ultralytics 8.2.76__py3-none-any.whl → 8.2.77__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

@@ -6,17 +6,49 @@ import scipy.linalg
6
6
 
7
7
  class KalmanFilterXYAH:
8
8
  """
9
- For bytetrack. A simple Kalman filter for tracking bounding boxes in image space.
10
-
11
- The 8-dimensional state space (x, y, a, h, vx, vy, va, vh) contains the bounding box center position (x, y), aspect
12
- ratio a, height h, and their respective velocities.
13
-
14
- Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct
15
- observation of the state space (linear observation model).
9
+ A KalmanFilterXYAH class for tracking bounding boxes in image space using a Kalman filter.
10
+
11
+ Implements a simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space
12
+ (x, y, a, h, vx, vy, va, vh) contains the bounding box center position (x, y), aspect ratio a, height h, and their
13
+ respective velocities. Object motion follows a constant velocity model, and bounding box location (x, y, a, h) is
14
+ taken as a direct observation of the state space (linear observation model).
15
+
16
+ Attributes:
17
+ _motion_mat (np.ndarray): The motion matrix for the Kalman filter.
18
+ _update_mat (np.ndarray): The update matrix for the Kalman filter.
19
+ _std_weight_position (float): Standard deviation weight for position.
20
+ _std_weight_velocity (float): Standard deviation weight for velocity.
21
+
22
+ Methods:
23
+ initiate: Creates a track from an unassociated measurement.
24
+ predict: Runs the Kalman filter prediction step.
25
+ project: Projects the state distribution to measurement space.
26
+ multi_predict: Runs the Kalman filter prediction step (vectorized version).
27
+ update: Runs the Kalman filter correction step.
28
+ gating_distance: Computes the gating distance between state distribution and measurements.
29
+
30
+ Examples:
31
+ Initialize the Kalman filter and create a track from a measurement
32
+ >>> kf = KalmanFilterXYAH()
33
+ >>> measurement = np.array([100, 200, 1.5, 50])
34
+ >>> mean, covariance = kf.initiate(measurement)
35
+ >>> print(mean)
36
+ >>> print(covariance)
16
37
  """
17
38
 
18
39
  def __init__(self):
19
- """Initialize Kalman filter model matrices with motion and observation uncertainty weights."""
40
+ """
41
+ Initialize Kalman filter model matrices with motion and observation uncertainty weights.
42
+
43
+ The Kalman filter is initialized with an 8-dimensional state space (x, y, a, h, vx, vy, va, vh), where (x, y)
44
+ represents the bounding box center position, 'a' is the aspect ratio, 'h' is the height, and their respective
45
+ velocities are (vx, vy, va, vh). The filter uses a constant velocity model for object motion and a linear
46
+ observation model for bounding box location.
47
+
48
+ Examples:
49
+ Initialize a Kalman filter for tracking:
50
+ >>> kf = KalmanFilterXYAH()
51
+ """
20
52
  ndim, dt = 4, 1.0
21
53
 
22
54
  # Create Kalman filter model matrices
@@ -32,15 +64,20 @@ class KalmanFilterXYAH:
32
64
 
33
65
  def initiate(self, measurement: np.ndarray) -> tuple:
34
66
  """
35
- Create track from unassociated measurement.
67
+ Create a track from an unassociated measurement.
36
68
 
37
69
  Args:
38
70
  measurement (ndarray): Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a,
39
71
  and height h.
40
72
 
41
73
  Returns:
42
- (tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional)
74
+ (tuple[ndarray, ndarray]): Returns the mean vector (8-dimensional) and covariance matrix (8x8 dimensional)
43
75
  of the new track. Unobserved velocities are initialized to 0 mean.
76
+
77
+ Examples:
78
+ >>> kf = KalmanFilterXYAH()
79
+ >>> measurement = np.array([100, 50, 1.5, 200])
80
+ >>> mean, covariance = kf.initiate(measurement)
44
81
  """
45
82
  mean_pos = measurement
46
83
  mean_vel = np.zeros_like(mean_pos)
@@ -64,12 +101,18 @@ class KalmanFilterXYAH:
64
101
  Run Kalman filter prediction step.
65
102
 
66
103
  Args:
67
- mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step.
68
- covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step.
104
+ mean (ndarray): The 8-dimensional mean vector of the object state at the previous time step.
105
+ covariance (ndarray): The 8x8-dimensional covariance matrix of the object state at the previous time step.
69
106
 
