ultralytics 8.2.51__py3-none-any.whl → 8.2.52__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

tests/test_python.py CHANGED
@@ -90,7 +90,7 @@ def test_predict_img(model_name):
90
90
  batch = [
91
91
  str(SOURCE), # filename
92
92
  Path(SOURCE), # Path
93
- "https://ultralytics.com/images/zidane.jpg" if ONLINE else SOURCE, # URI
93
+ "https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg" if ONLINE else SOURCE, # URI
94
94
  cv2.imread(str(SOURCE)), # OpenCV
95
95
  Image.open(SOURCE), # PIL
96
96
  np.zeros((320, 640, 3), dtype=np.uint8), # numpy
@@ -149,7 +149,7 @@ def test_track_stream():
149
149
 
150
150
  Note imgsz=160 required for tracking for higher confidence and better matches.
151
151
  """
152
- video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov"
152
+ video_url = "https://github.com/ultralytics/yolov5/releases/download/v1.0/decelera_portrait_min.mov"
153
153
  model = YOLO(MODEL)
154
154
  model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
155
155
  model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.51"
3
+ __version__ = "8.2.52"
4
4
 
5
5
  import os
6
6
 
@@ -21,4 +21,4 @@ names:
21
21
  3: zebra
22
22
 
23
23
  # Download script/URL (optional)
24
- download: https://ultralytics.com/assets/african-wildlife.zip
24
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/african-wildlife.zip
@@ -19,4 +19,4 @@ names:
19
19
  1: positive
20
20
 
21
21
  # Download script/URL (optional)
22
- download: https://ultralytics.com/assets/brain-tumor.zip
22
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/brain-tumor.zip
@@ -40,4 +40,4 @@ names:
40
40
  22: wheel
41
41
 
42
42
  # Download script/URL (optional)
43
- download: https://ultralytics.com/assets/carparts-seg.zip
43
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/carparts-seg.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco128-seg.zip
100
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128-seg.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco128.zip
100
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
@@ -22,4 +22,4 @@ names:
22
22
  0: person
23
23
 
24
24
  # Download script/URL (optional)
25
- download: https://ultralytics.com/assets/coco8-pose.zip
25
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8-pose.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco8-seg.zip
100
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8-seg.zip
@@ -97,4 +97,4 @@ names:
97
97
  79: toothbrush
98
98
 
99
99
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco8.zip
100
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8.zip
@@ -18,4 +18,4 @@ names:
18
18
  0: crack
19
19
 
20
20
  # Download script/URL (optional)
21
- download: https://ultralytics.com/assets/crack-seg.zip
21
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/crack-seg.zip
@@ -18,4 +18,4 @@ names:
18
18
  0: package
19
19
 
20
20
  # Download script/URL (optional)
21
- download: https://ultralytics.com/assets/package-seg.zip
21
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/package-seg.zip
@@ -17,4 +17,4 @@ names:
17
17
  0: signature
18
18
 
19
19
  # Download script/URL (optional)
20
- download: https://ultralytics.com/assets/signature.zip
20
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/signature.zip
@@ -21,4 +21,4 @@ names:
21
21
  0: tiger
22
22
 
23
23
  # Download script/URL (optional)
24
- download: https://ultralytics.com/assets/tiger-pose.zip
24
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/tiger-pose.zip
@@ -1401,6 +1401,8 @@ class CenterCrop:
1401
1401
  Returns:
1402
1402
  (numpy.ndarray): The center-cropped and resized image as a numpy array.
1403
1403
  """
1404
+ if isinstance(im, Image.Image): # convert from PIL to numpy array if required
1405
+ im = np.asarray(im)
1404
1406
  imh, imw = im.shape[:2]
1405
1407
  m = min(imh, imw) # min dimension
1406
1408
  top, left = (imh - m) // 2, (imw - m) // 2
@@ -15,6 +15,7 @@ from torch.utils.data import ConcatDataset
15
15
 
16
16
  from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr
17
17
  from ultralytics.utils.ops import resample_segments
18
+ from ultralytics.utils.torch_utils import TORCH_1_13
18
19
 
19
20
  from .augment import (
20
21
  Compose,
@@ -263,7 +264,7 @@ class YOLOMultiModalDataset(YOLODataset):
263
264
  super().__init__(*args, data=data, task=task, **kwargs)
264
265
 
