ultralytics 8.2.9__py3-none-any.whl → 8.2.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +1 -0
- ultralytics/data/base.py +1 -1
- ultralytics/engine/exporter.py +80 -19
- ultralytics/engine/results.py +22 -16
- ultralytics/models/yolo/model.py +3 -3
- ultralytics/utils/checks.py +1 -1
- ultralytics/utils/downloads.py +1 -1
- ultralytics/utils/tuner.py +1 -1
- {ultralytics-8.2.9.dist-info → ultralytics-8.2.11.dist-info}/METADATA +2 -2
- {ultralytics-8.2.9.dist-info → ultralytics-8.2.11.dist-info}/RECORD +15 -15
- {ultralytics-8.2.9.dist-info → ultralytics-8.2.11.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.9.dist-info → ultralytics-8.2.11.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.9.dist-info → ultralytics-8.2.11.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.9.dist-info → ultralytics-8.2.11.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
ultralytics/data/base.py
CHANGED
|
@@ -170,7 +170,7 @@ class BaseDataset(Dataset):
|
|
|
170
170
|
if self.augment:
|
|
171
171
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
|
172
172
|
self.buffer.append(i)
|
|
173
|
-
if len(self.buffer) >= self.max_buffer_length:
|
|
173
|
+
if 1 < len(self.buffer) >= self.max_buffer_length: # prevent empty buffer
|
|
174
174
|
j = self.buffer.pop(0)
|
|
175
175
|
if self.cache != "ram":
|
|
176
176
|
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
|
ultralytics/engine/exporter.py
CHANGED
|
@@ -88,7 +88,7 @@ from ultralytics.utils import (
|
|
|
88
88
|
yaml_save,
|
|
89
89
|
)
|
|
90
90
|
from ultralytics.utils.checks import check_imgsz, check_is_path_safe, check_requirements, check_version
|
|
91
|
-
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets
|
|
91
|
+
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
|
|
92
92
|
from ultralytics.utils.files import file_size, spaces_in_path
|
|
93
93
|
from ultralytics.utils.ops import Profile
|
|
94
94
|
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device, smart_inference_mode
|
|
@@ -200,6 +200,8 @@ class Exporter:
|
|
|
200
200
|
self.args.half = False
|
|
201
201
|
assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one."
|
|
202
202
|
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
|
|
203
|
+
if self.args.int8 and engine:
|
|
204
|
+
self.args.dynamic = True # enforce dynamic to export TensorRT INT8; ensures ONNX is dynamic
|
|
203
205
|
if self.args.optimize:
|
|
204
206
|
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
|
|
205
207
|
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
|
|
@@ -349,12 +351,12 @@ class Exporter:
|
|
|
349
351
|
task=self.model.task,
|
|
350
352
|
imgsz=self.imgsz[0],
|
|
351
353
|
augment=False,
|
|
352
|
-
batch_size=self.args.batch,
|
|
354
|
+
batch_size=self.args.batch * 2, # NOTE TensorRT INT8 calibration should use 2x batch size
|
|
353
355
|
)
|
|
354
356
|
n = len(dataset)
|
|
355
357
|
if n < 300:
|
|
356
358
|
LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.")
