
|
|
286
311
|
def _log_images(experiment, image_paths, curr_step, annotations=None) -> None:
|
287
|
-
"""
|
312
|
+
"""
|
313
|
+
Log images to the experiment with optional annotations.
|
314
|
+
|
315
|
+
This function logs images to a Comet ML experiment, optionally including annotation data for visualization
|
316
|
+
such as bounding boxes or segmentation masks.
|
317
|
+
|
318
|
+
Args:
|
319
|
+
experiment (comet_ml.Experiment): The Comet ML experiment to log images to.
|
320
|
+
image_paths (List[Path]): List of paths to images that will be logged.
|
321
|
+
curr_step (int): Current training step/iteration for tracking in the experiment timeline.
|
322
|
+
annotations (List[List[dict]], optional): Nested list of annotation dictionaries for each image. Each annotation
|
323
|
+
contains visualization data like bounding boxes, labels, and confidence scores.
|
324
|
+
|
325
|
+
Returns:
|
326
|
+
None
|
327
|
+
"""
|
288
328
|
if annotations:
|
289
329
|
for image_path, annotation in zip(image_paths, annotations):
|
290
330
|
experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation)
|
@@ -295,7 +335,23 @@ def _log_images(experiment, image_paths, curr_step, annotations=None) -> None:
|
|
295
335
|
|
296
336
|
|
297
337
|
def _log_image_predictions(experiment, validator, curr_step) -> None:
|
298
|
-
"""
|
338
|
+
"""
|
339
|
+
Log predicted boxes for a single image during training.
|
340
|
+
|
341
|
+
This function logs image predictions to a Comet ML experiment during model validation. It processes
|
342
|
+
validation data and formats both ground truth and prediction annotations for visualization in the Comet
|
343
|
+
dashboard. The function respects configured limits on the number of images to log.
|
344
|
+
|
345
|
+
Args:
|
346
|
+
experiment (comet_ml.Experiment): The Comet ML experiment to log to.
|
347
|
+
validator (BaseValidator): The validator instance containing validation data and predictions.
|
348
|
+
curr_step (int): The current training step for logging timeline.
|
349
|
+
|
350
|
+
Notes:
|
351
|
+
This function uses global state to track the number of logged predictions across calls.
|
352
|
+
It only logs predictions for supported tasks defined in COMET_SUPPORTED_TASKS.
|
353
|
+
The number of logged images is limited by the COMET_MAX_IMAGE_PREDICTIONS environment variable.
|
354
|
+
"""
|
299
355
|
global _comet_image_prediction_count
|
300
356
|
|
301
357
|
task = validator.args.task
|
@@ -342,7 +398,22 @@ def _log_image_predictions(experiment, validator, curr_step) -> None:
|
|
342
398
|
|
343
399
|
|
344
400
|
def _log_plots(experiment, trainer) -> None:
|
345
|
-
"""
|
401
|
+
"""
|
402
|
+
Log evaluation plots and label plots for the experiment.
|
403
|
+
|
404
|
+
This function logs various evaluation plots and confusion matrices to the experiment tracking system. It handles
|
405
|
+
different types of metrics (SegmentMetrics, PoseMetrics, DetMetrics, OBBMetrics) and logs the appropriate plots
|
406
|
+
for each type.
|
407
|
+
|
408
|
+
Args:
|
409
|
+
experiment (comet_ml.Experiment): The Comet ML experiment to log plots to.
|
410
|
+
trainer (ultralytics.engine.trainer.BaseTrainer): The trainer object containing validation metrics and save
|
411
|
+
directory information.
|
412
|
+
|
413
|
+
Examples:
|
414
|
+
>>> from ultralytics.utils.callbacks.comet import _log_plots
|
415
|
+
>>> _log_plots(experiment, trainer)
|
416
|
+
"""
|
346
417
|
plot_filenames = None
|
347
418
|
if isinstance(trainer.validator.metrics, SegmentMetrics) and trainer.validator.metrics.task == "segment":
|
348
419
|
plot_filenames = [
|
@@ -401,7 +472,24 @@ def on_train_epoch_end(trainer) -> None:
|
|
401
472
|
|
402
473
|
|
403
474
|
def on_fit_epoch_end(trainer) -> None:
|
404
|
-
"""
|
475
|
+
"""
|
476
|
+
Log model assets at the end of each epoch during training.