265
266
  def update_labels_info(self, label):
266
- """Add texts information for multi modal model training."""
267
+ """Add texts information for multi-modal model training."""
267
268
  labels = super().update_labels_info(label)
268
269
  # NOTE: some categories are concatenated with its synonyms by `/`.
269
270
  labels["texts"] = [v.split("/") for _, v in self.data["names"].items()]
@@ -296,10 +297,10 @@ class GroundingDataset(YOLODataset):
296
297
  with open(self.json_file, "r") as f:
297
298
  annotations = json.load(f)
298
299
  images = {f'{x["id"]:d}': x for x in annotations["images"]}
299
- imgToAnns = defaultdict(list)
300
+ img_to_anns = defaultdict(list)
300
301
  for ann in annotations["annotations"]:
301
- imgToAnns[ann["image_id"]].append(ann)
302
- for img_id, anns in TQDM(imgToAnns.items(), desc=f"Reading annotations {self.json_file}"):
302
+ img_to_anns[ann["image_id"]].append(ann)
303
+ for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"):
303
304
  img = images[f"{img_id:d}"]
304
305
  h, w, f = img["height"], img["width"], img["file_name"]
305
306
  im_file = Path(self.img_path) / f
@@ -416,7 +417,10 @@ class ClassificationDataset:
416
417
  import torchvision # scope for faster 'import ultralytics'
417
418
 
418
419
  # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import
419
- self.base = torchvision.datasets.ImageFolder(root=root)
420
+ if TORCH_1_13: # 'allow_empty' argument first introduced in torch 1.13
421
+ self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True)
422
+ else:
423
+ self.base = torchvision.datasets.ImageFolder(root=root)
420
424
  self.samples = self.base.samples
421
425
  self.root = self.base.root
422
426
 
@@ -454,7 +454,7 @@ class Exporter:
454
454
  LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
455
455
  assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
456
456
  ov_model = ov.convert_model(
457
- self.model.cpu(),
457
+ self.model,
458
458
  input=None if self.args.dynamic else [self.im.shape],
459
459
  example_input=self.im,
460
460
  )
ultralytics/nn/tasks.py CHANGED
@@ -379,7 +379,7 @@ class DetectionModel(BaseModel):
379
379
 
380
380
  def init_criterion(self):
381
381
  """Initialize the loss criterion for the DetectionModel."""
382
- return E2EDetectLoss(self) if self.end2end else v8DetectionLoss(self)
382
+ return E2EDetectLoss(self) if getattr(self, "end2end", False) else v8DetectionLoss(self)
383
383
 
384
384
 
385
385
  class OBBModel(DetectionModel):
@@ -195,7 +195,7 @@ class RF100Benchmark:
195
195
  (shutil.rmtree("rf-100"), os.mkdir("rf-100")) if os.path.exists("rf-100") else os.mkdir("rf-100")
196
196
  os.chdir("rf-100")
197
197
  os.mkdir("ultralytics-benchmarks")
198
- safe_download("https://ultralytics.com/assets/datasets_links.txt")
198
+ safe_download("https://github.com/ultralytics/yolov5/releases/download/v1.0/datasets_links.txt")
199
199
 
200
200
  with open(ds_link_txt, "r") as file:
201
201
  for line in file:
@@ -315,7 +315,7 @@ def check_font(font="Arial.ttf"):
315
315
  return matches[0]
316
316
 
317
317
  # Download to USER_CONFIG_DIR if missing
318
- url = f"https://ultralytics.com/assets/{name}"
318
+ url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{name}"
319
319
  if downloads.is_url(url, check=True):
320
320
  downloads.safe_download(url=url, file=file)
321
321
  return file
@@ -194,12 +194,14 @@ def unzip_file(file, path=None, exclude=(".DS_Store", "__MACOSX"), exist_ok=Fals
194
194
  return path # return unzip dir
195
195
 
196
196
 
197
- def check_disk_space(url="https://ultralytics.com/assets/coco128.zip", path=Path.cwd(), sf=1.5, hard=True):
197
+ def check_disk_space(
198
+ url="https://github.com/ultralytics/yolov5/releases/download/v1.0/coco8.zip", path=Path.cwd(), sf=1.5, hard=True
199
+ ):
198
200
  """
199
201
  Check if there is sufficient disk space to download and store a file.
200
202
 
