ultralytics 8.2.61__py3-none-any.whl → 8.2.62__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

@@ -71,9 +71,7 @@ class FastSAMPredictor(DetectionPredictor):
71
71
 
72
72
  results = []
73
73
  proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
74
- for i, pred in enumerate(p):
75
- orig_img = orig_imgs[i]
76
- img_path = self.batch[0][i]
74
+ for i, (pred, orig_img, img_path) in enumerate(zip(p, orig_imgs, self.batch[0])):
77
75
  if not len(pred): # save empty boxes
78
76
  masks = None
79
77
  elif self.args.retina_masks:
@@ -52,9 +52,7 @@ class NASPredictor(BasePredictor):
52
52
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
53
53
 
54
54
  results = []
55
- for i, pred in enumerate(preds):
56
- orig_img = orig_imgs[i]
55
+ for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
57
56
  pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
58
- img_path = self.batch[0][i]
59
57
  results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
60
58
  return results
@@ -56,18 +56,16 @@ class RTDETRPredictor(BasePredictor):
56
56
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
57
57
 
58
58
  results = []
59
- for i, bbox in enumerate(bboxes): # (300, 4)
59
+ for bbox, score, orig_img, img_path in zip(bboxes, scores, orig_imgs, self.batch[0]): # (300, 4)
60
60
  bbox = ops.xywh2xyxy(bbox)
61
- score, cls = scores[i].max(-1, keepdim=True) # (300, 1)
62
- idx = score.squeeze(-1) > self.args.conf # (300, )
61
+ max_score, cls = score.max(-1, keepdim=True) # (300, 1)
62
+ idx = max_score.squeeze(-1) > self.args.conf # (300, )
63
63
  if self.args.classes is not None:
64
64
  idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
65
- pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter
66
- orig_img = orig_imgs[i]
65
+ pred = torch.cat([bbox, max_score, cls], dim=-1)[idx] # filter
67
66
  oh, ow = orig_img.shape[:2]
68
67
  pred[..., [0, 2]] *= ow
69
68
  pred[..., [1, 3]] *= oh
70
- img_path = self.batch[0][i]
71
69
  results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
72
70
  return results
73
71
 
@@ -372,8 +372,7 @@ class Predictor(BasePredictor):
372
372
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
373
373
 
374
374
  results = []
375
- for i, masks in enumerate([pred_masks]):
376
- orig_img = orig_imgs[i]
375
+ for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
377
376
  if pred_bboxes is not None:
378
377
  pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
379
378
  cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
@@ -381,7 +380,6 @@ class Predictor(BasePredictor):
381
380
 
382
381
  masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
383
382
  masks = masks > self.model.mask_threshold # to bool
384
- img_path = self.batch[0][i]
385
383
  results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
386
384
  # Reset segment-all mode.
387
385
  self.segment_all = False
@@ -10,7 +10,7 @@ from ultralytics.utils.checks import check_requirements
10
10
  from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
11
11
 
12
12
 
13
- def inference():
13
+ def inference(model=None):
14
14
  """Runs real-time object detection on video input using Ultralytics YOLOv8 in a Streamlit application."""
15
15
  check_requirements("streamlit>=1.29.0") # scope imports for faster ultralytics package load speeds
16
16
  import streamlit as st
@@ -67,7 +67,10 @@ def inference():
67
67
  vid_file_name = 0
68
68
 
