ultralytics 8.2.52__py3-none-any.whl → 8.2.53__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (35) hide show
  1. tests/test_python.py +3 -3
  2. ultralytics/__init__.py +1 -1
  3. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  4. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  5. ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -1
  6. ultralytics/cfg/datasets/VOC.yaml +1 -1
  7. ultralytics/cfg/datasets/VisDrone.yaml +4 -4
  8. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  9. ultralytics/cfg/datasets/brain-tumor.yaml +1 -1
  10. ultralytics/cfg/datasets/carparts-seg.yaml +1 -1
  11. ultralytics/cfg/datasets/coco-pose.yaml +1 -1
  12. ultralytics/cfg/datasets/coco.yaml +1 -1
  13. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  14. ultralytics/cfg/datasets/coco128.yaml +1 -1
  15. ultralytics/cfg/datasets/coco8-pose.yaml +1 -1
  16. ultralytics/cfg/datasets/coco8-seg.yaml +1 -1
  17. ultralytics/cfg/datasets/coco8.yaml +1 -1
  18. ultralytics/cfg/datasets/crack-seg.yaml +1 -1
  19. ultralytics/cfg/datasets/dota8.yaml +1 -1
  20. ultralytics/cfg/datasets/lvis.yaml +1 -1
  21. ultralytics/cfg/datasets/package-seg.yaml +1 -1
  22. ultralytics/cfg/datasets/signature.yaml +1 -1
  23. ultralytics/cfg/datasets/tiger-pose.yaml +1 -1
  24. ultralytics/data/utils.py +1 -1
  25. ultralytics/engine/trainer.py +1 -1
  26. ultralytics/solutions/heatmap.py +9 -8
  27. ultralytics/utils/benchmarks.py +1 -1
  28. ultralytics/utils/checks.py +1 -1
  29. ultralytics/utils/downloads.py +10 -8
  30. {ultralytics-8.2.52.dist-info → ultralytics-8.2.53.dist-info}/METADATA +1 -1
  31. {ultralytics-8.2.52.dist-info → ultralytics-8.2.53.dist-info}/RECORD +35 -35
  32. {ultralytics-8.2.52.dist-info → ultralytics-8.2.53.dist-info}/LICENSE +0 -0
  33. {ultralytics-8.2.52.dist-info → ultralytics-8.2.53.dist-info}/WHEEL +0 -0
  34. {ultralytics-8.2.52.dist-info → ultralytics-8.2.53.dist-info}/entry_points.txt +0 -0
  35. {ultralytics-8.2.52.dist-info → ultralytics-8.2.53.dist-info}/top_level.txt +0 -0
tests/test_python.py CHANGED
@@ -90,7 +90,7 @@ def test_predict_img(model_name):
90
90
  batch = [
91
91
  str(SOURCE), # filename
92
92
  Path(SOURCE), # Path
93
- "https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg" if ONLINE else SOURCE, # URI
93
+ "https://github.com/ultralytics/assets/releases/download/v0.0.0/zidane.jpg" if ONLINE else SOURCE, # URI
94
94
  cv2.imread(str(SOURCE)), # OpenCV
95
95
  Image.open(SOURCE), # PIL
96
96
  np.zeros((320, 640, 3), dtype=np.uint8), # numpy
@@ -149,7 +149,7 @@ def test_track_stream():
149
149
 
150
150
  Note imgsz=160 required for tracking for higher confidence and better matches.
151
151
  """
152
- video_url = "https://github.com/ultralytics/yolov5/releases/download/v1.0/decelera_portrait_min.mov"
152
+ video_url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/decelera_portrait_min.mov"
153
153
  model = YOLO(MODEL)
154
154
  model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
155
155
  model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also
@@ -290,7 +290,7 @@ def test_data_converter():
290
290
  from ultralytics.data.converter import coco80_to_coco91_class, convert_coco
291
291
 
292
292
  file = "instances_val2017.json"
293
- download(f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}", dir=TMP)
293
+ download(f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{file}", dir=TMP)
294
294
  convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True)
295
295
  coco80_to_coco91_class()
296
296
 
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.52"
3
+ __version__ = "8.2.53"
4
4
 
5
5
  import os
6
6
 
@@ -33,4 +33,4 @@ names:
33
33
  15: container crane
34
34
 
35
35
  # Download script/URL (optional)
36
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.5.zip
36
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.5.zip
@@ -32,4 +32,4 @@ names:
32
32
  14: swimming pool
33
33
 