70
107
  Returns:
71
108
  (tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
72
109
  velocities are initialized to 0 mean.
110
+
111
+ Examples:
112
+ >>> kf = KalmanFilterXYAH()
113
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
114
+ >>> covariance = np.eye(8)
115
+ >>> predicted_mean, predicted_covariance = kf.predict(mean, covariance)
73
116
  """
74
117
  std_pos = [
75
118
  self._std_weight_position * mean[3],
@@ -100,6 +143,12 @@ class KalmanFilterXYAH:
100
143
 
101
144
  Returns:
102
145
  (tuple[ndarray, ndarray]): Returns the projected mean and covariance matrix of the given state estimate.
146
+
147
+ Examples:
148
+ >>> kf = KalmanFilterXYAH()
149
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
150
+ >>> covariance = np.eye(8)
151
+ >>> projected_mean, projected_covariance = kf.project(mean, covariance)
103
152
  """
104
153
  std = [
105
154
  self._std_weight_position * mean[3],
@@ -115,15 +164,21 @@ class KalmanFilterXYAH:
115
164
 
116
165
  def multi_predict(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
117
166
  """
118
- Run Kalman filter prediction step (Vectorized version).
167
+ Run Kalman filter prediction step for multiple object states (Vectorized version).
119
168
 
120
169
  Args:
121
170
  mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step.
122
171
  covariance (ndarray): The Nx8x8 covariance matrix of the object states at the previous time step.
123
172
 
124
173
  Returns:
125
- (tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
126
- velocities are initialized to 0 mean.
174
+ (tuple[ndarray, ndarray]): Returns the mean matrix and covariance matrix of the predicted states.
175
+ The mean matrix has shape (N, 8) and the covariance matrix has shape (N, 8, 8). Unobserved velocities
176
+ are initialized to 0 mean.
177
+
178
+ Examples:
179
+ >>> mean = np.random.rand(10, 8) # 10 object states
180
+ >>> covariance = np.random.rand(10, 8, 8) # Covariance matrices for 10 object states
181
+ >>> predicted_mean, predicted_covariance = kalman_filter.multi_predict(mean, covariance)
127
182
  """
128
183
  std_pos = [
129
184
  self._std_weight_position * mean[:, 3],
@@ -160,6 +215,13 @@ class KalmanFilterXYAH:
160
215
 
161
216
  Returns:
162
217
  (tuple[ndarray, ndarray]): Returns the measurement-corrected state distribution.
218
+
219
+ Examples:
220
+ >>> kf = KalmanFilterXYAH()
221
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
222
+ >>> covariance = np.eye(8)
223
+ >>> measurement = np.array([1, 1, 1, 1])
224
+ >>> new_mean, new_covariance = kf.update(mean, covariance, measurement)
163
225
  """
164
226
  projected_mean, projected_cov = self.project(mean, covariance)
165
227
 
@@ -182,23 +244,31 @@ class KalmanFilterXYAH:
182
244
  metric: str = "maha",
183
245
  ) -> np.ndarray:
184
246
  """
185
- Compute gating distance between state distribution and measurements. A suitable distance threshold can be
186
- obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom,
187
- otherwise 2.
247
+ Compute gating distance between state distribution and measurements.
248
+
249
+ A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square
250
+ distribution has 4 degrees of freedom, otherwise 2.
188
251
 
189
252
  Args:
190
253
  mean (ndarray): Mean vector over the state distribution (8 dimensional).
191
254
  covariance (ndarray): Covariance of the state distribution (8x8 dimensional).
192
- measurements (ndarray): An Nx4 matrix of N measurements, each in format (x, y, a, h) where (x, y)
193
- is the bounding box center position, a the aspect ratio, and h the height.
194
- only_position (bool, optional): If True, distance computation is done with respect to the bounding box
195
- center position only. Defaults to False.
196
- metric (str, optional): The metric to use for calculating the distance. Options are 'gaussian' for the
197
- squared Euclidean distance and 'maha' for the squared Mahalanobis distance. Defaults to 'maha'.
255
+ measurements (ndarray): An (N, 4) matrix of N measurements, each in format (x, y, a, h) where (x, y) is the
256
+ bounding box center position, a the aspect ratio, and h the height.
257
+ only_position (bool): If True, distance computation is done with respect to box center position only.
258
+ metric (str): The metric to use for calculating the distance. Options are 'gaussian' for the squared
259
+ Euclidean distance and 'maha' for the squared Mahalanobis distance.
198
260
 