|
|
357
|
-
return build_dataloader(dataset, batch=self.args.batch, workers=0) # required for batch loading
|
|
359
|
+
return build_dataloader(dataset, batch=self.args.batch * 2, workers=0) # required for batch loading
|
|
358
360
|
|
|
359
361
|
@try_export
|
|
360
362
|
def export_torchscript(self, prefix=colorstr("TorchScript:")):
|
|
@@ -533,7 +535,7 @@ class Exporter:
|
|
|
533
535
|
f_ts = self.file.with_suffix(".torchscript")
|
|
534
536
|
|
|
535
537
|
name = Path("pnnx.exe" if WINDOWS else "pnnx") # PNNX filename
|
|
536
|
-
pnnx = name if name.is_file() else ROOT / name
|
|
538
|
+
pnnx = name if name.is_file() else (ROOT / name)
|
|
537
539
|
if not pnnx.is_file():
|
|
538
540
|
LOGGER.warning(
|
|
539
541
|
f"{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from "
|
|
@@ -542,19 +544,19 @@ class Exporter:
|
|
|
542
544
|
)
|
|
543
545
|
system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux"
|
|
544
546
|
try:
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
assert
|
|
547
|
+
release, assets = get_github_assets(repo="pnnx/pnnx")
|
|
548
|
+
asset = [x for x in assets if f"{system}.zip" in x][0]
|
|
549
|
+
assert isinstance(asset, str), "Unable to retrieve PNNX repo assets" # i.e. pnnx-20240410-macos.zip
|
|
550
|
+
LOGGER.info(f"{prefix} successfully found latest PNNX asset file {asset}")
|
|
548
551
|
except Exception as e:
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
552
|
+
release = "20240410"
|
|
553
|
+
asset = f"pnnx-{release}-{system}.zip"
|
|
554
|
+
LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {asset}")
|
|
555
|
+
unzip_dir = safe_download(f"https://github.com/pnnx/pnnx/releases/download/{release}/{asset}", delete=True)
|
|
556
|
+
if check_is_path_safe(Path.cwd(), unzip_dir): # avoid path traversal security vulnerability
|
|
554
557
|
(unzip_dir / name).rename(pnnx) # move binary to ROOT
|
|
555
|
-
shutil.rmtree(unzip_dir) # delete unzip dir
|
|
556
|
-
Path(asset).unlink() # delete zip
|
|
557
558
|
pnnx.chmod(0o777) # set read, write, and execute permissions for everyone
|
|
559
|
+
shutil.rmtree(unzip_dir) # delete unzip dir
|
|
558
560
|
|
|
559
561
|
ncnn_args = [
|
|
560
562
|
f'ncnnparam={f / "model.ncnn.param"}',
|
|
@@ -599,6 +601,7 @@ class Exporter:
|
|
|
599
601
|
|
|
600
602
|
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
|
|
601
603
|
assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
|
|
604
|
+
assert self.args.batch == 1, "CoreML batch sizes > 1 are not supported. Please retry at 'batch=1'."
|
|
602
605
|
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
|
|
603
606
|
if f.is_dir():
|
|
604
607
|
shutil.rmtree(f)
|
|
@@ -678,6 +681,7 @@ class Exporter:
|
|
|
678
681
|
import tensorrt as trt # noqa
|
|
679
682
|
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
|
|
680
683
|
|
|
684
|
+
# Setup and checks
|
|
681
685
|
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
|
|
682
686
|
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
|
|
683
687
|
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
|
|
@@ -686,6 +690,7 @@ class Exporter:
|
|
|
686
690
|
if self.args.verbose:
|
|
687
691
|
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
688
692
|
|
|
693
|
+
# Engine builder
|
|
689
694
|
builder = trt.Builder(logger)
|
|
690
695
|
config = builder.create_builder_config()
|
|
691
696
|
workspace = int(self.args.workspace * (1 << 30))
|
|
@@ -695,10 +700,14 @@ class Exporter:
|
|
|
695
700
|
config.max_workspace_size = workspace
|
|
696
701
|
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
697
702
|
network = builder.create_network(flag)
|
|
703
|
+
half = builder.platform_has_fast_fp16 and self.args.half
|
|
704
|
+
int8 = builder.platform_has_fast_int8 and self.args.int8
|
|
705
|
+
# Read ONNX file
|
|
698
706
|
parser = trt.OnnxParser(network, logger)
|
|
699
707
|
if not parser.parse_from_file(f_onnx):
|
|
700
708
|
raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
|
|
701
709
|
|
|
710
|
+
# Network inputs
|
|
702
711
|
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
703
712
|
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
704
713
|
for inp in inputs:
|
|
@@ -712,15 +721,67 @@ class Exporter:
|
|
|
712
721
|
LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
|
|
713
722
|
profile = builder.create_optimization_profile()
|
|
714
723
|
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
715
|
-
opt_shape = (max(1, shape[0] // 2), *shape[1:]) # optimal input shape
|
|
716
724
|
max_shape = (*shape[:2], *(max(1, self.args.workspace) * d for d in shape[2:])) # max input shape
|
|
717
725
|
for inp in inputs:
|
|
718
|
-
profile.set_shape(inp.name, min_shape,
|
|
726
|
+
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
719
727
|
config.add_optimization_profile(profile)
|
|
720
728
|
|
|
721
|
-
half
|
|
722
|
-
|
|
723
|
-
|
|
729
|
+
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
|
|
730
|
+
if int8:
|
|
731
|
+
config.set_flag(trt.BuilderFlag.INT8)
|
|
732
|
+
config.set_calibration_profile(profile)
|
|
733
|
+
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
734
|
+
|
|
735
|
+
class EngineCalibrator(trt.IInt8Calibrator):
|
|
736
|
+
def __init__(
|
|
737
|
+
self,
|
|
738
|
+
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
739
|
+
batch: int,
|
|
740
|
+
cache: str = "",
|
|
741
|
+
) -> None:
|
|
742
|
+
trt.IInt8Calibrator.__init__(self)
|
|
743
|
+
self.dataset = dataset
|
|
744
|
+
self.data_iter = iter(dataset)
|
|
745
|
+
self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
|
|
746
|
+
self.batch = batch
|
|
747
|
+
self.cache = Path(cache)
|
|
748
|
+
|
|
749
|
+
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
750
|
+
"""Get the calibration algorithm to use."""