34
34
  # Download script/URL (optional)
35
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.zip
35
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.zip
@@ -37,7 +37,7 @@ download: |
37
37
  # Download
38
38
  dir = Path(yaml['path']) # dataset root dir
39
39
  urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
40
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
40
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
41
41
  download(urls, dir=dir)
42
42
 
43
43
  # Make Directories
@@ -76,7 +76,7 @@ download: |
76
76
 
77
77
  # Download
78
78
  dir = Path(yaml['path']) # dataset root dir
79
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
79
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
80
80
  urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
81
81
  f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
82
82
  f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
@@ -61,10 +61,10 @@ download: |
61
61
 
62
62
  # Download
63
63
  dir = Path(yaml['path']) # dataset root dir
64
- urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
65
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
66
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
67
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
64
+ urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip',
65
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip',
66
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip',
67
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip']
68
68
  download(urls, dir=dir, curl=True, threads=4)
69
69
 
70
70
  # Convert
@@ -21,4 +21,4 @@ names:
21
21
  3: zebra
22
22
 
23
23
  # Download script/URL (optional)
24
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/african-wildlife.zip
24
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
@@ -19,4 +19,4 @@ names:
19
19
  1: positive
20
20
 
21
21
  # Download script/URL (optional)
22
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/brain-tumor.zip
22
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
@@ -40,4 +40,4 @@ names:
40
40
  22: wheel
41
41
 
42
42
  # Download script/URL (optional)
43
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/carparts-seg.zip
43
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
@@ -28,7 +28,7 @@ download: |
28
28
 
29
29
  # Download labels
30
30
  dir = Path(yaml['path']) # dataset root dir
31
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
31
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
32
32
  urls = [url + 'coco2017labels-pose.zip'] # labels
33
33
  download(urls, dir=dir.parent)
34
34
  # Download data
@@ -104,7 +104,7 @@ download: |
104
104
  # Download labels
105
105
  segments = True # segment or box labels
106
106
  dir = Path(yaml['path']) # dataset root dir
107
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
107
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
108
108
  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
109
109
  download(urls, dir=dir.parent)
110
110
  # Download data
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128-seg.zip
100
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
100
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
@@ -22,4 +22,4 @@ names:
22
22
  0: person
23
23
 
24
24
  # Download script/URL (optional)
25
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8-pose.zip
25
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8-seg.zip
100
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8.zip
100
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
@@ -18,4 +18,4 @@ names:
18
18
  0: crack
19
19
 
20
20
  # Download script/URL (optional)
21
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/crack-seg.zip
21
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/crack-seg.zip
@@ -31,4 +31,4 @@ names:
31
31
  14: swimming pool
32
32
 
33
33
  # Download script/URL (optional)
34
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/dota8.zip
34
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
@@ -1225,7 +1225,7 @@ download: |
1225
1225
 
1226
1226
  # Download labels
1227
1227
  dir = Path(yaml['path']) # dataset root dir
1228
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
1228
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
1229
1229
  urls = [url + 'lvis-labels-segments.zip'] # labels
1230
1230
  download(urls, dir=dir.parent)
1231
1231
  # Download data
@@ -18,4 +18,4 @@ names:
18
18
  0: package
19
19
 
20
20
  # Download script/URL (optional)
21
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/package-seg.zip
21
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/package-seg.zip
@@ -17,4 +17,4 @@ names:
17
17
  0: signature
18
18
 
19
19
  # Download script/URL (optional)
20
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/signature.zip
20
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/signature.zip
@@ -21,4 +21,4 @@ names:
21
21
  0: tiger
22
22
 
23
23
  # Download script/URL (optional)
24
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/tiger-pose.zip
24
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
ultralytics/data/utils.py CHANGED
@@ -379,7 +379,7 @@ def check_cls_dataset(dataset, split=""):
379
379
  if str(dataset) == "imagenet":
380
380
  subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
381
381
  else:
382
- url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip"
382
+ url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{dataset}.zip"
383
383
  download(url, dir=data_dir.parent)
384
384
  s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
385
385
  LOGGER.info(s)
@@ -266,7 +266,7 @@ class BaseTrainer:
266
266
  self.amp = bool(self.amp) # as boolean
267
267
  self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
268
268
  if world_size > 1:
269
- self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK])
269
+ self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK], find_unused_parameters=True)
270
270
 