|
477
|
+
|
478
|
+
This function is called at the end of each training epoch to log metrics, learning rates, and model information
|
479
|
+
to a Comet ML experiment. It also logs model assets, confusion matrices, and image predictions based on
|
480
|
+
configuration settings.
|
481
|
+
|
482
|
+
The function retrieves the current Comet ML experiment and logs various training metrics. If it's the first epoch,
|
483
|
+
it also logs model information. On specified save intervals, it logs the model, confusion matrix (if enabled),
|
484
|
+
and image predictions (if enabled).
|
485
|
+
|
486
|
+
Args:
|
487
|
+
trainer (BaseTrainer): The YOLO trainer object containing training state, metrics, and configuration.
|
488
|
+
|
489
|
+
Examples:
|
490
|
+
>>> # Inside a training loop
|
491
|
+
>>> on_fit_epoch_end(trainer) # Log metrics and assets to Comet ML
|
492
|
+
"""
|
405
493
|
experiment = comet_ml.get_running_experiment()
|
406
494
|
if not experiment:
|
407
495
|
return
|
@@ -27,7 +27,21 @@ except (ImportError, AssertionError, TypeError):
|
|
27
27
|
|
28
28
|
|
29
29
|
def _log_images(path: Path, prefix: str = "") -> None:
|
30
|
-
"""
|
30
|
+
"""
|
31
|
+
Log images at specified path with an optional prefix using DVCLive.
|
32
|
+
|
33
|
+
This function logs images found at the given path to DVCLive, organizing them by batch to enable slider
|
34
|
+
functionality in the UI. It processes image filenames to extract batch information and restructures the path
|
35
|
+
accordingly.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
path (Path): Path to the image file to be logged.
|
39
|
+
prefix (str): Optional prefix to add to the image name when logging.
|
40
|
+
|
41
|
+
Examples:
|
42
|
+
>>> from pathlib import Path
|
43
|
+
>>> _log_images(Path("runs/train/exp/val_batch0_pred.jpg"), prefix="validation")
|
44
|
+
"""
|
31
45
|
if live:
|
32
46
|
name = path.name
|
33
47
|
|
@@ -41,7 +55,13 @@ def _log_images(path: Path, prefix: str = "") -> None:
|
|
41
55
|
|
42
56
|
|
43
57
|
def _log_plots(plots: dict, prefix: str = "") -> None:
|
44
|
-
"""
|
58
|
+
"""
|
59
|
+
Log plot images for training progress if they have not been previously processed.
|
60
|
+
|
61
|
+
Args:
|
62
|
+
plots (dict): Dictionary containing plot information with timestamps.
|
63
|
+
prefix (str, optional): Optional prefix to add to the logged image paths.
|
64
|
+
"""
|
45
65
|
for name, params in plots.items():
|
46
66
|
timestamp = params["timestamp"]
|
47
67
|
if _processed_plots.get(name) != timestamp:
|
@@ -50,7 +70,19 @@ def _log_plots(plots: dict, prefix: str = "") -> None:
|
|
50
70
|
|
51
71
|
|
52
72
|
def _log_confusion_matrix(validator) -> None:
|
53
|
-
"""
|
73
|
+
"""
|
74
|
+
Log confusion matrix for a validator using DVCLive.
|
75
|
+
|
76
|
+
This function processes the confusion matrix from a validator object and logs it to DVCLive by converting
|
77
|
+
the matrix into lists of target and prediction labels.
|
78
|
+
|
79
|
+
Args:
|
80
|
+
validator (BaseValidator): The validator object containing the confusion matrix and class names.
|
81
|
+
Must have attributes: confusion_matrix.matrix, confusion_matrix.task, and names.