69
69
  # Add dropdown menu for model selection
70
- available_models = (x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolov8"))
70
+ available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolov8")]
71
+ if model:
72
+ available_models.insert(0, model)
73
+
71
74
  selected_model = st.sidebar.selectbox("Model", available_models)
72
75
  with st.spinner("Model is downloading..."):
73
76
  model = YOLO(f"{selected_model.lower()}.pt") # Load the YOLO model
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.61
3
+ Version: 8.2.62
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -8,10 +8,10 @@ tests/test_exports.py,sha256=Uezf3OatpPHlo5qoPw-2kqkZxuMCF9L4XF2riD4vmII,8225
8
8
  tests/test_integrations.py,sha256=xglcfMPjfVh346PV8WTpk6tBxraCXEFJEQyyJMr5tyU,6064
9
9
  tests/test_python.py,sha256=qhtSQ7NDfBChsVUxeSwfUIkoKq0S1Z-Rd9_MP023Y5k,21794
10
10
  tests/test_solutions.py,sha256=EACnPXbeJe2aVTOKfqMk5jclKKCWCVgFEzjpR6y7Sh8,3304
11
- ultralytics/__init__.py,sha256=-YRwpfkZ3p2rWo5AUHnmJ7_q4ZcNmoHJIyDsofxE1A4,694
11
+ ultralytics/__init__.py,sha256=hDgDgTuQtbBY7Va8Vim-nJfQ4R8PXkvO6eOXiDjj-GY,694
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=LV6RYG3oJRbxasy4V0gpeFsxWvLNHQYI--Emc71XctM,29366
14
+ ultralytics/cfg/__init__.py,sha256=fD3Llw12sIkJo4g667t6b051je9nEpwdBLGgbbVEzHY,32973
15
15
  ultralytics/cfg/default.yaml,sha256=xRKVF-Z9E3imXTU9OCK94kj3jGgYoo67VJQwuYlHiUU,8228
16
16
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
17
17
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
@@ -83,25 +83,25 @@ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=qL__kr6GoefpQWP4jV0jdzwTp46bdFUcqt
83
83
  ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
84
84
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
85
85
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
86
- ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
87
- ultralytics/data/augment.py,sha256=V0iyu_9q_mx-G_61sPA1FWt_6ErJY4SnY_W62uxKOqI,59866
86
+ ultralytics/data/annotator.py,sha256=1Hyu6ubrBL8KmRrt1keGn-K4XTqQdAVyIwTsQiBtzLU,2489
87
+ ultralytics/data/augment.py,sha256=NrcaGAB7aUbQRaggkxnBHHSKPd3GVaTxdVwcHsZs6xc,119151
88
88
  ultralytics/data/base.py,sha256=C3teLnw97ZTbpJHT9P7yYWosAKocMzgJjRe1rxgfpls,13524
89
89
  ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
90
90
  ultralytics/data/converter.py,sha256=7640xKuf7LPeoTwoCvgbIXM5xbzyq72Hu2Rf2lrgjRY,17554
91
91
  ultralytics/data/dataset.py,sha256=2m_YOw73gO_mzvitel5OKuQpbkwFTDnpPNcUIz4cayI,22579
92
- ultralytics/data/loaders.py,sha256=XnwJsrejnigaG0wwivKccFUxq002czYa4cgVfGzsFms,24078
92
+ ultralytics/data/loaders.py,sha256=cAyGlSNonzYXU5eBXiDVFrDOlTeziXGyO7_UaToUGrc,24152
93
93
  ultralytics/data/split_dota.py,sha256=fWezt1Bo3jiZ6AyUWdBtTUuvLamPv1t7JD-DirM9gQ8,10142
94
94
  ultralytics/data/utils.py,sha256=GHmqx6e5yRfcUD2Qkwk-tQfhXCwtUMFD3Uf6d699nGo,31046
95
95
  ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
96
96
  ultralytics/data/explorer/explorer.py,sha256=3puHbDFgoEjiRkLzKOGc1CLTUNbqJrLrq8MeBYLeBFc,19222
97
97
  ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yfi8NIA,7085