|
|
751
|
+
return self.algo
|
|
752
|
+
|
|
753
|
+
def get_batch_size(self) -> int:
|
|
754
|
+
"""Get the batch size to use for calibration."""
|
|
755
|
+
return self.batch or 1
|
|
756
|
+
|
|
757
|
+
def get_batch(self, names) -> list:
|
|
758
|
+
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
759
|
+
try:
|
|
760
|
+
im0s = next(self.data_iter)["img"] / 255.0
|
|
761
|
+
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
762
|
+
return [int(im0s.data_ptr())]
|
|
763
|
+
except StopIteration:
|
|
764
|
+
# Return [] or None, signal to TensorRT there is no calibration data remaining
|
|
765
|
+
return None
|
|
766
|
+
|
|
767
|
+
def read_calibration_cache(self) -> bytes:
|
|
768
|
+
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
769
|
+
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
770
|
+
return self.cache.read_bytes()
|
|
771
|
+
|
|
772
|
+
def write_calibration_cache(self, cache) -> None:
|
|
773
|
+
"""Write calibration cache to disk."""
|
|
774
|
+
_ = self.cache.write_bytes(cache)
|
|
775
|
+
|
|
776
|
+
# Load dataset w/ builder (for batching) and calibrate
|
|
777
|
+
dataset = self.get_int8_calibration_dataloader(prefix)
|
|
778
|
+
config.int8_calibrator = EngineCalibrator(
|
|
779
|
+
dataset=dataset,
|
|
780
|
+
batch=2 * self.args.batch,
|
|
781
|
+
cache=self.file.with_suffix(".cache"),
|
|
782
|
+
)
|
|
783
|
+
|
|
784
|
+
elif half:
|
|
724
785
|
config.set_flag(trt.BuilderFlag.FP16)
|
|
725
786
|
|
|
726
787
|
# Free CUDA memory
|
ultralytics/engine/results.py
CHANGED
|
@@ -387,26 +387,32 @@ class Results(SimpleClass):
|
|
|
387
387
|
|
|
388
388
|
def summary(self, normalize=False, decimals=5):
|
|
389
389
|
"""Convert the results to a summarized format."""
|
|
390
|
-
if self.probs is not None:
|
|
391
|
-
LOGGER.warning("Warning: Classify results do not support the `summary()` method yet.")
|
|
392
|
-
return
|
|
393
|
-
|
|
394
390
|
# Create list of detection dictionaries
|
|
395
391
|
results = []
|
|
396
|
-
|
|
392
|
+
if self.probs is not None:
|
|
393
|
+
class_id = self.probs.top1
|
|
394
|
+
results.append(
|
|
395
|
+
{
|
|
396
|
+
"name": self.names[class_id],
|
|
397
|
+
"class": class_id,
|
|
398
|
+
"confidence": round(self.probs.top1conf.item(), decimals),
|
|
399
|
+
}
|
|
400
|
+
)
|
|
401
|
+
return results
|
|
402
|
+
|
|
403
|
+
data = self.boxes or self.obb
|
|
404
|
+
is_obb = self.obb is not None
|
|
397
405
|
h, w = self.orig_shape if normalize else (1, 1)
|
|
398
406
|
for i, row in enumerate(data): # xyxy, track_id if tracking, conf, class_id
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
"
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
if self.boxes.is_track:
|
|
409
|
-
result["track_id"] = int(row[-3]) # track ID
|
|
407
|
+
class_id, conf = int(row.cls), round(row.conf.item(), decimals)
|
|
408
|
+
box = (row.xyxyxyxy if is_obb else row.xyxy).squeeze().reshape(-1, 2).tolist()
|
|
409
|
+
xy = {}
|
|
410
|
+
for i, b in enumerate(box):
|
|
411
|
+
xy[f"x{i + 1}"] = round(b[0] / w, decimals)
|
|
412
|
+
xy[f"y{i + 1}"] = round(b[1] / h, decimals)
|
|
413
|
+
result = {"name": self.names[class_id], "class": class_id, "confidence": conf, "box": xy}