|
82
|
+
|
83
|
+
Returns:
|
84
|
+
None
|
85
|
+
"""
|
54
86
|
targets = []
|
55
87
|
preds = []
|
56
88
|
matrix = validator.confusion_matrix.matrix
|
@@ -94,7 +126,20 @@ def on_train_epoch_start(trainer) -> None:
|
|
94
126
|
|
95
127
|
|
96
128
|
def on_fit_epoch_end(trainer) -> None:
|
97
|
-
"""
|
129
|
+
"""
|
130
|
+
Log training metrics, model info, and advance to next step at the end of each fit epoch.
|
131
|
+
|
132
|
+
This function is called at the end of each fit epoch during training. It logs various metrics including
|
133
|
+
training loss items, validation metrics, and learning rates. On the first epoch, it also logs model
|
134
|
+
information. Additionally, it logs training and validation plots and advances the DVCLive step counter.
|
135
|
+
|
136
|
+
Args:
|
137
|
+
trainer (BaseTrainer): The trainer object containing training state, metrics, and plots.
|
138
|
+
|
139
|
+
Notes:
|
140
|
+
This function only performs logging operations when DVCLive logging is active and during a training epoch.
|
141
|
+
The global variable _training_epoch is used to track whether the current epoch is a training epoch.
|
142
|
+
"""
|
98
143
|
global _training_epoch
|
99
144
|
if live and _training_epoch:
|
100
145
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
|
@@ -115,7 +160,21 @@ def on_fit_epoch_end(trainer) -> None:
|
|
115
160
|
|
116
161
|
|
117
162
|
def on_train_end(trainer) -> None:
|
118
|
-
"""
|
163
|
+
"""
|
164
|
+
Log best metrics, plots, and confusion matrix at the end of training.
|
165
|
+
|
166
|
+
This function is called at the conclusion of the training process to log final metrics, visualizations, and
|
167
|
+
model artifacts if DVCLive logging is active. It captures the best model performance metrics, training plots,
|
168
|
+
validation plots, and confusion matrix for later analysis.
|
169
|
+
|
170
|
+
Args:
|
171
|
+
trainer (BaseTrainer): The trainer object containing training state, metrics, and validation results.
|
172
|
+
|
173
|
+
Examples:
|
174
|
+
>>> # Inside a custom training loop
|
175
|
+
>>> from ultralytics.utils.callbacks.dvc import on_train_end
|
176
|
+
>>> on_train_end(trainer) # Log final metrics and artifacts
|
177
|
+
"""
|
119
178
|
if live:
|
120
179
|
# At the end log the best metrics. It runs validator on the best model internally.
|
121
180
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
|
@@ -19,14 +19,37 @@ except (ImportError, AssertionError):
|
|
19
19
|
|
20
20
|
|
21
21
|
def _log_scalars(scalars: dict, step: int = 0) -> None:
|
22
|
-
"""
|
22
|
+
"""
|
23
|
+
Log scalars to the NeptuneAI experiment logger.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
scalars (dict): Dictionary of scalar values to log to NeptuneAI.
|
27
|
+
step (int): The current step or iteration number for logging.
|
28
|
+
|
29
|
+
Examples:
|
30
|
+
>>> metrics = {"mAP": 0.85, "loss": 0.32}
|
31
|
+
>>> _log_scalars(metrics, step=100)
|
32
|
+
"""
|
23
33
|
if run:
|
24
34
|
for k, v in scalars.items():
|
25
35
|
run[k].append(value=v, step=step)
|
26
36
|
|
27
37
|
|
28
38
|
def _log_images(imgs_dict: dict, group: str = "") -> None:
|
29
|
-
"""
|
39
|
+
"""
|
40
|
+
Log images to the NeptuneAI experiment logger.
|
41
|
+
|
42
|
+
This function logs image data to Neptune.ai when a valid Neptune run is active. Images are organized
|
43
|
+
under the specified group name.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
imgs_dict (dict): Dictionary of images to log, with keys as image names and values as image data.
