ultralytics 8.2.91__py3-none-any.whl → 8.2.92__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.91"
3
+ __version__ = "8.2.92"
4
4
 
5
5
 
6
6
  import os
ultralytics/data/base.py CHANGED
@@ -91,6 +91,11 @@ class BaseDataset(Dataset):
91
91
  self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
92
92
  self.cache = cache.lower() if isinstance(cache, str) else "ram" if cache is True else None
93
93
  if (self.cache == "ram" and self.check_cache_ram()) or self.cache == "disk":
94
+ if self.cache == "ram" and hyp.deterministic:
95
+ LOGGER.warning(
96
+ "WARNING ⚠️ cache='ram' may produce non-deterministic training results. "
97
+ "Consider cache='disk' as a deterministic alternative if your disk space allows."
98
+ )
94
99
  self.cache_images()
95
100
 
96
101
  # Transforms
@@ -522,7 +522,13 @@ class Results(SimpleClass):
522
522
  .contiguous()
523
523
  / 255
524
524
  )
525
- idx = pred_boxes.cls if pred_boxes and color_mode == "class" else reversed(range(len(pred_masks)))
525
+ idx = (
526
+ pred_boxes.id
527
+ if pred_boxes.id is not None and color_mode == "instance"
528
+ else pred_boxes.cls
529
+ if pred_boxes and color_mode == "class"
530
+ else reversed(range(len(pred_masks)))
531
+ )
526
532
  annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
527
533
 
528
534
  # Plot Detect results
@@ -535,7 +541,16 @@ class Results(SimpleClass):
535
541
  annotator.box_label(
536
542
  box,
537
543
  label,
538
- color=colors(i if color_mode == "instance" else c, True),
544
+ color=colors(
545
+ c
546
+ if color_mode == "class"
547
+ else id
548
+ if id is not None
549
+ else i
550
+ if color_mode == "instance"
551
+ else None,
552
+ True,
553
+ ),
539
554
  rotated=is_obb,
540
555
  )
541
556
 
@@ -61,7 +61,6 @@ class TwoWayTransformer(nn.Module):
61
61
  Attributes:
62
62
  depth (int): Number of layers in the transformer.
63
63
  embedding_dim (int): Channel dimension for input embeddings.
64
- embedding_dim (int): Channel dimension for input embeddings.
65
64
  num_heads (int): Number of heads for multihead attention.
66
65
  mlp_dim (int): Internal channel dimension for the MLP block.
67
66
  layers (nn.ModuleList): List of TwoWayAttentionBlock layers.
@@ -60,7 +60,6 @@ class ObjectCounter:
60
60
  self.out_counts = 0
61
61
  self.count_ids = []
62
62
  self.class_wise_count = {}
63
- self.count_txt_thickness = 0
64
63
 
65
64
  # Tracks info
66
65
  self.track_history = defaultdict(list)
@@ -136,7 +135,7 @@ class ObjectCounter:
136
135
  # Extract tracks
137
136
  for box, track_id, cls in zip(boxes, track_ids, clss):
138
137
  # Draw bounding box
139
- annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True))
138
+ annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True))
140
139
 
141
140
  # Store class info
142
141
  if self.names[cls] not in self.class_wise_count:
@@ -182,10 +181,9 @@ class ObjectCounter:
182
181
  self.count_ids.append(track_id)
183
182
 