|
|
414
|
+
if data.is_track:
|
|
415
|
+
result["track_id"] = int(row.id.item()) # track ID
|
|
410
416
|
if self.masks:
|
|
411
417
|
result["segments"] = {
|
|
412
418
|
"x": (self.masks.xy[i][:, 0] / w).round(decimals).tolist(),
|
ultralytics/models/yolo/model.py
CHANGED
|
@@ -15,7 +15,7 @@ class YOLO(Model):
|
|
|
15
15
|
"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""
|
|
16
16
|
path = Path(model)
|
|
17
17
|
if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model
|
|
18
|
-
new_instance = YOLOWorld(path)
|
|
18
|
+
new_instance = YOLOWorld(path, verbose=verbose)
|
|
19
19
|
self.__class__ = type(new_instance)
|
|
20
20
|
self.__dict__ = new_instance.__dict__
|
|
21
21
|
else:
|
|
@@ -62,14 +62,14 @@ class YOLO(Model):
|
|
|
62
62
|
class YOLOWorld(Model):
|
|
63
63
|
"""YOLO-World object detection model."""
|
|
64
64
|
|
|
65
|
-
def __init__(self, model="yolov8s-world.pt") -> None:
|
|
65
|
+
def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:
|
|
66
66
|
"""
|
|
67
67
|
Initializes the YOLOv8-World model with the given pre-trained model file. Supports *.pt and *.yaml formats.
|
|
68
68
|
|
|
69
69
|
Args:
|
|
70
70
|
model (str | Path): Path to the pre-trained model. Defaults to 'yolov8s-world.pt'.
|
|
71
71
|
"""
|
|
72
|
-
super().__init__(model=model, task="detect")
|
|
72
|
+
super().__init__(model=model, task="detect", verbose=verbose)
|
|
73
73
|
|
|
74
74
|
# Assign default COCO class names when there are no custom names
|
|
75
75
|
if not hasattr(self.model, "names"):
|
ultralytics/utils/checks.py
CHANGED
|
@@ -528,7 +528,7 @@ def check_is_path_safe(basedir, path):
|
|
|
528
528
|
base_dir_resolved = Path(basedir).resolve()
|
|
529
529
|
path_resolved = Path(path).resolve()
|
|
530
530
|
|
|
531
|
-
return path_resolved.
|
|
531
|
+
return path_resolved.exists() and path_resolved.parts[: len(base_dir_resolved.parts)] == base_dir_resolved.parts
|
|
532
532
|
|
|
533
533
|
|
|
534
534
|
def check_imshow(warn=False):
|
ultralytics/utils/downloads.py
CHANGED
|
@@ -418,7 +418,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.2.0", **
|
|
|
418
418
|
|
|
419
419
|
Example:
|
|
420
420
|
```python
|
|
421
|
-
file_path = attempt_download_asset('
|
|
421
|
+
file_path = attempt_download_asset('yolov8n.pt', repo='ultralytics/assets', release='latest')
|
|
422
422
|
```
|
|
423
423
|
"""
|
|
424
424
|
from ultralytics.utils import SETTINGS # scoped for circular import
|
ultralytics/utils/tuner.py
CHANGED
|
@@ -57,7 +57,7 @@ def run_ray_tune(
|
|
|
57
57
|
except (ImportError, AssertionError):
|
|
58
58
|
wandb = False
|
|
59
59
|
|
|
60
|
-
checks.check_version(ray.__version__, "
|
|
60
|
+
checks.check_version(ray.__version__, ">=2.0.0", "ray")
|
|
61
61
|
default_space = {
|
|
62
62
|
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
|
|
63
63
|
"lr0": tune.uniform(1e-5, 1e-1),
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
3
|
+
Version: 8.2.11
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -73,7 +73,7 @@ Requires-Dist: tensorflowjs >=3.9.0 ; (python_version <= "3.11") and extra == 'e
|
|
|
73
73
|
Provides-Extra: extra
|
|
74
74
|
Requires-Dist: hub-sdk >=0.0.5 ; extra == 'extra'