98
98
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
99
- ultralytics/data/explorer/gui/dash.py,sha256=CPlFIIhf53j_YVAqealsC3AbcztdPqZxfniQcBnlKK4,10042
99
+ ultralytics/data/explorer/gui/dash.py,sha256=vZ476NaUH4FKU08rAJ1K9WNyKtg0soMyJJxqg176yWc,10498
100
100
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
101
101
  ultralytics/engine/exporter.py,sha256=mJqo3TbYuVcNA26rN5Fc57a1uVAqYfT1P3GSSE5k4rU,58741
102
- ultralytics/engine/model.py,sha256=4oL9XhQlPSa0I6YqgGwS30KHg7dG55cGb1MVKGdQbMo,39337
102
+ ultralytics/engine/model.py,sha256=zeyyXy4dY3fTj0GjYeTuvJcKyNmlEX34ntSzLF3_T7E,52013
103
103
  ultralytics/engine/predictor.py,sha256=W58kDCFH2AfoFzpGbos3k8zUEVsLunBuM8sc2B64rPY,17449
104
- ultralytics/engine/results.py,sha256=5MevvBz0E-cpDf55FqweInlKdcQPb7sz0EgZSROJqw4,35817
104
+ ultralytics/engine/results.py,sha256=oNAzSKdKxxx_5QQd9opzCevvgPhspdY5BkWxoz5bQ8E,69882
105
105
  ultralytics/engine/trainer.py,sha256=vFdWN6I-DoAHZYmxjRDeYcc44B9i8tBtK8u6oMgyj9o,35476
106
106
  ultralytics/engine/tuner.py,sha256=iZrgMmXSDpfuDu4bdFRflmAsscys2-8W8qAGxSyOVJE,11844
107
107
  ultralytics/engine/validator.py,sha256=Y21Uo8_Zto4qjk_YqQk6k7tyfpq_Qk9cfjeXeyDRxs8,14643
@@ -112,24 +112,24 @@ ultralytics/hub/utils.py,sha256=tXfM3QbXBcf4Y6StgHI1pktT4OM7Ic9eF3xiBFHGlhY,9721
112
112
  ultralytics/models/__init__.py,sha256=TT9iLCL_n9Y80dcUq0Fo-p-GRZCSU2vrWXM3CoMwqqE,265
113
113
  ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
114
114
  ultralytics/models/fastsam/model.py,sha256=c7GGwaa9AXssJFwrcuytFHpPOlgSrS3n0utyf4JSL2o,1055
115
- ultralytics/models/fastsam/predict.py,sha256=0WHUFrqHUNy1cTNpLKsN0FKqLKCvr7fHU6pp91_QVg0,4121
115
+ ultralytics/models/fastsam/predict.py,sha256=UUbnNDKCoW7DQj24W-tpft4u1JHG_pLRbQHiBLyXMjA,4098
116
116
  ultralytics/models/fastsam/prompt.py,sha256=4d9e1fEuGpTPWRfu3rG6HT8Bc0rtqJtRpNrlHkmkKcY,15860
117
117
  ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
118
118
  ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
119
119
  ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
120
120
  ultralytics/models/nas/model.py,sha256=nw7574loYfJHiEQx_ttemF9gpyehvWQVVYTIH0lsTSo,2865
121
- ultralytics/models/nas/predict.py,sha256=O7f92KE6hi5DENTRzXiMsm-qK-ndVoO1Bs3dugp8aLA,2136
121
+ ultralytics/models/nas/predict.py,sha256=uRtr9hLwkGG0w3lYDgiuqd0ataQ_RYR_BQdY0qMz5NI,2097
122
122
  ultralytics/models/nas/val.py,sha256=tVRfUEy1vEG67O5JZQzQO0gPHjt_WWiPvRvPlg_Btgg,1669
123
123
  ultralytics/models/rtdetr/__init__.py,sha256=AZga1C3qlGTtgpAupDW4doijq5aZlQeF8e55_DP2Uas,197
124
124
  ultralytics/models/rtdetr/model.py,sha256=2VkppF1_581XmQ0UI7lo8fX7MqhAJPXVMr2jyMHXtbk,1988
125
- ultralytics/models/rtdetr/predict.py,sha256=-NFBAv_4VIUcXycO7wA8IH6EHXrVyOir-5PZkd46qyo,3584
125
+ ultralytics/models/rtdetr/predict.py,sha256=GmeNiFszDajq9YNPi0jW89CqP0MRD5Gtmokh9z0JAQc,3568
126
126
  ultralytics/models/rtdetr/train.py,sha256=20AFYVW9NPxw0-cp-sRdIovWidFL0IIhJRv2oZjkPlM,3685
127
127
  ultralytics/models/rtdetr/val.py,sha256=4QQArdaGEY8rJsJuvyJ032f8GGVGdV2jURHK2EdMxyk,5566
128
128