|
47
|
+
group (str, optional): Group name to organize images under in the Neptune UI.
|
48
|
+
|
49
|
+
Examples:
|
50
|
+
>>> # Log validation images
|
51
|
+
>>> _log_images({"val_batch": img_tensor}, group="validation")
|
52
|
+
"""
|
30
53
|
if run:
|
31
54
|
for k, v in imgs_dict.items():
|
32
55
|
run[f"{group}/{k}"].upload(File(v))
|
@@ -24,14 +24,42 @@ except (ImportError, AssertionError, TypeError, AttributeError):
|
|
24
24
|
|
25
25
|
|
26
26
|
def _log_scalars(scalars: dict, step: int = 0) -> None:
|
27
|
-
"""
|
27
|
+
"""
|
28
|
+
Log scalar values to TensorBoard.
|
29
|
+
|
30
|
+
Args:
|
31
|
+
scalars (dict): Dictionary of scalar values to log to TensorBoard. Keys are scalar names and values are the
|
32
|
+
corresponding scalar values.
|
33
|
+
step (int): Global step value to record with the scalar values. Used for x-axis in TensorBoard graphs.
|
34
|
+
|
35
|
+
Examples:
|
36
|
+
>>> # Log training metrics
|
37
|
+
>>> metrics = {"loss": 0.5, "accuracy": 0.95}
|
38
|
+
>>> _log_scalars(metrics, step=100)
|
39
|
+
"""
|
28
40
|
if WRITER:
|
29
41
|
for k, v in scalars.items():
|
30
42
|
WRITER.add_scalar(k, v, step)
|
31
43
|
|
32
44
|
|
33
45
|
def _log_tensorboard_graph(trainer) -> None:
|
34
|
-
"""
|
46
|
+
"""
|
47
|
+
Log model graph to TensorBoard.
|
48
|
+
|
49
|
+
This function attempts to visualize the model architecture in TensorBoard by tracing the model with a dummy input
|
50
|
+
tensor. It first tries a simple method suitable for YOLO models, and if that fails, falls back to a more complex
|
51
|
+
approach for models like RTDETR that may require special handling.
|
52
|
+
|
53
|
+
Args:
|
54
|
+
trainer (BaseTrainer): The trainer object containing the model to visualize. Must have attributes:
|
55
|
+
- model: PyTorch model to visualize
|
56
|
+
- args: Configuration arguments with 'imgsz' attribute
|
57
|
+
|
58
|
+
Notes:
|
59
|
+
This function requires TensorBoard integration to be enabled and the global WRITER to be initialized.
|
60
|
+
It handles potential warnings from the PyTorch JIT tracer and attempts to gracefully handle different
|
61
|
+
model architectures.
|
62
|
+
"""
|
35
63
|
# Input image
|
36
64
|
imgsz = trainer.args.imgsz
|
37
65
|
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz
|
@@ -99,7 +99,22 @@ def _plot_curve(
|
|
99
99
|
|
100
100
|
|
101
101
|
def _log_plots(plots, step):
|
102
|
-
"""
|
102
|
+
"""
|
103
|
+
Log plots to WandB at a specific step if they haven't been logged already.
|
104
|
+
|
105
|
+
This function checks each plot in the input dictionary against previously processed plots and logs
|
106
|
+
new or updated plots to WandB at the specified step.
|
107
|
+
|
108
|
+
Args:
|
109
|
+
plots (dict): Dictionary of plots to log, where keys are plot names and values are dictionaries
|
110
|
+
containing plot metadata including timestamps.
|
111
|
+
step (int): The step/epoch at which to log the plots in the WandB run.
