ultralytics 8.2.62__py3-none-any.whl → 8.2.63__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.62"
3
+ __version__ = "8.2.63"
4
4
 
5
5
  import os
6
6
 
@@ -1,84 +1,31 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
-
3
2
  import torch
4
3
 
5
- from ultralytics.engine.results import Results
6
- from ultralytics.models.fastsam.utils import bbox_iou
7
- from ultralytics.models.yolo.detect.predict import DetectionPredictor
8
- from ultralytics.utils import DEFAULT_CFG, ops
4
+ from ultralytics.models.yolo.segment import SegmentationPredictor
5
+ from ultralytics.utils.metrics import box_iou
6
+
7
+ from .utils import adjust_bboxes_to_image_border
9
8
 
10
9
 
11
- class FastSAMPredictor(DetectionPredictor):
10
+ class FastSAMPredictor(SegmentationPredictor):
12
11
  """
13
12
  FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
14
13
  YOLO framework.
15
14
 
16
- This class extends the DetectionPredictor, customizing the prediction pipeline specifically for fast SAM.
17
- It adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing
18
- for single-class segmentation.
19
-
20
- Attributes:
21
- cfg (dict): Configuration parameters for prediction.
22
- overrides (dict, optional): Optional parameter overrides for custom behavior.
23
- _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
15
+ This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
16
+ adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
17
+ class segmentation.
24
18
  """
25
19
 
26
- def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
27
- """
28
- Initializes the FastSAMPredictor class, inheriting from DetectionPredictor and setting the task to 'segment'.
29
-
30
- Args:
31
- cfg (dict): Configuration parameters for prediction.
32
- overrides (dict, optional): Optional parameter overrides for custom behavior.
33
- _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
34
- """
35
- super().__init__(cfg, overrides, _callbacks)
36
- self.args.task = "segment"
37
-
38
20
  def postprocess(self, preds, img, orig_imgs):
39
- """
40
- Perform post-processing steps on predictions, including non-max suppression and scaling boxes to original image
41
- size, and returns the final results.
42
-
43
- Args:
44
- preds (list): The raw output predictions from the model.
45
- img (torch.Tensor): The processed image tensor.
46
- orig_imgs (list | torch.Tensor): The original image or list of images.
47
-
48
- Returns:
49
- (list): A list of Results objects, each containing processed boxes, masks, and other metadata.
50
- """
51
- p = ops.non_max_suppression(
52
- preds[0],
53
- self.args.conf,
54
- self.args.iou,
55
- agnostic=self.args.agnostic_nms,
56
- max_det=self.args.max_det,
57
- nc=1, # set to 1 class since SAM has no class predictions
58
- classes=self.args.classes,
59
- )
60
- full_box = torch.zeros(p[0].shape[1], device=p[0].device)
61
- full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
62
- full_box = full_box.view(1, -1)
63
- critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
64
- if critical_iou_index.numel() != 0:
65
- full_box[0][4] = p[0][critical_iou_index][:, 4]
66
- full_box[0][6:] = p[0][critical_iou_index][:, 6:]
67
- p[0][critical_iou_index] = full_box
68
-
69
- if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
70
- orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
71
-
72
- results = []
73
- proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
74
- for i, (pred, orig_img, img_path) in enumerate(zip(p, orig_imgs, self.batch[0])):
75
- if not len(pred): # save empty boxes
76
- masks = None
77
- elif self.args.retina_masks:
78
- pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
79
- masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
80
- else:
81
- masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
82
- pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
83
- results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
21
+ """Applies box postprocess for FastSAM predictions."""
22
+ results = super().postprocess(preds, img, orig_imgs)
23
+ for result in results:
24
+ full_box = torch.tensor(
25
+ [0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
26
+ )
27
+ boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
28
+ idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
29
+ if idx.numel() != 0:
30
+ result.boxes.xyxy[idx] = full_box
84
31
  return results
@@ -1,7 +1,5 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- import torch
4
-
5
3
 
