ultralytics 8.2.71__py3-none-any.whl → 8.2.73__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/test_cli.py +3 -0
- ultralytics/__init__.py +2 -3
- ultralytics/models/__init__.py +1 -2
- ultralytics/models/sam/__init__.py +2 -2
- ultralytics/models/sam/amg.py +27 -21
- ultralytics/models/sam/build.py +200 -9
- ultralytics/models/sam/model.py +86 -34
- ultralytics/models/sam/modules/blocks.py +1131 -0
- ultralytics/models/sam/modules/decoders.py +390 -23
- ultralytics/models/sam/modules/encoders.py +508 -323
- ultralytics/models/{sam2 → sam}/modules/memory_attention.py +73 -6
- ultralytics/models/sam/modules/sam.py +887 -16
- ultralytics/models/sam/modules/tiny_encoder.py +376 -126
- ultralytics/models/sam/modules/transformer.py +155 -54
- ultralytics/models/{sam2 → sam}/modules/utils.py +105 -3
- ultralytics/models/sam/predict.py +382 -92
- ultralytics/nn/modules/transformer.py +2 -2
- ultralytics/utils/downloads.py +2 -2
- ultralytics/utils/ops.py +2 -2
- ultralytics/utils/plotting.py +3 -3
- {ultralytics-8.2.71.dist-info → ultralytics-8.2.73.dist-info}/METADATA +44 -44
- {ultralytics-8.2.71.dist-info → ultralytics-8.2.73.dist-info}/RECORD +26 -34
- ultralytics/models/sam2/__init__.py +0 -6
- ultralytics/models/sam2/build.py +0 -156
- ultralytics/models/sam2/model.py +0 -97
- ultralytics/models/sam2/modules/__init__.py +0 -1
- ultralytics/models/sam2/modules/decoders.py +0 -305
- ultralytics/models/sam2/modules/encoders.py +0 -332
- ultralytics/models/sam2/modules/sam2.py +0 -804
- ultralytics/models/sam2/modules/sam2_blocks.py +0 -715
- ultralytics/models/sam2/predict.py +0 -182
- {ultralytics-8.2.71.dist-info → ultralytics-8.2.73.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.71.dist-info → ultralytics-8.2.73.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.71.dist-info → ultralytics-8.2.73.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.71.dist-info → ultralytics-8.2.73.dist-info}/top_level.txt +0 -0
|
@@ -6,11 +6,50 @@ from typing import Optional
|
|
|
6
6
|
import torch
|
|
7
7
|
from torch import Tensor, nn
|
|
8
8
|
|
|
9
|
-
from .
|
|
9
|
+
from .blocks import RoPEAttention
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class MemoryAttentionLayer(nn.Module):
|
|
13
|
-
"""
|
|
13
|
+
"""
|
|
14
|
+
Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks.
|
|
15
|
+
|
|
16
|
+
This class combines self-attention, cross-attention, and feedforward components to process input tensors and
|
|
17
|
+
generate memory-based attention outputs.
|
|
18
|
+
|
|
19
|
+
Attributes:
|
|
20
|
+
d_model (int): Dimensionality of the model.
|
|
21
|
+
dim_feedforward (int): Dimensionality of the feedforward network.
|
|
22
|
+
dropout_value (float): Dropout rate for regularization.
|
|
23
|
+
self_attn (RoPEAttention): Self-attention mechanism using RoPE (Rotary Position Embedding).
|
|
24
|
+
cross_attn_image (RoPEAttention): Cross-attention mechanism for image processing.
|
|
25
|
+
linear1 (nn.Linear): First linear layer of the feedforward network.
|
|
26
|
+
linear2 (nn.Linear): Second linear layer of the feedforward network.
|
|
27
|
+
norm1 (nn.LayerNorm): Layer normalization for self-attention output.
|
|
28
|
+
norm2 (nn.LayerNorm): Layer normalization for cross-attention output.
|
|
29
|
+
norm3 (nn.LayerNorm): Layer normalization for feedforward network output.
|
|
30
|
+
dropout1 (nn.Dropout): Dropout layer after self-attention.
|
|
31
|
+
dropout2 (nn.Dropout): Dropout layer after cross-attention.
|
|
32
|
+
dropout3 (nn.Dropout): Dropout layer after feedforward network.
|
|
33
|
+
activation (nn.ReLU): Activation function for the feedforward network.
|
|
34
|
+
pos_enc_at_attn (bool): Flag to add positional encoding at attention.
|
|
35
|
+
pos_enc_at_cross_attn_queries (bool): Flag to add positional encoding to cross-attention queries.
|
|
36
|
+
pos_enc_at_cross_attn_keys (bool): Flag to add positional encoding to cross-attention keys.
|
|
37
|
+
|
|
38
|
+
Methods:
|
|
39
|
+
forward: Performs the full memory attention operation on input tensors.