271
271
  # Check imgsz
272
272
  gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride)
@@ -60,9 +60,9 @@ class Heatmap:
60
60
  self.heatmap_alpha = heatmap_alpha
61
61
 
62
62
  # Predict/track information
63
- self.boxes = None
64
- self.track_ids = None
65
- self.clss = None
63
+ self.boxes = []
64
+ self.track_ids = []
65
+ self.clss = []
66
66
  self.track_history = defaultdict(list)
67
67
 
68
68
  # Region & Line Information
@@ -107,16 +107,17 @@ class Heatmap:
107
107
  print("Using Circular shape now")
108
108
  self.shape = "circle"
109
109
 
110
- def extract_results(self, tracks, _intialized=False):
110
+ def extract_results(self, tracks):
111
111
  """
112
112
  Extracts results from the provided data.
113
113
 
114
114
  Args:
115
115
  tracks (list): List of tracks obtained from the object tracking process.
116
116
  """
117
- self.boxes = tracks[0].boxes.xyxy.cpu()
118
- self.clss = tracks[0].boxes.cls.cpu().tolist()
119
- self.track_ids = tracks[0].boxes.id.int().cpu().tolist()
117
+ if tracks[0].boxes.id is not None:
118
+ self.boxes = tracks[0].boxes.xyxy.cpu()
119
+ self.clss = tracks[0].boxes.cls.tolist()
120
+ self.track_ids = tracks[0].boxes.id.int().tolist()
120
121
 
121
122
  def generate_heatmap(self, im0, tracks):
122
123
  """
@@ -138,7 +139,7 @@ class Heatmap:
138
139
  self.extract_results(tracks)
139
140
  self.annotator = Annotator(self.im0, self.tf, None)
140
141
 
141
- if self.track_ids is not None:
142
+ if self.track_ids:
142
143
  # Draw counting region
143
144
  if self.count_reg_pts is not None:
144
145
  self.annotator.draw_region(
@@ -195,7 +195,7 @@ class RF100Benchmark:
195
195
  (shutil.rmtree("rf-100"), os.mkdir("rf-100")) if os.path.exists("rf-100") else os.mkdir("rf-100")
196
196
  os.chdir("rf-100")
197
197
  os.mkdir("ultralytics-benchmarks")
198
- safe_download("https://github.com/ultralytics/yolov5/releases/download/v1.0/datasets_links.txt")
198
+ safe_download("https://github.com/ultralytics/assets/releases/download/v0.0.0/datasets_links.txt")
199
199
 
200
200
  with open(ds_link_txt, "r") as file:
201
201
  for line in file:
@@ -315,7 +315,7 @@ def check_font(font="Arial.ttf"):
315
315
  return matches[0]
316
316
 
317
317
  # Download to USER_CONFIG_DIR if missing
318
- url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{name}"
318
+ url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{name}"
319
319
  if downloads.is_url(url, check=True):
320
320
  downloads.safe_download(url=url, file=file)
321
321
  return file
@@ -194,14 +194,12 @@ def unzip_file(file, path=None, exclude=(".DS_Store", "__MACOSX"), exist_ok=Fals
194
194
  return path # return unzip dir
195
195
 
196
196
 
197
- def check_disk_space(
198
- url="https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8.zip", path=Path.cwd(), sf=1.5, hard=True
199
- ):
197
+ def check_disk_space(url="https://ultralytics.com/assets/coco8.zip", path=Path.cwd(), sf=1.5, hard=True):
200
198
  """
201
199
  Check if there is sufficient disk space to download and store a file.
202
200
 