201
203
  Args:
202
- url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco128.zip'.
204
+ url (str, optional): The URL to the file. Defaults to 'https://ultralytics.com/assets/coco8.zip'.
203
205
  path (str | Path, optional): The path or drive to check the available free space on.
204
206
  sf (float, optional): Safety factor, the multiplier for the required free space. Defaults to 2.0.
205
207
  hard (bool, optional): Whether to throw an error or not on insufficient disk space. Defaults to True.
@@ -298,8 +298,8 @@ class Annotator:
298
298
  if label:
299
299
  w, h = self.font.getsize(label) # text width, height
300
300
  outside = p1[1] >= h # label fits outside box
301
- if p1[0] > self.im.size[1] - w: # check if label extend beyond right side of image
302
- p1 = self.im.size[1] - w, p1[1]
301
+ if p1[0] > self.im.size[0] - w: # size is (w, h), check if label extend beyond right side of image
302
+ p1 = self.im.size[0] - w, p1[1]
303
303
  self.draw.rectangle(
304
304
  (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
305
305
  fill=color,
@@ -317,7 +317,7 @@ class Annotator:
317
317
  w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
318
318
  h += 3 # add pixels to pad text
319
319
  outside = p1[1] >= h # label fits outside box
320
- if p1[0] > self.im.shape[1] - w: # check if label extend beyond right side of image
320
+ if p1[0] > self.im.shape[1] - w: # shape is (h, w), check if label extend beyond right side of image
321
321
  p1 = self.im.shape[1] - w, p1[1]
322
322
  p2 = p1[0] + w, p1[1] - h if outside else p1[1] + h
323
323
  cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.51
3
+ Version: 8.2.52
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -6,8 +6,8 @@ tests/test_engine.py,sha256=xW-UT9_9xZp-7-hSnbJgMw_ezTk6NqTOIiA59XZDmxA,4934
6
6
  tests/test_explorer.py,sha256=NcxSJeB6FxwkN09hQl7nnQL--HjfHB_WcZk0mEmBNHI,2215
7
7
  tests/test_exports.py,sha256=Uezf3OatpPHlo5qoPw-2kqkZxuMCF9L4XF2riD4vmII,8225
8
8
  tests/test_integrations.py,sha256=xglcfMPjfVh346PV8WTpk6tBxraCXEFJEQyyJMr5tyU,6064
9
- tests/test_python.py,sha256=80Iy-sn3qHBJ5Vg_mRbplj5CbCZNUNvikP4e2f2onnM,21728
10
- ultralytics/__init__.py,sha256=EFzpzFAbKCfmjlqt0ViyJlNJ2mBKN6cu2y0PErqXKtE,694
9
+ tests/test_python.py,sha256=4KfgsIMUwWNs_e45o-_RNzM9NIrIa3xahgFZQJJVjaI,21788
10
+ ultralytics/__init__.py,sha256=Oti-Hc7_7xUJm4runBIQpEg6iOnGzHpcNo3xPS4_Z5M,694
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=MqUsV-Mdk80dO64yY7JmplEO0Awb-25Lfx4YC9QYxhc,26210
@@ -21,23 +21,23 @@ ultralytics/cfg/datasets/Objects365.yaml,sha256=kiiV4KLMH2mcPPRrg6cQGygnbiTrHxwt
21
21
  ultralytics/cfg/datasets/SKU-110K.yaml,sha256=geRkccBRl2eKgfNYTOPYwD9mTfqktTBGiMJoE3PZEnA,2493
22
22
  ultralytics/cfg/datasets/VOC.yaml,sha256=3-CDpjIq_s5pkbsJ9TjrYIeV24rYGuJGu4Qg6uktEZE,3655
23
23
  ultralytics/cfg/datasets/VisDrone.yaml,sha256=NfrbjVnE48E7TPbxtF7rtQHvVBO0DchFJFEuGrG1VRU,3073
24
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=vtFAaFD2wZQmt3ze-LMUOeUa-7QG57LAVwuazCbROcU,869
25