199
261
  Returns:
200
262
  (np.ndarray): Returns an array of length N, where the i-th element contains the squared distance between
201
263
  (mean, covariance) and `measurements[i]`.
264
+
265
+ Examples:
266
+ Compute gating distance using Mahalanobis metric:
267
+ >>> kf = KalmanFilterXYAH()
268
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
269
+ >>> covariance = np.eye(8)
270
+ >>> measurements = np.array([[1, 1, 1, 1], [2, 2, 1, 1]])
271
+ >>> distances = kf.gating_distance(mean, covariance, measurements, only_position=False, metric='maha')
202
272
  """
203
273
  mean, covariance = self.project(mean, covariance)
204
274
  if only_position:
@@ -218,13 +288,33 @@ class KalmanFilterXYAH:
218
288
 
219
289
  class KalmanFilterXYWH(KalmanFilterXYAH):
220
290
  """
221
- For BoT-SORT. A simple Kalman filter for tracking bounding boxes in image space.
222
-
223
- The 8-dimensional state space (x, y, w, h, vx, vy, vw, vh) contains the bounding box center position (x, y), width
224
- w, height h, and their respective velocities.
291
+ A KalmanFilterXYWH class for tracking bounding boxes in image space using a Kalman filter.
225
292
 
226
- Object motion follows a constant velocity model. The bounding box location (x, y, w, h) is taken as direct
293
+ Implements a Kalman filter for tracking bounding boxes with state space (x, y, w, h, vx, vy, vw, vh), where
294
+ (x, y) is the center position, w is the width, h is the height, and vx, vy, vw, vh are their respective velocities.
295
+ The object motion follows a constant velocity model, and the bounding box location (x, y, w, h) is taken as a direct
227
296
  observation of the state space (linear observation model).
297
+
298
+ Attributes:
299
+ _motion_mat (np.ndarray): The motion matrix for the Kalman filter.
300
+ _update_mat (np.ndarray): The update matrix for the Kalman filter.
301
+ _std_weight_position (float): Standard deviation weight for position.
302
+ _std_weight_velocity (float): Standard deviation weight for velocity.
303
+
304
+ Methods:
305
+ initiate: Creates a track from an unassociated measurement.
306
+ predict: Runs the Kalman filter prediction step.
307
+ project: Projects the state distribution to measurement space.
308
+ multi_predict: Runs the Kalman filter prediction step in a vectorized manner.
309
+ update: Runs the Kalman filter correction step.
310
+
311
+ Examples:
312
+ Create a Kalman filter and initialize a track
313
+ >>> kf = KalmanFilterXYWH()
314
+ >>> measurement = np.array([100, 50, 20, 40])
315
+ >>> mean, covariance = kf.initiate(measurement)
316
+ >>> print(mean)
317
+ >>> print(covariance)
228
318
  """
229
319
 
230
320
  def initiate(self, measurement: np.ndarray) -> tuple:
@@ -237,6 +327,22 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
237
327
  Returns:
238
328
  (tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional)
239
329
  of the new track. Unobserved velocities are initialized to 0 mean.
330
+
331
+ Examples:
332
+ >>> kf = KalmanFilterXYWH()
333
+ >>> measurement = np.array([100, 50, 20, 40])
334
+ >>> mean, covariance = kf.initiate(measurement)
335
+ >>> print(mean)
336
+ [100. 50. 20. 40. 0. 0. 0. 0.]
337
+ >>> print(covariance)
338
+ [[ 4. 0. 0. 0. 0. 0. 0. 0.]
339
+ [ 0. 4. 0. 0. 0. 0. 0. 0.]
340
+ [ 0. 0. 4. 0. 0. 0. 0. 0.]
341
+ [ 0. 0. 0. 4. 0. 0. 0. 0.]
342
+ [ 0. 0. 0. 0. 0.25 0. 0. 0.]
343
+ [ 0. 0. 0. 0. 0. 0.25 0. 0.]
344
+ [ 0. 0. 0. 0. 0. 0. 0.25 0.]
345
+ [ 0. 0. 0. 0. 0. 0. 0. 0.25]]
240
346
  """
241
347
  mean_pos = measurement
242
348
  mean_vel = np.zeros_like(mean_pos)
@@ -260,12 +366,18 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
260
366
  Run Kalman filter prediction step.
261
367
 