203
201
  Args:
204
- url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco8.zip'.
202
+ url (str, optional): The URL to the file. Defaults to 'https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip'.
205
203
  path (str | Path, optional): The path or drive to check the available free space on.
206
204
  sf (float, optional): Safety factor, the multiplier for the required free space. Defaults to 2.0.
207
205
  hard (bool, optional): Whether to throw an error or not on insufficient disk space. Defaults to True.
@@ -322,7 +320,11 @@ def safe_download(
322
320
  if "://" not in str(url) and Path(url).is_file(): # URL exists ('://' check required in Windows Python<3.10)
323
321
  f = Path(url) # filename
324
322
  elif not f.is_file(): # URL and file do not exist
325
- desc = f"Downloading {url if gdrive else clean_url(url)} to '{f}'"
323
+ uri = (url if gdrive else clean_url(url)).replace( # cleaned and aliased url
324
+ "https://github.com/ultralytics/assets/releases/download/v0.0.0/",
325
+ "https://ultralytics.com/assets/", # assets alias
326
+ )
327
+ desc = f"Downloading {uri} to '{f}'"
326
328
  LOGGER.info(f"{desc}...")
327
329
  f.parent.mkdir(parents=True, exist_ok=True) # make directory if missing
328
330
  check_disk_space(url, path=f.parent)
@@ -356,10 +358,10 @@ def safe_download(
356
358
  f.unlink() # remove partial downloads
357
359
  except Exception as e:
358
360
  if i == 0 and not is_online():
359
- raise ConnectionError(emojis(f"❌ Download failure for {url}. Environment is not online.")) from e
361
+ raise ConnectionError(emojis(f"❌ Download failure for {uri}. Environment is not online.")) from e
360
362
  elif i >= retry:
361
- raise ConnectionError(emojis(f"❌ Download failure for {url}. Retry limit reached.")) from e
362
- LOGGER.warning(f"⚠️ Download failure, retrying {i + 1}/{retry} {url}...")
363
+ raise ConnectionError(emojis(f"❌ Download failure for {uri}. Retry limit reached.")) from e
364
+ LOGGER.warning(f"⚠️ Download failure, retrying {i + 1}/{retry} {uri}...")
363
365
 