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=o1rX1_iw97HjiG904l4u42x13jyHOGvfmWEzz0BpOZg,795
26
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=pvTi3EH2j6UuG0LHoQJ7JjQv_cJoO8UKSXPptUTnl8U,1207
24
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=dD_ZQSYJ_r4nEhBEiKOXbrHOMBgmF-ncydRIVhWZ9Hw,899
25
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=fplKjqUkpPIZhMt21fPN95UdzIwOQEDGPsv1X6seMKo,825
26
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=q-mfTdMlHangYNeUmdme0CuAdHFsg6KEbEqxBCzMwoE,1237
27
27
  ultralytics/cfg/datasets/coco-pose.yaml,sha256=w7H-J2e87GIV_PZdRDgqEFa75ObScpBK_l85U4ZMsMo,1603
28
28
  ultralytics/cfg/datasets/coco.yaml,sha256=xbim-GcWpvF_uwlStjbPjxXFhVfL0U_WNQI99b5gjdY,2584
29
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=6wRjT1C6eXblXzzSvCjXfVSYF12pjZl7DKVDkFbdUQ0,1925
30
- ultralytics/cfg/datasets/coco128.yaml,sha256=vPraVMUKvhJY2dnhPbsCzwAPEOw1J8P6WyqkEUVysQY,1908
31
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=MErskGM63ED7bJUNPd6Rv5nTPHR77GaqB3pgSzJ3heA,961
32
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=hH0sEb_ZdtjziVg9PNNjdZADuYIbvYLD9-B2J7s7rlc,1865
33
- ultralytics/cfg/datasets/coco8.yaml,sha256=yGDMRSehDIsT1h36JA-FTWZrtJRertD3tfoBLsS2Ydc,1840
34
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=asdmbm4UXsUDovHvsMZdhbAa97vtd3bN72EqEjfnP-0,791
29
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=b3UrcUOoEOwMUJXBfknOUoKuQKwrb682N3zJ81tzQAQ,1955
30
+ ultralytics/cfg/datasets/coco128.yaml,sha256=Qk62eypwWpOEDj6PvqMevH0mPMcHYeyM7vk5WestkCg,1938
31
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=qBWsgt6R1MjXgAsVUR7Rd15pFw99H4V4aRXfrvMqCaU,991
32
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=VfN86Bx4D9xdrj7qsLxl5X4yjaiT4prVlwPnfAJ3Cz0,1895
33
+ ultralytics/cfg/datasets/coco8.yaml,sha256=fpRJOuTXFp6NLz0vYizhOKJfTiojhEJ3H5X5eCdQUHg,1870
34
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=wjWIXgJaa2p9NV6WKe1UxjU0szYHdeyZb68wa2Wl0v4,821
35
35
  ultralytics/cfg/datasets/dota8.yaml,sha256=HlwU4tpnUCCn7DQBXYRBGbfARNcALfCCRJnqycmHprg,1042
36
36
  ultralytics/cfg/datasets/lvis.yaml,sha256=F9QyWkwTZMyP7AJwrkAAvz8HOAp_zVIUZtVsaeSOp3I,29689
37
37
  ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
38
- ultralytics/cfg/datasets/package-seg.yaml,sha256=t6iu8MwulLxLVT2QdeOXz2fcCRcqufGpKOXUjTg2gMA,801
39
- ultralytics/cfg/datasets/signature.yaml,sha256=lHAS4HsFIhUbIhoBvCQd7T3ADmCfc5QG_wrEvOmq2NA,728
40
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=v2pOOrijTqdFA82nd2Jt-ZOWKNQl_qYgEqSgl4d0xWs,864
38
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=uAy7cshacX7vusMohSJAFHFQtmZUTVGVByQsqF1QMfk,831
39
+ ultralytics/cfg/datasets/signature.yaml,sha256=WJEqUIPb8Qar-xXSR33SriZV4Unh0pcs75liTtDdFVg,758
40
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=xvGqgC2RNnkyPjt5hRlDeLvAGsryFURFT8DVUwKpif0,894
41
41
  ultralytics/cfg/datasets/xView.yaml,sha256=rjQPRNk--jlYN9wcVTu1KbopgZIkWXhr_s1UkSdcERs,5217
42
42
  ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW6tWeAsdN8ynryuU,1934
43
43
  ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=o0nWoKciT-vypC2eS5qIEWNSac0L6vwLtbK9ucQluG4,1512