262
368
  Args:
263
- mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step.
264
- covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step.
369
+ mean (ndarray): The 8-dimensional mean vector of the object state at the previous time step.
370
+ covariance (ndarray): The 8x8-dimensional covariance matrix of the object state at the previous time step.
265
371
 
266
372
  Returns:
267
373
  (tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
268
374
  velocities are initialized to 0 mean.
375
+
376
+ Examples:
377
+ >>> kf = KalmanFilterXYWH()
378
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
379
+ >>> covariance = np.eye(8)
380
+ >>> predicted_mean, predicted_covariance = kf.predict(mean, covariance)
269
381
  """
270
382
  std_pos = [
271
383
  self._std_weight_position * mean[2],
@@ -296,6 +408,12 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
296
408
 
297
409
  Returns:
298
410
  (tuple[ndarray, ndarray]): Returns the projected mean and covariance matrix of the given state estimate.
411
+
412
+ Examples:
413
+ >>> kf = KalmanFilterXYWH()
414
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
415
+ >>> covariance = np.eye(8)
416
+ >>> projected_mean, projected_cov = kf.project(mean, covariance)
299
417
  """
300
418
  std = [
301
419
  self._std_weight_position * mean[2],
@@ -320,6 +438,12 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
320
438
  Returns:
321
439
  (tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
322
440
  velocities are initialized to 0 mean.
441
+
442
+ Examples:
443
+ >>> mean = np.random.rand(5, 8) # 5 objects with 8-dimensional state vectors
444
+ >>> covariance = np.random.rand(5, 8, 8) # 5 objects with 8x8 covariance matrices
445
+ >>> kf = KalmanFilterXYWH()
446
+ >>> predicted_mean, predicted_covariance = kf.multi_predict(mean, covariance)
323
447
  """
324
448
  std_pos = [
325
449
  self._std_weight_position * mean[:, 2],
@@ -356,5 +480,12 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
356
480
 
357
481
  Returns:
358
482
  (tuple[ndarray, ndarray]): Returns the measurement-corrected state distribution.
483
+
484
+ Examples:
485
+ >>> kf = KalmanFilterXYWH()
486
+ >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
487
+ >>> covariance = np.eye(8)
488
+ >>> measurement = np.array([0.5, 0.5, 1.2, 1.2])
489
+ >>> new_mean, new_covariance = kf.update(mean, covariance, measurement)
359
490
  """
360
491
  return super().update(mean, covariance, measurement)
@@ -19,18 +19,23 @@ except (ImportError, AssertionError, AttributeError):
19
19
 
20
20
  def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
21
21
  """
22
- Perform linear assignment using scipy or lap.lapjv.
22
+ Perform linear assignment using either the scipy or lap.lapjv method.
23
23
 
24
24
  Args:
25
- cost_matrix (np.ndarray): The matrix containing cost values for assignments.
25
+ cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
26
26
  thresh (float): Threshold for considering an assignment valid.
27
- use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
27
+ use_lap (bool): Use lap.lapjv for the assignment. If False, scipy.optimize.linear_sum_assignment is used.
28
28
 
29
29
  Returns:
30
- Tuple with:
31
- - matched indices
32
- - unmatched indices from 'a'
33
- - unmatched indices from 'b'
30
+ (tuple): A tuple containing:
31
+ - matched_indices (np.ndarray): Array of matched indices of shape (K, 2), where K is the number of matches.
32
+ - unmatched_a (np.ndarray): Array of unmatched indices from the first set, with shape (L,).
33
+ - unmatched_b (np.ndarray): Array of unmatched indices from the second set, with shape (M,).
34
+
35
+ Examples:
36
+ >>> cost_matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
37
+ >>> thresh = 5.0
38
+ >>> matched_indices, unmatched_a, unmatched_b = linear_assignment(cost_matrix, thresh, use_lap=True)
34
39
  """
35
40
 
36
41
  if cost_matrix.size == 0:
@@ -68,6 +73,12 @@ def iou_distance(atracks: list, btracks: list) -> np.ndarray:
68
73
 