364
366
  if unzip and f.exists() and f.suffix in {"", ".zip", ".tar", ".gz"}:
365
367
  from zipfile import is_zipfile
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.52
3
+ Version: 8.2.53
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -6,38 +6,38 @@ tests/test_engine.py,sha256=xW-UT9_9xZp-7-hSnbJgMw_ezTk6NqTOIiA59XZDmxA,4934
6
6
  tests/test_explorer.py,sha256=NcxSJeB6FxwkN09hQl7nnQL--HjfHB_WcZk0mEmBNHI,2215
7
7
  tests/test_exports.py,sha256=Uezf3OatpPHlo5qoPw-2kqkZxuMCF9L4XF2riD4vmII,8225
8
8
  tests/test_integrations.py,sha256=xglcfMPjfVh346PV8WTpk6tBxraCXEFJEQyyJMr5tyU,6064
9
- tests/test_python.py,sha256=4KfgsIMUwWNs_e45o-_RNzM9NIrIa3xahgFZQJJVjaI,21788
10
- ultralytics/__init__.py,sha256=Oti-Hc7_7xUJm4runBIQpEg6iOnGzHpcNo3xPS4_Z5M,694
9
+ tests/test_python.py,sha256=qhtSQ7NDfBChsVUxeSwfUIkoKq0S1Z-Rd9_MP023Y5k,21794
10
+ ultralytics/__init__.py,sha256=fDa5shd9ITuM3SOYAGwCfW_q3NMC2eqOxGXOpgnr4iY,694
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=MqUsV-Mdk80dO64yY7JmplEO0Awb-25Lfx4YC9QYxhc,26210
14
14
  ultralytics/cfg/default.yaml,sha256=xRKVF-Z9E3imXTU9OCK94kj3jGgYoo67VJQwuYlHiUU,8228
15
15
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
16
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=YDsyFPI6F6-OQXLBM3hOXo3vADYREwZzmMQfJNdpWyM,1193
17
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=dxLUliHvJOW4q4vJRu5qIYVvNfjvXWB7GVh_Fhk--dM,1163
18
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=crk8fSL1XSLXe9zlTV9UQx94wjQ4933CKQS6bBHRSJw,2058
16
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
17
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=sxe2P7nY-cCPufH3G1pymnQVtNoGH1y0ETG5CyWfK9g,1165
18
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=fxWJv0EhMQTCC6Npc13ZYRhg-EedLmUOxRQXfe1GruQ,2060
19
19
  ultralytics/cfg/datasets/ImageNet.yaml,sha256=P5t0rwMNZX2iu7ooBkd5xSi75m66ccBzO0XiBABGGhU,42507
20
20
  ultralytics/cfg/datasets/Objects365.yaml,sha256=kiiV4KLMH2mcPPRrg6cQGygnbiTrHxwtAgA0ht6wcW4,9324
21
21
  ultralytics/cfg/datasets/SKU-110K.yaml,sha256=geRkccBRl2eKgfNYTOPYwD9mTfqktTBGiMJoE3PZEnA,2493
22
- ultralytics/cfg/datasets/VOC.yaml,sha256=3-CDpjIq_s5pkbsJ9TjrYIeV24rYGuJGu4Qg6uktEZE,3655
23
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=NfrbjVnE48E7TPbxtF7rtQHvVBO0DchFJFEuGrG1VRU,3073
24
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=dD_ZQSYJ_r4nEhBEiKOXbrHOMBgmF-ncydRIVhWZ9Hw,899
25
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=fplKjqUkpPIZhMt21fPN95UdzIwOQEDGPsv1X6seMKo,825
26
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=q-mfTdMlHangYNeUmdme0CuAdHFsg6KEbEqxBCzMwoE,1237
27
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=w7H-J2e87GIV_PZdRDgqEFa75ObScpBK_l85U4ZMsMo,1603
28
- ultralytics/cfg/datasets/coco.yaml,sha256=xbim-GcWpvF_uwlStjbPjxXFhVfL0U_WNQI99b5gjdY,2584
29
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=b3UrcUOoEOwMUJXBfknOUoKuQKwrb682N3zJ81tzQAQ,1955
30
- ultralytics/cfg/datasets/coco128.yaml,sha256=Qk62eypwWpOEDj6PvqMevH0mPMcHYeyM7vk5WestkCg,1938
31
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=qBWsgt6R1MjXgAsVUR7Rd15pFw99H4V4aRXfrvMqCaU,991
32
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=VfN86Bx4D9xdrj7qsLxl5X4yjaiT4prVlwPnfAJ3Cz0,1895
33
- ultralytics/cfg/datasets/coco8.yaml,sha256=fpRJOuTXFp6NLz0vYizhOKJfTiojhEJ3H5X5eCdQUHg,1870
34
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=wjWIXgJaa2p9NV6WKe1UxjU0szYHdeyZb68wa2Wl0v4,821
35
- ultralytics/cfg/datasets/dota8.yaml,sha256=HlwU4tpnUCCn7DQBXYRBGbfARNcALfCCRJnqycmHprg,1042
36
- ultralytics/cfg/datasets/lvis.yaml,sha256=F9QyWkwTZMyP7AJwrkAAvz8HOAp_zVIUZtVsaeSOp3I,29689
22
+ ultralytics/cfg/datasets/VOC.yaml,sha256=oyBcI4ybNjKUc1UyS8rghjaGszXMAbvZL1CK5szfGqg,3657