6
4
  def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
7
5
  """
@@ -25,43 +23,3 @@ def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
25
23
  boxes[boxes[:, 2] > w - threshold, 2] = w # x2
26
24
  boxes[boxes[:, 3] > h - threshold, 3] = h # y2
27
25
  return boxes
28
-
29
-
30
- def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False):
31
- """
32
- Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes.
33
-
34
- Args:
35
- box1 (torch.Tensor): (4, )
36
- boxes (torch.Tensor): (n, 4)
37
- iou_thres (float): IoU threshold
38
- image_shape (tuple): (height, width)
39
- raw_output (bool): If True, return the raw IoU values instead of the indices
40
-
41
- Returns:
42
- high_iou_indices (torch.Tensor): Indices of boxes with IoU > thres
43
- """
44
- boxes = adjust_bboxes_to_image_border(boxes, image_shape)
45
- # Obtain coordinates for intersections
46
- x1 = torch.max(box1[0], boxes[:, 0])
47
- y1 = torch.max(box1[1], boxes[:, 1])
48
- x2 = torch.min(box1[2], boxes[:, 2])
49
- y2 = torch.min(box1[3], boxes[:, 3])
50
-
51
- # Compute the area of intersection
52
- intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
53
-
54
- # Compute the area of both individual boxes
55
- box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
56
- box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
57
-
58
- # Compute the area of union
59
- union = box1_area + box2_area - intersection
60
-
61
- # Compute the IoU
62
- iou = intersection / union # Should be shape (n, )
63
- if raw_output:
64
- return 0 if iou.numel() == 0 else iou
65
-
66
- # return indices of boxes with IoU > thres
67
- return torch.nonzero(iou > iou_thres).flatten()
@@ -54,8 +54,6 @@ class ClassificationPredictor(BasePredictor):
54
54
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
55
55
 
56
56
  results = []
57
- for i, pred in enumerate(preds):
58
- orig_img = orig_imgs[i]
59
- img_path = self.batch[0][i]
57
+ for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
60
58
  results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred))
61
59
  return results
@@ -35,9 +35,7 @@ class DetectionPredictor(BasePredictor):
35
35
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
36
36
 
37
37
  results = []
38
- for i, pred in enumerate(preds):
39
- orig_img = orig_imgs[i]
38
+ for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
40
39
  pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
41
- img_path = self.batch[0][i]
42
40
  results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
43
41
  return results
@@ -46,12 +46,10 @@ class PosePredictor(DetectionPredictor):
46
46
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
47
47
 
48
48
  results = []
49
- for i, pred in enumerate(preds):
50
- orig_img = orig_imgs[i]
49
+ for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
51
50
  pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
52
51
  pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
53
52
  pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
54
- img_path = self.batch[0][i]
55
53
  results.append(
56
54
  Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)
57
55
  )
@@ -42,9 +42,7 @@ class SegmentationPredictor(DetectionPredictor):
42
42
 
43
43
  results = []
44
44
  proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] # tuple if PyTorch model or array if exported
45
- for i, pred in enumerate(p):
46
- orig_img = orig_imgs[i]
47
- img_path = self.batch[0][i]
45
+ for i, (pred, orig_img, img_path) in enumerate(zip(p, orig_imgs, self.batch[0])):
48
46
  if not len(pred): # save empty boxes
49
47
  masks = None
50
48
  elif self.args.retina_masks:
@@ -199,7 +199,7 @@ def check_disk_space(url="https://ultralytics.com/assets/coco8.zip", path=Path.c
199
199
  Check if there is sufficient disk space to download and store a file.
200
200
 