69
74
  Returns:
70
75
  (np.ndarray): Cost matrix computed based on IoU.
76
+
77
+ Examples:
78
+ Compute IoU distance between two sets of tracks
79
+ >>> atracks = [np.array([0, 0, 10, 10]), np.array([20, 20, 30, 30])]
80
+ >>> btracks = [np.array([5, 5, 15, 15]), np.array([25, 25, 35, 35])]
81
+ >>> cost_matrix = iou_distance(atracks, btracks)
71
82
  """
72
83
 
73
84
  if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
@@ -98,12 +109,19 @@ def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -
98
109
  Compute distance between tracks and detections based on embeddings.
99
110
 
100
111
  Args:
101
- tracks (list[STrack]): List of tracks.
102
- detections (list[BaseTrack]): List of detections.
103
- metric (str, optional): Metric for distance computation. Defaults to 'cosine'.
112
+ tracks (list[STrack]): List of tracks, where each track contains embedding features.
113
+ detections (list[BaseTrack]): List of detections, where each detection contains embedding features.
114
+ metric (str): Metric for distance computation. Supported metrics include 'cosine', 'euclidean', etc.
104
115
 
105
116
  Returns:
106
- (np.ndarray): Cost matrix computed based on embeddings.
117
+ (np.ndarray): Cost matrix computed based on embeddings with shape (N, M), where N is the number of tracks
118
+ and M is the number of detections.
119
+
120
+ Examples:
121
+ Compute the embedding distance between tracks and detections using cosine metric
122
+ >>> tracks = [STrack(...), STrack(...)] # List of track objects with embedding features
123
+ >>> detections = [BaseTrack(...), BaseTrack(...)] # List of detection objects with embedding features
124
+ >>> cost_matrix = embedding_distance(tracks, detections, metric='cosine')
107
125
  """
108
126
 
109
127
  cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
@@ -122,11 +140,17 @@ def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
122
140
  Fuses cost matrix with detection scores to produce a single similarity matrix.
123
141
 
124
142
  Args:
125
- cost_matrix (np.ndarray): The matrix containing cost values for assignments.
126
- detections (list[BaseTrack]): List of detections with scores.
143
+ cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
144
+ detections (list[BaseTrack]): List of detections, each containing a score attribute.
127
145
 
128
146
  Returns:
129
- (np.ndarray): Fused similarity matrix.
147
+ (np.ndarray): Fused similarity matrix with shape (N, M).
148
+
149
+ Examples:
150
+ Fuse a cost matrix with detection scores
151
+ >>> cost_matrix = np.random.rand(5, 10) # 5 tracks and 10 detections
152
+ >>> detections = [BaseTrack(score=np.random.rand()) for _ in range(10)]
153
+ >>> fused_matrix = fuse_score(cost_matrix, detections)
130
154
  """
131
155
 
132
156
  if cost_matrix.size == 0:
@@ -47,7 +47,7 @@ PYTHON_VERSION = platform.python_version()
47
47
  TORCH_VERSION = torch.__version__
48
48
  TORCHVISION_VERSION = importlib.metadata.version("torchvision") # faster than importing torchvision
49
49
  HELP_MSG = """
50
- Usage examples for running Ultralytics YOLO:
50
+ Examples for running Ultralytics:
51
51
 
52
52
  1. Install the ultralytics package:
53
53
 
@@ -11,19 +11,44 @@ from pathlib import Path
11
11
 
12
12
 
13
13
  class WorkingDirectory(contextlib.ContextDecorator):
14
- """Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager."""
14
+ """
15
+ A context manager and decorator for temporarily changing the working directory.
16
+
17
+ This class allows for the temporary change of the working directory using a context manager or decorator.
18
+ It ensures that the original working directory is restored after the context or decorated function completes.
19
+
20
+ Attributes:
21
+ dir (Path): The new directory to switch to.
22
+ cwd (Path): The original current working directory before the switch.
23
+
24
+ Methods:
25
+ __enter__: Changes the current directory to the specified directory.
26
+ __exit__: Restores the original working directory on context exit.
27
+
28
+ Examples:
29
+ Using as a context manager:
30
+ >>> with WorkingDirectory('/path/to/new/dir'):
31
+ >>> # Perform operations in the new directory
32
+ >>> pass
33
+
34
+ Using as a decorator:
35
+ >>> @WorkingDirectory('/path/to/new/dir')
36
+ >>> def some_function():
37
+ >>> # Perform operations in the new directory
38
+ >>> pass
39
+ """
15
40
 