|
|
40
|
+
_forward_sa: Performs self-attention on input tensor.
|
|
41
|
+
_forward_ca: Performs cross-attention between target and memory tensors.
|
|
42
|
+
|
|
43
|
+
Examples:
|
|
44
|
+
>>> layer = MemoryAttentionLayer(d_model=256, dim_feedforward=2048, dropout=0.1)
|
|
45
|
+
>>> tgt = torch.randn(1, 100, 256)
|
|
46
|
+
>>> memory = torch.randn(1, 100, 64)
|
|
47
|
+
>>> pos = torch.randn(1, 100, 256)
|
|
48
|
+
>>> query_pos = torch.randn(1, 100, 256)
|
|
49
|
+
>>> output = layer(tgt, memory, pos, query_pos)
|
|
50
|
+
>>> print(output.shape)
|
|
51
|
+
torch.Size([1, 100, 256])
|
|
52
|
+
"""
|
|
14
53
|
|
|
15
54
|
def __init__(
|
|
16
55
|
self,
|
|
@@ -21,7 +60,7 @@ class MemoryAttentionLayer(nn.Module):
|
|
|
21
60
|
pos_enc_at_cross_attn_keys: bool = True,
|
|
22
61
|
pos_enc_at_cross_attn_queries: bool = False,
|
|
23
62
|
):
|
|
24
|
-
"""Initializes a
|
|
63
|
+
"""Initializes a memory attention layer with self-attention, cross-attention, and feedforward components."""
|
|
25
64
|
super().__init__()
|
|
26
65
|
self.d_model = d_model
|
|
27
66
|
self.dim_feedforward = dim_feedforward
|
|
@@ -88,7 +127,7 @@ class MemoryAttentionLayer(nn.Module):
|
|
|
88
127
|
query_pos: Optional[Tensor] = None,
|
|
89
128
|
num_k_exclude_rope: int = 0,
|
|
90
129
|
) -> torch.Tensor:
|
|
91
|
-
"""
|
|
130
|
+
"""Processes input tensors using self-attention, cross-attention, and MLP for memory-based attention."""
|
|
92
131
|
tgt = self._forward_sa(tgt, query_pos)
|
|
93
132
|
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
|
94
133
|
# MLP
|
|
@@ -99,7 +138,35 @@ class MemoryAttentionLayer(nn.Module):
|
|
|
99
138
|
|
|
100
139
|
|
|
101
140
|
class MemoryAttention(nn.Module):
|
|
102
|
-
"""
|
|
141
|
+
"""
|
|
142
|
+
Memory attention module for processing sequential data with self and cross-attention mechanisms.
|
|
143
|
+
|
|
144
|
+
This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
|
|
145
|
+
for processing sequential data, particularly useful in transformer-like architectures.
|
|
146
|
+
|
|
147
|
+
Attributes:
|
|
148
|
+
d_model (int): The dimension of the model's hidden state.
|
|
149
|
+
layers (nn.ModuleList): A list of MemoryAttentionLayer modules.
|
|
150
|
+
num_layers (int): The number of attention layers.
|
|
151
|
+
norm (nn.LayerNorm): Layer normalization applied to the output.
|
|
152
|
+
pos_enc_at_input (bool): Whether to apply positional encoding at the input.
|
|
153
|
+
batch_first (bool): Whether the input tensors are in batch-first format.
|
|
154
|
+
|
|
155
|
+
Methods:
|
|
156
|
+
forward: Processes input tensors through the attention layers.
|
|
157
|
+
|
|
158
|
+
Examples:
|
|
159
|
+
>>> d_model = 256
|
|
160
|
+
>>> layer = MemoryAttentionLayer(d_model)
|
|
161
|
+
>>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
|
|
162
|
+
>>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
|
|
163
|
+
>>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
|
|
164
|
+
>>> curr_pos = torch.randn(10, 32, d_model)
|
|
165
|
+
>>> memory_pos = torch.randn(20, 32, d_model)
|
|
166
|
+
>>> output = attention(curr, memory, curr_pos, memory_pos)
|
|
167
|
+
>>> print(output.shape)
|
|
168
|
+
torch.Size([10, 32, 256])
|
|
169
|
+
"""
|
|
103
170
|
|
|
104
171
|
def __init__(
|
|
105
172
|
self,
|
|
@@ -126,7 +193,7 @@ class MemoryAttention(nn.Module):
|
|
|
126
193
|
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
|
127
194
|
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
|
128
195
|
):
|
|
129
|
-
"""
|
|
196
|
+
"""Processes input tensors through multiple attention layers, applying self and cross-attention mechanisms."""
|
|
130
197
|
if isinstance(curr, list):
|
|
131
198
|
assert isinstance(curr_pos, list)
|
|
132
199
|
assert len(curr) == len(curr_pos) == 1
|