  ultralytics/models/sam/__init__.py,sha256=9A1iyfPN_ncqq3TMExe_-uPoARjEX3psoHEI1xMG2VE,144
129
129
  ultralytics/models/sam/amg.py,sha256=He2c4nIoZ__F_pL18rRl278R8iBjWXBM2Z_vxfuVOkk,7971
130
130
  ultralytics/models/sam/build.py,sha256=-i-vj0egQ2idBZUf3Xf-H89QeToM3ky0HTxKP_KEXTs,4944
131
131
  ultralytics/models/sam/model.py,sha256=dkEhqJEZFuSoKubMaAjUx1U9Np49AII3nBScdH8rMBI,4707
132
- ultralytics/models/sam/predict.py,sha256=BuSaqMOkpwiM5H5sWOE1CDIwEDkz8uMKV6AMRysCZk4,23614
132
+ ultralytics/models/sam/predict.py,sha256=hachjdcJ175v_oOUPmu_jG_VSe2wCbpLpi4qymUJV34,23575
133
133
  ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
134
134
  ultralytics/models/sam/modules/decoders.py,sha256=7NWnBNupxGYvH0S1N0R6NBHxdVFRUrrnL9EqAw09J4E,7816
135
135
  ultralytics/models/sam/modules/encoders.py,sha256=pRNZHzt2J2xD_D0Btu8pk4DcItfr6dRr9rcRfxoZZhU,24746
@@ -182,7 +182,7 @@ ultralytics/solutions/object_counter.py,sha256=C80ET_-tIKv7pfshO8DFwimCieBHV4Ns7
182
182
  ultralytics/solutions/parking_management.py,sha256=_cJ4kXIq4l56WVyNsq6RUVe_mv5oBy-fmt1vIyevPko,10139
183
183
  ultralytics/solutions/queue_management.py,sha256=CxFvHwSHq8OZ5aW7x2F10jcjkGAQ3LSJ5z69zusRVbs,6781
184
184
  ultralytics/solutions/speed_estimation.py,sha256=kjqMSHGTHMZaNgTKNKWULxnJQNsvhq4WMUphMVlBjsc,6768
185
- ultralytics/solutions/streamlit_inference.py,sha256=d4LIpexPv31o8WQ5xXUvUlZmEwmKlJQD3PdrMIJ8ISY,5566
185
+ ultralytics/solutions/streamlit_inference.py,sha256=znX2pHkaAd7CfTiQn6ieguBHAnlKqlEV0rlpF-TQMTQ,5633
186
186
  ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
187
187
  ultralytics/trackers/basetrack.py,sha256=-vBDD-Q9lsxfTMK2w9kuqWGrYbRMmaBCCEbGGyR53gE,3675
188
188
  ultralytics/trackers/bot_sort.py,sha256=39AvhYVbT7izF3--rX_e6Lhgb5czTA23gw6AgnNcRds,8601
@@ -221,9 +221,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
221
221
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
222
222
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
223
223
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
224
- ultralytics-8.2.61.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
225
- ultralytics-8.2.61.dist-info/METADATA,sha256=aMYvs_rMSM8KBPCAlFM4_cy9cjs0Zi2DDSiKW4Ljjx4,41217
226
- ultralytics-8.2.61.dist-info/WHEEL,sha256=rWxmBtp7hEUqVLOnTaDOPpR-cZpCDkzhhcBce-Zyd5k,91
227
- ultralytics-8.2.61.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
228
- ultralytics-8.2.61.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
229
- ultralytics-8.2.61.dist-info/RECORD,,
224
+ ultralytics-8.2.62.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
225
+ ultralytics-8.2.62.dist-info/METADATA,sha256=rqXjjN4mVt61M_mfmShx-VRMZaqAVPL8wQBidp843Fk,41217
226
+ ultralytics-8.2.62.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
227
+ ultralytics-8.2.62.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
228
+ ultralytics-8.2.62.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
229
+ ultralytics-8.2.62.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (71.0.4)
2
+ Generator: setuptools (71.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5