|
112
|
+
|
113
|
+
Notes:
|
114
|
+
- The function uses a shallow copy of the plots dictionary to prevent modification during iteration
|
115
|
+
- Plots are identified by their stem name (filename without extension)
|
116
|
+
- Each plot is logged as a WandB Image object
|
117
|
+
"""
|
103
118
|
for name, params in plots.copy().items(): # shallow copy to prevent plots dict changing during iteration
|
104
119
|
timestamp = params["timestamp"]
|
105
120
|
if _processed_plots.get(name) != timestamp:
|
ultralytics/utils/dist.py
CHANGED
@@ -26,7 +26,26 @@ def find_free_network_port() -> int:
|
|
26
26
|
|
27
27
|
|
28
28
|
def generate_ddp_file(trainer):
|
29
|
-
"""
|
29
|
+
"""
|
30
|
+
Generate a DDP (Distributed Data Parallel) file for multi-GPU training.
|
31
|
+
|
32
|
+
This function creates a temporary Python file that enables distributed training across multiple GPUs.
|
33
|
+
The file contains the necessary configuration to initialize the trainer in a distributed environment.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
trainer (object): The trainer object containing training configuration and arguments.
|
37
|
+
Must have args attribute and be a class instance.
|
38
|
+
|
39
|
+
Returns:
|
40
|
+
(str): Path to the generated temporary DDP file.
|
41
|
+
|
42
|
+
Notes:
|
43
|
+
The generated file is saved in the USER_CONFIG_DIR/DDP directory and includes:
|
44
|
+
- Trainer class import
|
45
|
+
- Configuration overrides from the trainer arguments
|
46
|
+
- Model path configuration
|
47
|
+
- Training initialization code
|
48
|
+
"""
|
30
49
|
module, name = f"{trainer.__class__.__module__}.{trainer.__class__.__name__}".rsplit(".", 1)
|
31
50
|
|
32
51
|
content = f"""
|
@@ -80,6 +99,20 @@ def generate_ddp_command(world_size, trainer):
|
|
80
99
|
|
81
100
|
|
82
101
|
def ddp_cleanup(trainer, file):
|
83
|
-
"""
|
102
|
+
"""
|
103
|
+
Delete temporary file if created during distributed data parallel (DDP) training.
|
104
|
+
|
105
|
+
This function checks if the provided file contains the trainer's ID in its name, indicating it was created
|
106
|
+
as a temporary file for DDP training, and deletes it if so.
|
107
|
+
|
108
|
+
Args:
|
109
|
+
trainer (object): The trainer object used for distributed training.
|
110
|
+
file (str): Path to the file that might need to be deleted.
|
111
|
+
|
112
|
+
Examples:
|
113
|
+
>>> trainer = YOLOTrainer()
|
114
|
+
>>> file = "/tmp/ddp_temp_123456789.py"
|
115
|
+
>>> ddp_cleanup(trainer, file)
|
116
|
+
"""
|
84
117
|
if f"{id(trainer)}.py" in file: # if temp_file suffix in file
|
85
118
|
os.remove(file)
|
ultralytics/utils/errors.py
CHANGED
@@ -5,18 +5,39 @@ from ultralytics.utils import emojis
|
|
5
5
|
|
6
6
|
class HUBModelError(Exception):
|
7
7
|
"""
|
8
|
-
|
8
|
+
Exception raised when a model cannot be found or retrieved from Ultralytics HUB.
|
9
9
|
|
10
|
-
This exception is
|
11
|
-
The message is
|
10
|
+
This custom exception is used specifically for handling errors related to model fetching in Ultralytics YOLO.
|
11
|
+
The error message is processed to include emojis for better user experience.
|
12
12
|
|
13
13
|
Attributes:
|
14
14
|
message (str): The error message displayed when the exception is raised.
|
15
15
|
|
16
|
-
|
17
|
-
|
16
|
+
Methods:
|
17
|
+
__init__: Initialize the HUBModelError with a custom message.
|
18
|
+
|
19
|
+
Examples:
|
20
|
+
>>> try:
|
21
|
+
>>> # Code that might fail to find a model
|
22
|
+
>>> raise HUBModelError("Custom model not found message")
|
23
|
+
>>> except HUBModelError as e:
|
24
|
+
>>> print(e) # Displays the emoji-enhanced error message
|
18
25
|
"""
|
19
26
|
|
20
27
|
def __init__(self, message="Model not found. Please check model URL and try again."):
|
21
|
-
"""
|
28
|
+
"""
|
29
|
+
Initialize a HUBModelError exception.