184
183
  # Determine the direction of movement (IN or OUT)
185
- direction = (box[0] - prev_position[0]) * (
186
- self.counting_region.centroid.x - prev_position[0]
187
- )
188
- if direction > 0:
184
+ dx = (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0])
185
+ dy = (box[1] - prev_position[1]) * (self.counting_region.centroid.y - prev_position[1])
186
+ if dx > 0 and dy > 0:
189
187
  self.in_counts += 1
190
188
  self.class_wise_count[self.names[cls]]["IN"] += 1
191
189
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.91
3
+ Version: 8.2.92
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -8,7 +8,7 @@ tests/test_exports.py,sha256=Uezf3OatpPHlo5qoPw-2kqkZxuMCF9L4XF2riD4vmII,8225
8
8
  tests/test_integrations.py,sha256=xglcfMPjfVh346PV8WTpk6tBxraCXEFJEQyyJMr5tyU,6064
9
9
  tests/test_python.py,sha256=08fg47DuJflumuUBto480-9VCqtEGAhQjNnQdcHs9_c,22242
10
10
  tests/test_solutions.py,sha256=p_2edhl96Ty3jwzSf02Q2m2mTu9skc0Z-eMcUuuXfLg,3300
11
- ultralytics/__init__.py,sha256=5nlbN4BSv-fUicBRXJeL_uFnTDQx9yF3TwSt7viT_1Q,695
11
+ ultralytics/__init__.py,sha256=vqE9VwYPeH0JVhCAsZBNjQ4urkf202uV79ByZ4eShqs,695
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
14
  ultralytics/cfg/__init__.py,sha256=pkB7wk0pHOA3xzKzMbS-hA0iJoPOWVNnwZJh0LuWh-w,33089
@@ -85,7 +85,7 @@ ultralytics/cfg/trackers/bytetrack.yaml,sha256=8vpTZ2x9mhRXJymoJvs1G8kTXo_HxbSwH
85
85
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
86
86
  ultralytics/data/annotator.py,sha256=PniOxH2MScWKp539vuufk69uG1JsltDB5OMCUhxn2QY,2489
87
87
  ultralytics/data/augment.py,sha256=RbFhBQQrE9TazD2MmRPP60HKL3yhkRG0e0VMWbrKe3I,119270
88
- ultralytics/data/base.py,sha256=HK-YZOStAkD8hVHhfBetH-Q_CWfEfuyPvv_gYwxULzY,13527
88
+ ultralytics/data/base.py,sha256=zi_1nnJb29gBqY3jrvbMCwh6RPpXhr08DQ2BQ2_dhTo,13835
89
89
  ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
90
90
  ultralytics/data/converter.py,sha256=DjJ0atku2aKW0iS1PZPNX8V6WTrZ-CHZT6hopE1HSjI,21385
91
91
  ultralytics/data/dataset.py,sha256=IS07ulk7rXPZ-SW_rjYF9mS-TxPXOY9bbo5jqfcwPqM,22874
@@ -101,7 +101,7 @@ ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDT
101
101
  ultralytics/engine/exporter.py,sha256=FjatAPlx93IpkAReST3gPjgDntGbsNuBar13PYSLMcA,57078
102
102
  ultralytics/engine/model.py,sha256=AB9tu7kJW-QiTAp0F_J8KQJ4FijsHXcYBTaVHb7aMrg,52281
103
103
  ultralytics/engine/predictor.py,sha256=MgMWHUJdRcVCaVmOyvdy2Gjk_EyRHv-ar0SSGxQe8F4,17471
104
- ultralytics/engine/results.py,sha256=PgRcz90S7eMwlogqEvax8O1sU3CPA2tEmrAL5kSr6II,70537
104
+ ultralytics/engine/results.py,sha256=x5Ptr5uGjEz63_N1DnfDg2ktNhLqT93oPyIPruuWp6w,70986
105
105
  ultralytics/engine/trainer.py,sha256=7QPWrOwfw2hUNzNKtvTnAM2ui8vdIEDbMn9JTLkmQ9o,36307
106
106
  ultralytics/engine/tuner.py,sha256=gPqDTHH7vRB2O3YyH26m1BjVKbXxuA2XAlPRzTKFZsc,11838
107
107
  ultralytics/engine/validator.py,sha256=yaUMb5efBvgFg8M24IFlmv3J-acbbSgtqLCk-mM07Wo,14623
@@ -137,7 +137,7 @@ ultralytics/models/sam/modules/encoders.py,sha256=Ay3sYeUonCf6URXBdB0dDwyngovevW