201
201
  Args:
202
- url (str, optional): The URL to the file. Defaults to 'https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip'.
202
+ url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco8.zip'.
203
203
  path (str | Path, optional): The path or drive to check the available free space on.
204
204
  sf (float, optional): Safety factor, the multiplier for the required free space. Defaults to 2.0.
205
205
  hard (bool, optional): Whether to throw an error or not on insufficient disk space. Defaults to True.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.62
3
+ Version: 8.2.63
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -8,7 +8,7 @@ tests/test_exports.py,sha256=Uezf3OatpPHlo5qoPw-2kqkZxuMCF9L4XF2riD4vmII,8225
8
8
  tests/test_integrations.py,sha256=xglcfMPjfVh346PV8WTpk6tBxraCXEFJEQyyJMr5tyU,6064
9
9
  tests/test_python.py,sha256=qhtSQ7NDfBChsVUxeSwfUIkoKq0S1Z-Rd9_MP023Y5k,21794
10
10
  tests/test_solutions.py,sha256=EACnPXbeJe2aVTOKfqMk5jclKKCWCVgFEzjpR6y7Sh8,3304
11
- ultralytics/__init__.py,sha256=hDgDgTuQtbBY7Va8Vim-nJfQ4R8PXkvO6eOXiDjj-GY,694
11
+ ultralytics/__init__.py,sha256=_WFzbI-3Dv4xSPA2TrlMjV3n1LrQ7moyS-ONUMEL0wU,694
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
14
  ultralytics/cfg/__init__.py,sha256=fD3Llw12sIkJo4g667t6b051je9nEpwdBLGgbbVEzHY,32973
@@ -112,9 +112,9 @@ ultralytics/hub/utils.py,sha256=tXfM3QbXBcf4Y6StgHI1pktT4OM7Ic9eF3xiBFHGlhY,9721
112
112
  ultralytics/models/__init__.py,sha256=TT9iLCL_n9Y80dcUq0Fo-p-GRZCSU2vrWXM3CoMwqqE,265
113
113
  ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
114
114
  ultralytics/models/fastsam/model.py,sha256=c7GGwaa9AXssJFwrcuytFHpPOlgSrS3n0utyf4JSL2o,1055
115
- ultralytics/models/fastsam/predict.py,sha256=UUbnNDKCoW7DQj24W-tpft4u1JHG_pLRbQHiBLyXMjA,4098
115
+ ultralytics/models/fastsam/predict.py,sha256=_bOSU75qLK1XESxl-XW1SOxriCaX7nsvl5x4exG_c4Q,1324
116
116
  ultralytics/models/fastsam/prompt.py,sha256=4d9e1fEuGpTPWRfu3rG6HT8Bc0rtqJtRpNrlHkmkKcY,15860
117
- ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
117
+ ultralytics/models/fastsam/utils.py,sha256=dCSm6l5yua_PTT5aNvyOvn1Q0h42Ta_NovO7sTbsBxM,715
118
118
  ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
119
119
  ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
120
120
  ultralytics/models/nas/model.py,sha256=nw7574loYfJHiEQx_ttemF9gpyehvWQVVYTIH0lsTSo,2865
@@ -142,11 +142,11 @@ ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4G
142
142
  ultralytics/models/yolo/__init__.py,sha256=e1cZr9pbSbf3Ya2OvkTjGRwD_E2YZpe610xskBM8gEk,247
143
143
  ultralytics/models/yolo/model.py,sha256=wOrJ6HWU9KhG7pVcgK4HdI8xe2GSShe8V4v4bJDVydM,4041
144
144
  ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
145
- ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
145
+ ultralytics/models/yolo/classify/predict.py,sha256=L89AUwUi-G7Cj2PDsRqqJwr91pXoFue_8pXdI7KJdYY,2474
146
146
  ultralytics/models/yolo/classify/train.py,sha256=dNAUROnrS5LAbu6EKw29n6EUEoKYQaNjALoh3mo1Mm0,6291
147
147
  ultralytics/models/yolo/classify/val.py,sha256=MXdtWrBYVpfFuPfFPOTLKa_wBdTIA4dBZguT-EtldZ4,4909
148
148
  ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
149
- ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
149
+ ultralytics/models/yolo/detect/predict.py,sha256=HcbhWUEqF97b8IjIt_scanHvSy6vzyRgybFo08o1Eok,1471
150
150
  ultralytics/models/yolo/detect/train.py,sha256=8Ulq1SPNLrkOqXj0Yt5zNR1c_Xl_QnOjllCdqBHUMds,6353
151
151
  ultralytics/models/yolo/detect/val.py,sha256=WaCGB_B_TTIbeR8ZxKoC2YJrPdIgFJ-fP8EI7SoE4NA,15128