|
30
|
+
|
31
|
+
This exception is raised when a requested model is not found or cannot be retrieved from Ultralytics HUB.
|
32
|
+
The message is processed to include emojis for better user experience.
|
33
|
+
|
34
|
+
Args:
|
35
|
+
message (str, optional): The error message to display when the exception is raised.
|
36
|
+
|
37
|
+
Examples:
|
38
|
+
>>> try:
|
39
|
+
... raise HUBModelError("Custom model error message")
|
40
|
+
... except HUBModelError as e:
|
41
|
+
... print(e)
|
42
|
+
"""
|
22
43
|
super().__init__(emojis(message))
|
ultralytics/utils/patches.py
CHANGED
@@ -18,10 +18,14 @@ def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
|
|
18
18
|
|
19
19
|
Args:
|
20
20
|
filename (str): Path to the file to read.
|
21
|
-
flags (int
|
21
|
+
flags (int): Flag that can take values of cv2.IMREAD_*. Controls how the image is read.
|
22
22
|
|
23
23
|
Returns:
|
24
24
|
(np.ndarray): The read image.
|
25
|
+
|
26
|
+
Examples:
|
27
|
+
>>> img = imread("path/to/image.jpg")
|
28
|
+
>>> img = imread("path/to/image.jpg", cv2.IMREAD_GRAYSCALE)
|
25
29
|
"""
|
26
30
|
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
|
27
31
|
|
@@ -36,7 +40,14 @@ def imwrite(filename: str, img: np.ndarray, params=None):
|
|
36
40
|
params (List[int], optional): Additional parameters for image encoding.
|
37
41
|
|
38
42
|
Returns:
|
39
|
-
(bool): True if the file was written, False otherwise.
|
43
|
+
(bool): True if the file was written successfully, False otherwise.
|
44
|
+
|
45
|
+
Examples:
|
46
|
+
>>> import numpy as np
|
47
|
+
>>> img = np.zeros((100, 100, 3), dtype=np.uint8) # Create a black image
|
48
|
+
>>> success = imwrite("output.jpg", img) # Write image to file
|
49
|
+
>>> print(success)
|
50
|
+
True
|
40
51
|
"""
|
41
52
|
try:
|
42
53
|
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
|
@@ -49,9 +60,19 @@ def imshow(winname: str, mat: np.ndarray):
|
|
49
60
|
"""
|
50
61
|
Display an image in the specified window.
|
51
62
|
|
63
|
+
This function is a wrapper around OpenCV's imshow function that displays an image in a named window. It is
|
64
|
+
particularly useful for visualizing images during development and debugging.
|
65
|
+
|
52
66
|
Args:
|
53
|
-
winname (str): Name of the window.
|
54
|
-
|
67
|
+
winname (str): Name of the window where the image will be displayed. If a window with this name already
|
68
|
+
exists, the image will be displayed in that window.
|
69
|
+
mat (np.ndarray): Image to be shown. Should be a valid numpy array representing an image.
|
70
|
+
|
71
|
+
Examples:
|
72
|
+
>>> import numpy as np
|
73
|
+
>>> img = np.zeros((300, 300, 3), dtype=np.uint8) # Create a black image
|
74
|
+
>>> img[:100, :100] = [255, 0, 0] # Add a blue square
|
75
|
+
>>> imshow("Example Window", img) # Display the image
|
55
76
|
"""
|
56
77
|
_imshow(winname.encode("unicode_escape").decode(), mat)
|
57
78
|
|
@@ -74,7 +95,7 @@ def torch_load(*args, **kwargs):
|
|
74
95
|
Returns:
|
75
96
|
(Any): The loaded PyTorch object.
|
76
97
|
|
77
|
-
|
98
|
+
Notes:
|
78
99
|
For PyTorch versions 2.0 and above, this function automatically sets 'weights_only=False'
|
79
100
|
if the argument is not provided, to avoid deprecation warnings.