23
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=XRyLw16noiOYnEW4MDCU5hqjGWWMKq6vpq-6oGTcU5Q,3081
24
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=ZMthNcQsk97awEvnap8Oydd3SXuDfpY_OjgXnw8inqc,901
25
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=HTQAC83rPLFyLBtdVvhh0A7LBbPrpdVfD32uOSUBDBQ,827
26
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=8XdKeWH-LSF1CElYsKSuQia8U2Sj8urbA88aTuEyyfE,1239
27
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=q8XCTa-BPOp3lCFDgZdWTDRtnkBlS_MOXVskd2EEnKQ,1605
28
+ ultralytics/cfg/datasets/coco.yaml,sha256=vW-YouGHdcOaTVIUCAyH_LFj02fBii_PJgk3G6sAwLg,2586
29
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=U7OLAJfK9zrdiL7sVDB-7CpwC2FEucXK2DHJvn_ewh8,1957
30
+ ultralytics/cfg/datasets/coco128.yaml,sha256=Xl_dZykUsDPgofy9o-FjEM-dkAf2T2sGZjksABoD7RM,1940
31
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=h0ZQfHGoeG724n3jTvHkLObnYZfNDlaOZSJLoPAV800,993
32
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=sFMRTJa2ARpqAtr-50SS_RkB4KoczmAamK6C7qIfAd8,1897
33
+ ultralytics/cfg/datasets/coco8.yaml,sha256=3_lNlMo40Rf52oxOnAIyaf7ZOdV0-z-Gcv-uMWmAE0s,1872
34
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=rJ2nbxclHjrEMZPwUCdHO2yjfuAZBoekuH40oP5HfNA,823
35
+ ultralytics/cfg/datasets/dota8.yaml,sha256=d65FTGCJzZPIVetfeS-_feshKjoYDsd1XqbWoC3u6tI,1044
36
+ ultralytics/cfg/datasets/lvis.yaml,sha256=ryswcm32vDAZ3-8rWx0YWzUv4kdOEPYg2OhRt-UswpE,29691
37
37
  ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
38
- ultralytics/cfg/datasets/package-seg.yaml,sha256=uAy7cshacX7vusMohSJAFHFQtmZUTVGVByQsqF1QMfk,831
39
- ultralytics/cfg/datasets/signature.yaml,sha256=WJEqUIPb8Qar-xXSR33SriZV4Unh0pcs75liTtDdFVg,758
40
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=xvGqgC2RNnkyPjt5hRlDeLvAGsryFURFT8DVUwKpif0,894
38
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=6iPpZOP0xgrTcO8DAZNPGFlJwrYn5bDgx-FpEnv2Ut8,833
39
+ ultralytics/cfg/datasets/signature.yaml,sha256=qTOULZf0J9hS7ZXVd_sPJ8uoNVmbKnqZ6Kgm_EjmXpY,760
40
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=tU88xdKAoN2DFXDk2NMHV7y9bC2HGJCF0LvTVvCaCNE,896
41
41
  ultralytics/cfg/datasets/xView.yaml,sha256=rjQPRNk--jlYN9wcVTu1KbopgZIkWXhr_s1UkSdcERs,5217
42
42
  ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW6tWeAsdN8ynryuU,1934
43
43
  ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=o0nWoKciT-vypC2eS5qIEWNSac0L6vwLtbK9ucQluG4,1512
@@ -90,7 +90,7 @@ ultralytics/data/converter.py,sha256=7640xKuf7LPeoTwoCvgbIXM5xbzyq72Hu2Rf2lrgjRY
90
90
  ultralytics/data/dataset.py,sha256=q8g8cUAabdhqahL0a0cbulOey29UFXY51VDEFJN_x0c,22444
91
91
  ultralytics/data/loaders.py,sha256=UUL7yOmuseAG5RBVI-kLrLr42Vm4kL05Qqnc5jAmNW0,23972
92
92
  ultralytics/data/split_dota.py,sha256=fWezt1Bo3jiZ6AyUWdBtTUuvLamPv1t7JD-DirM9gQ8,10142
93
- ultralytics/data/utils.py,sha256=zqFg4xaWU--fastZmwvZ3DxGyJQ3i4tVNLuYnqS1xxs,31044
93
+ ultralytics/data/utils.py,sha256=GHmqx6e5yRfcUD2Qkwk-tQfhXCwtUMFD3Uf6d699nGo,31046
94
94
  ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
95
95
  ultralytics/data/explorer/explorer.py,sha256=YacduFQvYOgTRF0BhCZWpTEaGlhp7oRy9a49VvNysEQ,18998
96
96
  ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yfi8NIA,7085
@@ -101,7 +101,7 @@ ultralytics/engine/exporter.py,sha256=-qidFlOXEnzOJR8c4YhsZqugonN0tpyk_Ye4dIrTsT
101
101
  ultralytics/engine/model.py,sha256=8qD5irabp8BF7bBZGwztCu8yAVQQp1kksYSea9EhdEo,39078
102
102
  ultralytics/engine/predictor.py,sha256=W58kDCFH2AfoFzpGbos3k8zUEVsLunBuM8sc2B64rPY,17449
103
103
  ultralytics/engine/results.py,sha256=5MevvBz0E-cpDf55FqweInlKdcQPb7sz0EgZSROJqw4,35817
104
- ultralytics/engine/trainer.py,sha256=K3I7HWtgt72FH91Wl8La8Wl9zgg4TN-AiYIGGWjKGKw,35447
104