152
152
  ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
@@ -154,11 +154,11 @@ ultralytics/models/yolo/obb/predict.py,sha256=prfDzhwuVHKF6CRwnFVBA-YFI5q7U7NEQw
154
154
  ultralytics/models/yolo/obb/train.py,sha256=tWpFtcasMwWq1A_9VdbEg5pIVHwuWwmeLOyj-S4_1sY,1473
155
155
  ultralytics/models/yolo/obb/val.py,sha256=fflxcpdAAYJBzao1TlEbNY0rWl-9irmCIdrXcAbvkQY,9303
156
156
  ultralytics/models/yolo/pose/__init__.py,sha256=OGvxN3LqJot2h8GX1csJ1KErsHnDKsm33Ce6ZBU9Lr4,199
157
- ultralytics/models/yolo/pose/predict.py,sha256=illk4qyZvybc_XMo9TKT54FIkizx91MYviE5c5OwBTQ,2404
157
+ ultralytics/models/yolo/pose/predict.py,sha256=jQXvcqdjgnOG1sRw7L-mVZ6HcVkE2pgnkPMo7xBYRtg,2365
158
158
  ultralytics/models/yolo/pose/train.py,sha256=ki8bkT8WfIFjTKf1ofeRDqeIqmk6A8a7AFog7nM-otM,2926
159
159
  ultralytics/models/yolo/pose/val.py,sha256=QnPrSnlHHN7UVoZ6tgtRjuJjwOZY8l-MEYxuQPYvJ-4,12364
160
160
  ultralytics/models/yolo/segment/__init__.py,sha256=mSbKOE8BnHL7PL2nCOVG7dRM7CI6hJezFPPwZFjEmy8,247
161
- ultralytics/models/yolo/segment/predict.py,sha256=xtA0ZZyuh9WVpX7zZFdAeCkWnxhQ30ADEzSud_H6N7E,2491
161
+ ultralytics/models/yolo/segment/predict.py,sha256=ETBXOZ4dw8i74SPRkt1xkKrpJb5ml_hacAjDNSE5LAY,2468
162
162
  ultralytics/models/yolo/segment/train.py,sha256=aOQpDIptZfKSl9mFa6B-3W3QccMRlmBINBkI9K8-3sQ,2298
163
163
  ultralytics/models/yolo/segment/val.py,sha256=kPnlAd5aA6kHsIPp5UCsGTy-ai5kyKx2QggVGCH_H6U,14034
164
164
  ultralytics/models/yolo/world/__init__.py,sha256=3VTH0q4NOt2EWRom15yCymvmvm0Etp2bmETJUhsVTBI,103
@@ -197,7 +197,7 @@ ultralytics/utils/autobatch.py,sha256=gPFcREMsMHRAuTQiBnNZ9Mm1XNqmQW-uMPhveDFEQ_
197
197
  ultralytics/utils/benchmarks.py,sha256=nsoCJx755RWAZz0D6igTrM0FM2BoQXgLCMbXaMqvZlk,23664
198
198
  ultralytics/utils/checks.py,sha256=QIltfNxlZdMOTzXqU815MBIevMj_TKBU_VeVXqjXdOo,28411
199
199
  ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
200
- ultralytics/utils/downloads.py,sha256=60GL4gZ3kIHvu-8_PrPY1WBNuXPMvL5si-6vCX_qbQ4,21929
200
+ ultralytics/utils/downloads.py,sha256=NB9UDas5f8Rzxt_PS1vDKkSgCxcJ0R_-pjNyZ8E3OUM,21897
201
201
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
202
202
  ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,6761
203
203
  ultralytics/utils/instance.py,sha256=5daM5nkxBv9hr5QzyII8zmuFj24hHuNtcr4EMCHAtpY,15654
@@ -221,9 +221,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
221
221
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
222
222
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
223
223
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
224
- ultralytics-8.2.62.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
225
- ultralytics-8.2.62.dist-info/METADATA,sha256=rqXjjN4mVt61M_mfmShx-VRMZaqAVPL8wQBidp843Fk,41217
226
- ultralytics-8.2.62.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
227
- ultralytics-8.2.62.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
228
- ultralytics-8.2.62.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
229
- ultralytics-8.2.62.dist-info/RECORD,,
224
+ ultralytics-8.2.63.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
225
+ ultralytics-8.2.63.dist-info/METADATA,sha256=KIk6LQCwRNLtxbVHfsToCUjqXkypVGxbVObVQOcGpI8,41217
226
+ ultralytics-8.2.63.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
227
+ ultralytics-8.2.63.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
228
+ ultralytics-8.2.63.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
229
+ ultralytics-8.2.63.dist-info/RECORD,,