16
41
  def __init__(self, new_dir):
17
- """Sets the working directory to 'new_dir' upon instantiation."""
42
+ """Sets the working directory to 'new_dir' upon instantiation for use with context managers or decorators."""
18
43
  self.dir = new_dir # new dir
19
44
  self.cwd = Path.cwd().resolve() # current dir
20
45
 
21
46
  def __enter__(self):
22
- """Changes the current directory to the specified directory."""
47
+ """Changes the current working directory to the specified directory upon entering the context."""
23
48
  os.chdir(self.dir)
24
49
 
25
50
  def __exit__(self, exc_type, exc_val, exc_tb): # noqa
26
- """Restore the current working directory on context exit."""
51
+ """Restores the original working directory when exiting the context."""
27
52
  os.chdir(self.cwd)
28
53
 
29
54
 
@@ -35,18 +60,16 @@ def spaces_in_path(path):
35
60
  file/directory back to its original location.
36
61
 
37
62
  Args:
38
- path (str | Path): The original path.
63
+ path (str | Path): The original path that may contain spaces.
39
64
 
40
65
  Yields:
41
66
  (Path): Temporary path with spaces replaced by underscores if spaces were present, otherwise the original path.
42
67
 
43
- Example:
44
- ```python
45
- with ultralytics.utils.files import spaces_in_path
46
-
47
- with spaces_in_path('/path/with spaces') as new_path:
48
- # Your code here
49
- ```
68
+ Examples:
69
+ Use the context manager to handle paths with spaces:
70
+ >>> from ultralytics.utils.files import spaces_in_path
71
+ >>> with spaces_in_path('/path/with spaces') as new_path:
72
+ >>> # Your code here
50
73
  """
51
74
 
52
75
  # If path has spaces, replace them with underscores
@@ -84,21 +107,35 @@ def spaces_in_path(path):
84
107
 
85
108
  def increment_path(path, exist_ok=False, sep="", mkdir=False):
86
109
  """
87
- Increments a file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
110
+ Increments a file or directory path, i.e., runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
88
111
 
89
- If the path exists and exist_ok is not set to True, the path will be incremented by appending a number and sep to
112
+ If the path exists and `exist_ok` is not True, the path will be incremented by appending a number and `sep` to
90
113
  the end of the path. If the path is a file, the file extension will be preserved. If the path is a directory, the
91
- number will be appended directly to the end of the path. If mkdir is set to True, the path will be created as a
114
+ number will be appended directly to the end of the path. If `mkdir` is set to True, the path will be created as a
92
115
  directory if it does not already exist.
93
116
 
94
117
  Args:
95
- path (str, pathlib.Path): Path to increment.
96
- exist_ok (bool, optional): If True, the path will not be incremented and returned as-is. Defaults to False.
97
- sep (str, optional): Separator to use between the path and the incrementation number. Defaults to ''.
98
- mkdir (bool, optional): Create a directory if it does not exist. Defaults to False.
118
+ path (str | pathlib.Path): Path to increment.
119
+ exist_ok (bool): If True, the path will not be incremented and returned as-is.
120
+ sep (str): Separator to use between the path and the incrementation number.
121
+ mkdir (bool): Create a directory if it does not exist.
99
122
 
100
123
  Returns:
101
124
  (pathlib.Path): Incremented path.
125
+
126
+ Examples:
127
+ Increment a directory path:
128
+ >>> from pathlib import Path
129
+ >>> path = Path("runs/exp")
130
+ >>> new_path = increment_path(path)
131
+ >>> print(new_path)
132
+ runs/exp2
133
+
134
+ Increment a file path:
135
+ >>> path = Path("runs/exp/results.txt")
136
+ >>> new_path = increment_path(path)
137
+ >>> print(new_path)
138
+ runs/exp/results2.txt
102
139
  """
103
140
  path = Path(path) # os-agnostic
104
141
  if path.exists() and not exist_ok:
@@ -118,19 +155,19 @@ def increment_path(path, exist_ok=False, sep="", mkdir=False):
118
155
 
119
156
 
120
157
  def file_age(path=__file__):
121
- """Return days since last file update."""
158
+ """Return days since the last modification of the specified file."""
122
159
  dt = datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime) # delta
123
160
  return dt.days # + dt.seconds / 86400 # fractional days
124
161
 