+ ultralytics/engine/trainer.py,sha256=vFdWN6I-DoAHZYmxjRDeYcc44B9i8tBtK8u6oMgyj9o,35476
105
105
  ultralytics/engine/tuner.py,sha256=iZrgMmXSDpfuDu4bdFRflmAsscys2-8W8qAGxSyOVJE,11844
106
106
  ultralytics/engine/validator.py,sha256=Y21Uo8_Zto4qjk_YqQk6k7tyfpq_Qk9cfjeXeyDRxs8,14643
107
107
  ultralytics/hub/__init__.py,sha256=93bqI8x8-MfDYdKkQVduuocUiQj3WGnk1nIk0li08zA,5663
@@ -176,7 +176,7 @@ ultralytics/solutions/__init__.py,sha256=O_G9jh34NnFsHKSA8zcJH0CHtg1Q01JEiRWGwX3
176
176
  ultralytics/solutions/ai_gym.py,sha256=KQdx0RP9t9y1MqYMVlYUSn09SVJSUwKvgxPri_DhczM,4721
177
177
  ultralytics/solutions/analytics.py,sha256=UI8HoegfIJGgvQPOt4-e9A0ss2_ofM7zzxcbKlhe66k,11572
178
178
  ultralytics/solutions/distance_calculation.py,sha256=pSIkyytHGRAaNzIrkkNkiOnSVWU1PYvURlCIV_jRORA,6505
179
- ultralytics/solutions/heatmap.py,sha256=AHXnmXhoQ95ph74zsdrvX_Lfy3wF0SsH0MIeTixE7Qg,10386
179
+ ultralytics/solutions/heatmap.py,sha256=Fl01uzt5B0hBtcK0xG0QtUe1KyyEhorpV2C6Nbb3d_o,10392
180
180
  ultralytics/solutions/object_counter.py,sha256=IR2kvgjlaHuzfq55gtwBiGFJ7dS5-5OCFOck54ol3PU,10786
181
181
  ultralytics/solutions/parking_management.py,sha256=Bd7FU3WZ8mRBWq81Z5c8jH5WloF4jPKo8TycqU_AcEI,9786
182
182
  ultralytics/solutions/queue_management.py,sha256=ECm6gLZplmE9Cm-zdOazHBBDcW-vvr8nx2M28fcPbts,6787
@@ -193,10 +193,10 @@ ultralytics/trackers/utils/kalman_filter.py,sha256=0oqhk59NKEiwcJ2FXnw6_sT4bIFC6
193
193
  ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuUB6PfVNkb4,5404
194
194
  ultralytics/utils/__init__.py,sha256=905ZnRdmTrhXao2nsCP2mV2xAshsEKk0r4aOPP4EVPQ,38490
195
195
  ultralytics/utils/autobatch.py,sha256=gPFcREMsMHRAuTQiBnNZ9Mm1XNqmQW-uMPhveDFEQ_Y,3966
196
- ultralytics/utils/benchmarks.py,sha256=FTrOewzqXSb2DSsSrM1ool5r_seZstE9GwDxbP2Qw5U,23579
197
- ultralytics/utils/checks.py,sha256=dJ5B2sacq8L3l7yIAUquGJKURrbUsRotV-YLFDHqC4g,28409
196
+ ultralytics/utils/benchmarks.py,sha256=EudI2wNzOPPNjf9J0AiROe32yD4G8nTg5tcZOZSJSw8,23581
197
+ ultralytics/utils/checks.py,sha256=QIltfNxlZdMOTzXqU815MBIevMj_TKBU_VeVXqjXdOo,28411
198
198
  ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
199
- ultralytics/utils/downloads.py,sha256=6A470sWRissyGJmBd8II-2N9o3bHgd_mfH19k2ErKw8,21716
199
+ ultralytics/utils/downloads.py,sha256=MPuCfS7zZh_uco0Ddqh6NdKqdmUXXpk0Wz_GS99ltlc,21920
200
200
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
201
201
  ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,6761
202
202
  ultralytics/utils/instance.py,sha256=5daM5nkxBv9hr5QzyII8zmuFj24hHuNtcr4EMCHAtpY,15654
@@ -220,9 +220,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
220
220
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
221
221
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
222
222
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
223
- ultralytics-8.2.52.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
224
- ultralytics-8.2.52.dist-info/METADATA,sha256=webbwXELnlmxl3uOQXh9evd9ezz_2dqx9tv63wyNY1I,41217
225
- ultralytics-8.2.52.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
226
- ultralytics-8.2.52.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
227
- ultralytics-8.2.52.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
228
- ultralytics-8.2.52.dist-info/RECORD,,
223
+ ultralytics-8.2.53.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
224
+ ultralytics-8.2.53.dist-info/METADATA,sha256=9jxWIong0zNd04Gd2rvhQGDx7oYTgbMkrw5jbBCgsVY,41217
225
+ ultralytics-8.2.53.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
226
+ ultralytics-8.2.53.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
227
+ ultralytics-8.2.53.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
228
+ ultralytics-8.2.53.dist-info/RECORD,,