|
|
75
75
|
Requires-Dist: ipython ; extra == 'extra'
|
|
76
|
-
Requires-Dist: albumentations
|
|
76
|
+
Requires-Dist: albumentations >=1.4.6 ; extra == 'extra'
|
|
77
77
|
Requires-Dist: pycocotools >=2.0.7 ; extra == 'extra'
|
|
78
78
|
Provides-Extra: logging
|
|
79
79
|
Requires-Dist: comet ; extra == 'logging'
|
|
@@ -1,7 +1,7 @@
|
|
|
1
|
-
ultralytics/__init__.py,sha256=
|
|
1
|
+
ultralytics/__init__.py,sha256=5T_VEtIm2Rg4il1ezxQQeG6dY2YD1-XOzkDQ8mCaOLM,633
|
|
2
2
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
3
3
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
4
|
-
ultralytics/cfg/__init__.py,sha256=
|
|
4
|
+
ultralytics/cfg/__init__.py,sha256=lR6jykSO_0cigsjrqSyFj_8JG_LvYi796viasyWhcfs,21358
|
|
5
5
|
ultralytics/cfg/default.yaml,sha256=KoXq5DHQK-Voge9DbkySd2rRpDizG6Oq-A4Byqz5Exc,8211
|
|
6
6
|
ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
|
|
7
7
|
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=YDsyFPI6F6-OQXLBM3hOXo3vADYREwZzmMQfJNdpWyM,1193
|
|
@@ -65,7 +65,7 @@ ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmW
|
|
|
65
65
|
ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
|
|
66
66
|
ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
|
|
67
67
|
ultralytics/data/augment.py,sha256=OyGg5Ltmhi6sH8ImEiolr6KaiJPPB7bPqqcd3OHo_fQ,57665
|
|
68
|
-
ultralytics/data/base.py,sha256=
|
|
68
|
+
ultralytics/data/base.py,sha256=C3teLnw97ZTbpJHT9P7yYWosAKocMzgJjRe1rxgfpls,13524
|
|
69
69
|
ultralytics/data/build.py,sha256=JqMjNXEzCHKRgsKwaaTrALs3KnoajoaapCJcPP1UxUI,7483
|
|
70
70
|
ultralytics/data/converter.py,sha256=NLDiV67RshbKQnMJUiQQF11boVzEqgi2Hz39nKVAI4U,17528
|
|
71
71
|
ultralytics/data/dataset.py,sha256=NFaXyHRn64TyTEbtSkr7SkqWXK8bEJl6lZ6M1JwO3MY,22201
|
|
@@ -78,10 +78,10 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
|
|
|
78
78
|
ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
79
79
|
ultralytics/data/explorer/gui/dash.py,sha256=2oAbNroR2lfS45v53M1sRqZklLXbbj6qXqNxvplulC0,10087
|
|
80
80
|
ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
81
|
-
ultralytics/engine/exporter.py,sha256=
|
|
81
|
+
ultralytics/engine/exporter.py,sha256=AxeR5m2iPzdGgGk8teerAeZ-qJ18BEsWMrgkDOEQQVg,58113
|
|
82
82
|
ultralytics/engine/model.py,sha256=EkLTBSm3RT0mWPsZQpVRShihEvI5vx5X_VnkBHc1fxk,40032
|
|
83
83
|
ultralytics/engine/predictor.py,sha256=wQRKdWGDTP5A6CS0gTC6U3RPDMhP3QkEzWSPm6eqCkU,17022
|
|
84
|
-
ultralytics/engine/results.py,sha256=
|
|
84
|
+
ultralytics/engine/results.py,sha256=r5dxL5of8TAf7GQECPehbvfz3KiYi4gUQHRqgPLBe3w,30919
|
|
85
85
|
ultralytics/engine/trainer.py,sha256=GpseAovVKLRgAoqG4bEVtQqemWdDcxrY7gE3vGRU9gs,35048
|
|
86
86
|
ultralytics/engine/tuner.py,sha256=iZrgMmXSDpfuDu4bdFRflmAsscys2-8W8qAGxSyOVJE,11844
|
|
87
87
|
ultralytics/engine/validator.py,sha256=Y21Uo8_Zto4qjk_YqQk6k7tyfpq_Qk9cfjeXeyDRxs8,14643
|
|
@@ -120,7 +120,7 @@ ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8
|
|
|
120
120
|
ultralytics/models/utils/loss.py,sha256=PmlKDe4xQTiYkPSCdNUabxJC7bh43zGxiKVIxsXBVGE,15135
|
|
121
121
|
ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4GM4,13244
|
|
122
122
|
ultralytics/models/yolo/__init__.py,sha256=e1cZr9pbSbf3Ya2OvkTjGRwD_E2YZpe610xskBM8gEk,247