|
80
101
|
"""
|
@@ -96,6 +117,13 @@ def torch_save(*args, **kwargs):
|
|
96
117
|
Args:
|
97
118
|
*args (Any): Positional arguments to pass to torch.save.
|
98
119
|
**kwargs (Any): Keyword arguments to pass to torch.save.
|
120
|
+
|
121
|
+
Returns:
|
122
|
+
(Any): Result of torch.save operation if successful, None otherwise.
|
123
|
+
|
124
|
+
Examples:
|
125
|
+
>>> model = torch.nn.Linear(10, 1)
|
126
|
+
>>> torch_save(model.state_dict(), "model.pt")
|
99
127
|
"""
|
100
128
|
for i in range(4): # 3 retries
|
101
129
|
try:
|
ultralytics/utils/triton.py
CHANGED
@@ -25,6 +25,9 @@ class TritonRemoteModel:
|
|
25
25
|
output_names (List[str]): The names of the model outputs.
|
26
26
|
metadata: The metadata associated with the model.
|
27
27
|
|
28
|
+
Methods:
|
29
|
+
__call__: Call the model with the given inputs and return the outputs.
|
30
|
+
|
28
31
|
Examples:
|
29
32
|
Initialize a Triton client with HTTP
|
30
33
|
>>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
|
@@ -34,7 +37,7 @@ class TritonRemoteModel:
|
|
34
37
|
|
35
38
|
def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
|
36
39
|
"""
|
37
|
-
Initialize the TritonRemoteModel.
|
40
|
+
Initialize the TritonRemoteModel for interacting with a remote Triton Inference Server.
|
38
41
|
|
39
42
|
Arguments may be provided individually or parsed from a collective 'url' argument of the form
|
40
43
|
<scheme>://<netloc>/<endpoint>/<task_name>
|
@@ -43,6 +46,10 @@ class TritonRemoteModel:
|
|
43
46
|
url (str): The URL of the Triton server.
|
44
47
|
endpoint (str): The name of the model on the Triton server.
|
45
48
|
scheme (str): The communication scheme ('http' or 'grpc').
|
49
|
+
|
50
|
+
Examples:
|
51
|
+
>>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
|
52
|
+
>>> model = TritonRemoteModel(url="http://localhost:8000/yolov8")
|
46
53
|
"""
|
47
54
|
if not endpoint and not scheme: # Parse all args from URL string
|
48
55
|
splits = urlsplit(url)
|
@@ -83,10 +90,16 @@ class TritonRemoteModel:
|
|
83
90
|
Call the model with the given inputs.
|
84
91
|
|
85
92
|
Args:
|
86
|
-
*inputs (np.ndarray): Input data to the model.
|
93
|
+
*inputs (np.ndarray): Input data to the model. Each array should match the expected shape and type
|
94
|
+
for the corresponding model input.
|
87
95
|
|
88
96
|
Returns:
|
89
|
-
(List[np.ndarray]): Model outputs with the same dtype as the input.
|
97
|
+
(List[np.ndarray]): Model outputs with the same dtype as the input. Each element in the list
|
98
|
+
corresponds to one of the model's output tensors.
|
99
|
+
|
100
|
+
Examples:
|
101
|
+
>>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
|
102
|
+
>>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
|
90
103
|
"""
|
91
104
|
infer_inputs = []
|
92
105
|
input_format = inputs[0].dtype
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.102
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -56,7 +56,6 @@ Requires-Dist: coverage[toml]; extra == "dev"
|
|
56
56
|
Requires-Dist: mkdocs>=1.6.0; extra == "dev"
|
57
57
|
Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
|
58
58
|
Requires-Dist: mkdocstrings[python]; extra == "dev"
|
59
|
-
Requires-Dist: mkdocs-redirects; extra == "dev"
|
60
59
|
Requires-Dist: mkdocs-ultralytics-plugin>=0.1.17; extra == "dev"
|
61
60
|
Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
|
62
61
|
Provides-Extra: export
|