137
137
  ultralytics/models/sam/modules/memory_attention.py,sha256=XilWBnRfH8wZxIoL2-yEk-dRypCsS0Jf_9t8WJxXKg0,9722
138
138
  ultralytics/models/sam/modules/sam.py,sha256=_C6tmlseAHA5U3eu4v_LDRTY8yyVv0Q4DCL2G2_2TVA,50036
139
139
  ultralytics/models/sam/modules/tiny_encoder.py,sha256=NyzeFMLnmqwcFQFs-JBM9PCWSsYoYZ_6h59Un1DeDV0,41332
140
- ultralytics/models/sam/modules/transformer.py,sha256=oMlns0i_bcEqdcdnDJzeM7er2_yqqdYk4hZd3QbEGWQ,16154
140
+ ultralytics/models/sam/modules/transformer.py,sha256=nuhF_14LGrr5uYCAP9XCXps-zlVcT4OWO0evXWDxPwI,16081
141
141
  ultralytics/models/sam/modules/utils.py,sha256=Y36V6BVy6GeaAvKE8gHmoDIa-f5LjJpmSVwywNkv2yk,12315
142
142
  ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
143
143
  ultralytics/models/utils/loss.py,sha256=Ozi0Up7cmPAehXgqGuVSAtUS4XQxaX76KqE8Q0VHk7E,15840
@@ -182,7 +182,7 @@ ultralytics/solutions/ai_gym.py,sha256=MgD_4DciCqXquM2Y6yjIIRkGWIg3rNfSuXrFqYzOC
182
182
  ultralytics/solutions/analytics.py,sha256=bGuZes11D7DNiTsHdwu6PJ0QA0vCiqMMAtZ7NyEkshY,11568
183
183
  ultralytics/solutions/distance_calculation.py,sha256=o_DAHk4JX8n2Vt7E68MX67mREOBZuy5skbXtVZ6iu_4,5228
184
184
  ultralytics/solutions/heatmap.py,sha256=oEVivA4KAK6z0wA5Ca_a2qTckQN8tCt9MCpsPREeNnk,10375
185
- ultralytics/solutions/object_counter.py,sha256=Ed3jyXPya-wI6BDiOoDaUlqr2z0o1J6egtJr1SI59UY,9943
185
+ ultralytics/solutions/object_counter.py,sha256=QXSg2a5IBW70lirIKml8xNgPDyzUy7dLt2gUn59_18A,9941
186
186
  ultralytics/solutions/parking_management.py,sha256=z0-g2nehh4aA1nO71foT8Rw5pQTxKnEdcKJb1Arrd0Q,10134
187
187
  ultralytics/solutions/queue_management.py,sha256=q617BErsU69Rm76EFTd8mzoSpPU2WqTs6_pazBQ8GMc,6773
188
188
  ultralytics/solutions/speed_estimation.py,sha256=kjqMSHGTHMZaNgTKNKWULxnJQNsvhq4WMUphMVlBjsc,6768
@@ -225,9 +225,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
225
225
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
226
226
  ultralytics/utils/callbacks/tensorboard.py,sha256=0kn4IR10no99UCIheojWRujgybmUHSx5fPI6Vsq6l_g,4135
227
227
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
228
- ultralytics-8.2.91.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
229
- ultralytics-8.2.91.dist-info/METADATA,sha256=Jln_Nusi3udYtus_TxzPgJlm0QGY25q5y3rRmDRigNM,41871
230
- ultralytics-8.2.91.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
231
- ultralytics-8.2.91.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
232
- ultralytics-8.2.91.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
233
- ultralytics-8.2.91.dist-info/RECORD,,
228
+ ultralytics-8.2.92.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
229
+ ultralytics-8.2.92.dist-info/METADATA,sha256=YkrqHIT3KTMxKD0voROWiOTwrMRZKD4hGMnoVgc56l0,41871
230
+ ultralytics-8.2.92.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
231
+ ultralytics-8.2.92.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
232
+ ultralytics-8.2.92.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
233
+ ultralytics-8.2.92.dist-info/RECORD,,