@@ -83,11 +83,11 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q
83
83
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
84
84
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
85
85
  ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
86
- ultralytics/data/augment.py,sha256=GFvkL5s5KmKpDrJbDftUZqSDbRJpgkJVF5SXgz7gBMk,59747
86
+ ultralytics/data/augment.py,sha256=V0iyu_9q_mx-G_61sPA1FWt_6ErJY4SnY_W62uxKOqI,59866
87
87
  ultralytics/data/base.py,sha256=C3teLnw97ZTbpJHT9P7yYWosAKocMzgJjRe1rxgfpls,13524
88
88
  ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
89
89
  ultralytics/data/converter.py,sha256=7640xKuf7LPeoTwoCvgbIXM5xbzyq72Hu2Rf2lrgjRY,17554
90
- ultralytics/data/dataset.py,sha256=NFaXyHRn64TyTEbtSkr7SkqWXK8bEJl6lZ6M1JwO3MY,22201
90
+ ultralytics/data/dataset.py,sha256=q8g8cUAabdhqahL0a0cbulOey29UFXY51VDEFJN_x0c,22444
91
91
  ultralytics/data/loaders.py,sha256=UUL7yOmuseAG5RBVI-kLrLr42Vm4kL05Qqnc5jAmNW0,23972
92
92
  ultralytics/data/split_dota.py,sha256=fWezt1Bo3jiZ6AyUWdBtTUuvLamPv1t7JD-DirM9gQ8,10142
93
93
  ultralytics/data/utils.py,sha256=zqFg4xaWU--fastZmwvZ3DxGyJQ3i4tVNLuYnqS1xxs,31044
@@ -97,7 +97,7 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
97
97
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
98
98
  ultralytics/data/explorer/gui/dash.py,sha256=CPlFIIhf53j_YVAqealsC3AbcztdPqZxfniQcBnlKK4,10042
99
99
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
100
- ultralytics/engine/exporter.py,sha256=zu9ghMrMLnkFpQuPH1ozs4b7bjJKPhrN0yQAHa1lFL4,58648
100
+ ultralytics/engine/exporter.py,sha256=-qidFlOXEnzOJR8c4YhsZqugonN0tpyk_Ye4dIrTsT4,58642
101
101
  ultralytics/engine/model.py,sha256=8qD5irabp8BF7bBZGwztCu8yAVQQp1kksYSea9EhdEo,39078
102
102
  ultralytics/engine/predictor.py,sha256=W58kDCFH2AfoFzpGbos3k8zUEVsLunBuM8sc2B64rPY,17449
103
103
  ultralytics/engine/results.py,sha256=5MevvBz0E-cpDf55FqweInlKdcQPb7sz0EgZSROJqw4,35817
@@ -165,7 +165,7 @@ ultralytics/models/yolo/world/train.py,sha256=acYN2-onL69LrL4av6_hY2r5AY0urC0WVi
165
165
  ultralytics/models/yolo/world/train_world.py,sha256=IsnCEVt6DcM9lUskCKmIN-M8MM79xLpwTRqRoAHUnZ4,4857
166
166
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
167
167
  ultralytics/nn/autobackend.py,sha256=vtCvcYTyF2l4KeG5N-PD8FhmPx9pca92mmGaHdQuUfE,31258
168
- ultralytics/nn/tasks.py,sha256=aoQyGuFQ3GbPj42cfZDfkq5m5Q5Ec_045PW20d_-kv8,45837
168
+ ultralytics/nn/tasks.py,sha256=jGAauQZOOSXKsxAKad_HBNfLleOoTS7T9XSlOZN8v7Y,45856
169
169
  ultralytics/nn/modules/__init__.py,sha256=mARjWk83WPYF5phXhXfPbAu2ZohtdbHdi5zzoxyMubo,2553
170
170
  ultralytics/nn/modules/block.py,sha256=DIXowCZn_Luc5VgGQEGXi34fqeiz_bhaNT48zEzguDM,34491
171
171
  ultralytics/nn/modules/conv.py,sha256=Ywe87IhuaS22mR2JJ9xjnW8Sb-m7WTjxuqIxV_Dv8lI,12722
@@ -193,10 +193,10 @@ ultralytics/trackers/utils/kalman_filter.py,sha256=0oqhk59NKEiwcJ2FXnw6_sT4bIFC6
193
193
  ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuUB6PfVNkb4,5404
194
194
  ultralytics/utils/__init__.py,sha256=905ZnRdmTrhXao2nsCP2mV2xAshsEKk0r4aOPP4EVPQ,38490