|
|
123
|
-
ultralytics/models/yolo/model.py,sha256=
|
|
123
|
+
ultralytics/models/yolo/model.py,sha256=ds9ArYRlA8QSF1cGg87JNavbo4wXpTUCtF6MIA9SkoA,4040
|
|
124
124
|
ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
|
|
125
125
|
ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
|
|
126
126
|
ultralytics/models/yolo/classify/train.py,sha256=9CRqtLkePo4ZkAzMTxDY4ztrNaWE34qnytYymfCEBzs,6888
|
|
@@ -173,9 +173,9 @@ ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuU
|
|
|
173
173
|
ultralytics/utils/__init__.py,sha256=zyk1cbMtgG8LB9s1FRKRaN2ffMlkKQcVWnhGj1EPP5Y,39284
|
|
174
174
|
ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
|
|
175
175
|
ultralytics/utils/benchmarks.py,sha256=PlnUqhl2Om7jp7bKICDj9a2ABpJSl31VFI3ESnGdme8,23552
|
|
176
|
-
ultralytics/utils/checks.py,sha256=
|
|
176
|
+
ultralytics/utils/checks.py,sha256=wppGRXSjjjCkdGkFUSzICiMpIQyo9kqbVTlwoEXLQcA,28076
|
|
177
177
|
ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
|
|
178
|
-
ultralytics/utils/downloads.py,sha256=
|
|
178
|
+
ultralytics/utils/downloads.py,sha256=cmO2Ev1DV1m_lYgQ2yGDG5xVRIBVS_z9nS_Frec_NeU,21496
|
|
179
179
|
ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
|
|
180
180
|
ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,6761
|
|
181
181
|
ultralytics/utils/instance.py,sha256=5daM5nkxBv9hr5QzyII8zmuFj24hHuNtcr4EMCHAtpY,15654
|
|
@@ -187,7 +187,7 @@ ultralytics/utils/plotting.py,sha256=8Bts0M758PxAdOywsn8xv4ULBG7DuCGMhYWBVH5BrOM
|
|
|
187
187
|
ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
|
|
188
188
|
ultralytics/utils/torch_utils.py,sha256=y1qJniyii0sJFg8dpP-yjYh8AMOoFok9NEZcRi669Jo,25916
|
|
189
189
|
ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
|
|
190
|
-
ultralytics/utils/tuner.py,sha256=
|
|
190
|
+
ultralytics/utils/tuner.py,sha256=49KAadKZsUeCpwIm5Sn0grb0RPcMNI8vHGLwroDEJNI,6171
|
|
191
191
|
ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
|
|
192
192
|
ultralytics/utils/callbacks/base.py,sha256=A8H6jXnPQJfOxA1ByTBWF2ePDs5ldccUabXG0u5BfRI,5776
|
|
193
193
|
ultralytics/utils/callbacks/clearml.py,sha256=M9Fi1OfdWqcm8uVkauuX3zJIYhNh6Tp7Jo4CfA0u0nw,5923
|
|
@@ -199,9 +199,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
|
|
|
199
199
|
ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
|
|
200
200
|
ultralytics/utils/callbacks/tensorboard.py,sha256=Z1veCVcn9THPhdplWuIzwlsW2yF7y-On9IZIk3khM0Y,4135
|
|
201
201
|
ultralytics/utils/callbacks/wb.py,sha256=woCQVuZzqtM5KnwxIibcfM3sFBYojeMPnv11jrRaIQA,6674
|
|
202
|
-
ultralytics-8.2.
|
|
203
|
-
ultralytics-8.2.
|
|
204
|
-
ultralytics-8.2.
|
|
205
|
-
ultralytics-8.2.
|
|
206
|
-
ultralytics-8.2.
|
|
207
|
-
ultralytics-8.2.
|
|
202
|
+
ultralytics-8.2.11.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
203
|
+
ultralytics-8.2.11.dist-info/METADATA,sha256=U4xE6AeqMOz2NCqMwYnTLasQWInJoGEXS83DmgGrg2Y,40694
|
|
204
|
+
ultralytics-8.2.11.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
205
|
+
ultralytics-8.2.11.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
206
|
+
ultralytics-8.2.11.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
207
|
+
ultralytics-8.2.11.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|