125
162
 
126
163
  def file_date(path=__file__):
127
- """Return human-readable file modification date, i.e. '2021-3-26'."""
164
+ """Returns the file modification date in 'YYYY-M-D' format."""
128
165
  t = datetime.fromtimestamp(Path(path).stat().st_mtime)
129
166
  return f"{t.year}-{t.month}-{t.day}"
130
167
 
131
168
 
132
169
  def file_size(path):
133
- """Return file/dir size (MB)."""
170
+ """Returns the size of a file or directory in megabytes (MB)."""
134
171
  if isinstance(path, (str, Path)):
135
172
  mb = 1 << 20 # bytes to MiB (1024 ** 2)
136
173
  path = Path(path)
@@ -142,7 +179,7 @@ def file_size(path):
142
179
 
143
180
 
144
181
  def get_latest_run(search_dir="."):
145
- """Return path to most recent 'last.pt' in /runs (i.e. to --resume from)."""
182
+ """Returns the path to the most recent 'last.pt' file in the specified directory for resuming training."""
146
183
  last_list = glob.glob(f"{search_dir}/**/last*.pt", recursive=True)
147
184
  return max(last_list, key=os.path.getctime) if last_list else ""
148
185
 
@@ -152,17 +189,15 @@ def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_name
152
189
  Updates and re-saves specified YOLO models in an 'updated_models' subdirectory.
153
190
 
154
191
  Args:
155
- model_names (tuple, optional): Model filenames to update, defaults to ("yolov8n.pt").
156
- source_dir (Path, optional): Directory containing models and target subdirectory, defaults to current directory.
157
- update_names (bool, optional): Update model names from a data YAML.
158
-
159
- Example:
160
- ```python
161
- from ultralytics.utils.files import update_models
162
-
163
- model_names = (f"rtdetr-{size}.pt" for size in "lx")
164
- update_models(model_names)
165
- ```
192
+ model_names (Tuple[str, ...]): Model filenames to update.
193
+ source_dir (Path): Directory containing models and target subdirectory.
194
+ update_names (bool): Update model names from a data YAML.
195
+
196
+ Examples:
197
+ Update specified YOLO models and save them in 'updated_models' subdirectory:
198
+ >>> from ultralytics.utils.files import update_models
199
+ >>> model_names = ("yolov8n.pt", "yolov8s.pt")
200
+ >>> update_models(model_names, source_dir=Path("/models"), update_names=True)
166
201
  """
167
202
  from ultralytics import YOLO
168
203
  from ultralytics.nn.autobackend import default_class_names
@@ -369,7 +369,7 @@ class Annotator:
369
369
  # Convert im back to PIL and update draw
370
370
  self.fromarray(self.im)
371
371
 
372
- def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25):
372
+ def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25, kpt_color=None):
373
373
  """
374
374
  Plot keypoints on the image.
375
375
 
@@ -379,6 +379,7 @@ class Annotator:
379
379
  radius (int, optional): Radius of the drawn keypoints. Default is 5.
380
380
  kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
381
381
  for human pose. Default is True.
382
+ kpt_color (tuple, optional): The color of the keypoints (B, G, R).
382
383
 
383
384
  Note:
384
385
  `kpt_line=True` currently only supports human pose plotting.
@@ -391,7 +392,7 @@ class Annotator:
391
392
  is_pose = nkpt == 17 and ndim in {2, 3}
392
393
  kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
393
394
  for i, k in enumerate(kpts):
394
- color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
395
+ color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i))
395
396
  x_coord, y_coord = k[0], k[1]
396
397
  if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
397
398
  if len(k) == 3:
@@ -414,7 +415,14 @@ class Annotator:
414
415
  continue
415
416
  if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
416
417
  continue
417
- cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
418
+ cv2.line(
419
+ self.im,
420
+ pos1,
421
+ pos2,
422
+ kpt_color or self.limb_color[i].tolist(),
423
+ thickness=2,
424
+ lineType=cv2.LINE_AA,
425
+ )
418
426
  if self.pil:
419
427
  # Convert im back to PIL and update draw
420
428
  self.fromarray(self.im)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.76
3
+ Version: 8.2.77
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -349,7 +349,7 @@ We love your input! YOLOv5 and YOLOv8 would not be possible without help from ou
349
349
 
350
350
  <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
351
351
 
352
- <a href="https://github.com/ultralytics/yolov5/graphs/contributors">
352
+ <a href="https://github.com/ultralytics/ultralytics/graphs/contributors">
353
353
  <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
354
354
 
355
355
  ## <div align="center">License</div>