195
195
  ultralytics/utils/autobatch.py,sha256=gPFcREMsMHRAuTQiBnNZ9Mm1XNqmQW-uMPhveDFEQ_Y,3966
196
- ultralytics/utils/benchmarks.py,sha256=tDX7wu0TpMMlEQDOFqfkjxl156ssS7Lh_5tFWIXdJfg,23549
197
- ultralytics/utils/checks.py,sha256=PDY1eHlsyDVEIiKRjvb81uz2jniL1MqgP_TmXH_78KM,28379
196
+ ultralytics/utils/benchmarks.py,sha256=FTrOewzqXSb2DSsSrM1ool5r_seZstE9GwDxbP2Qw5U,23579
197
+ ultralytics/utils/checks.py,sha256=dJ5B2sacq8L3l7yIAUquGJKURrbUsRotV-YLFDHqC4g,28409
198
198
  ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
199
- ultralytics/utils/downloads.py,sha256=jrCBj_CmAIMd3uGVXwqyWlsl__MIRCgwqTp8t1xmdlc,21684
199
+ ultralytics/utils/downloads.py,sha256=6A470sWRissyGJmBd8II-2N9o3bHgd_mfH19k2ErKw8,21716
200
200
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
201
201
  ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,6761
202
202
  ultralytics/utils/instance.py,sha256=5daM5nkxBv9hr5QzyII8zmuFj24hHuNtcr4EMCHAtpY,15654
@@ -204,7 +204,7 @@ ultralytics/utils/loss.py,sha256=tAAi_l0SAtbtqT8AQSBSCvEyv342-r04H2KcSF1Yk_w,337
204
204
  ultralytics/utils/metrics.py,sha256=C7qFuZjwGqbsG4sggm_qfm8gVuBUwHg_Fhxj08b6NfU,53671
205
205
  ultralytics/utils/ops.py,sha256=Jlb0YBkN_SMVT2AjKPEjxgOtgnj7i7HTBh9FEwpoprU,33509
206
206
  ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
207
- ultralytics/utils/plotting.py,sha256=p9IoGCqlXAs5YV28oI7l0KR_4F2sXxDDnd3EuFsLOHw,55551
207
+ ultralytics/utils/plotting.py,sha256=icSUqsmJLpeXyVAIt8vxpbrxTe40mwiF5ay4el3IXl0,55584
208
208
  ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
209
209
  ultralytics/utils/torch_utils.py,sha256=uuiXENrjF8a0PydZRfdp3bQ4oQZ9FyERXXfqGyXLCg0,27713
210
210
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
@@ -220,9 +220,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
220
220
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
221
221
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
222
222
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
223
- ultralytics-8.2.51.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
224
- ultralytics-8.2.51.dist-info/METADATA,sha256=6jbSsGF3uCQiaNtyk7tmIrbxnvRJdZg46JkXNX5KcUc,41217
225
- ultralytics-8.2.51.dist-info/WHEEL,sha256=y4mX-SOX4fYIkonsAGA5N0Oy-8_gI4FXw5HNI1xqvWg,91
226
- ultralytics-8.2.51.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
227
- ultralytics-8.2.51.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
228
- ultralytics-8.2.51.dist-info/RECORD,,
223
+ ultralytics-8.2.52.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
224
+ ultralytics-8.2.52.dist-info/METADATA,sha256=webbwXELnlmxl3uOQXh9evd9ezz_2dqx9tv63wyNY1I,41217
225
+ ultralytics-8.2.52.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
226
+ ultralytics-8.2.52.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
227
+ ultralytics-8.2.52.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
228
+ ultralytics-8.2.52.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.2.0)
2
+ Generator: setuptools (70.3.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5