ultralytics 8.2.37__py3-none-any.whl → 8.2.39__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (32) hide show
  1. tests/test_python.py +9 -0
  2. ultralytics/__init__.py +1 -1
  3. ultralytics/cfg/models/v10/yolov10b.yaml +42 -0
  4. ultralytics/cfg/models/v10/yolov10l.yaml +42 -0
  5. ultralytics/cfg/models/v10/yolov10m.yaml +42 -0
  6. ultralytics/cfg/models/v10/yolov10n.yaml +42 -0
  7. ultralytics/cfg/models/v10/yolov10s.yaml +42 -0
  8. ultralytics/cfg/models/v10/yolov10x.yaml +42 -0
  9. ultralytics/cfg/models/v8/yolov8-p6.yaml +5 -5
  10. ultralytics/data/augment.py +13 -16
  11. ultralytics/data/converter.py +10 -11
  12. ultralytics/data/split_dota.py +4 -4
  13. ultralytics/engine/exporter.py +3 -2
  14. ultralytics/engine/model.py +0 -1
  15. ultralytics/models/sam/modules/tiny_encoder.py +6 -7
  16. ultralytics/nn/modules/__init__.py +14 -1
  17. ultralytics/nn/modules/block.py +256 -1
  18. ultralytics/nn/modules/head.py +114 -4
  19. ultralytics/nn/tasks.py +40 -18
  20. ultralytics/solutions/__init__.py +1 -0
  21. ultralytics/utils/__init__.py +1 -1
  22. ultralytics/utils/benchmarks.py +5 -0
  23. ultralytics/utils/downloads.py +1 -0
  24. ultralytics/utils/loss.py +20 -2
  25. ultralytics/utils/metrics.py +2 -1
  26. ultralytics/utils/ops.py +3 -0
  27. {ultralytics-8.2.37.dist-info → ultralytics-8.2.39.dist-info}/METADATA +6 -6
  28. {ultralytics-8.2.37.dist-info → ultralytics-8.2.39.dist-info}/RECORD +32 -26
  29. {ultralytics-8.2.37.dist-info → ultralytics-8.2.39.dist-info}/LICENSE +0 -0
  30. {ultralytics-8.2.37.dist-info → ultralytics-8.2.39.dist-info}/WHEEL +0 -0
  31. {ultralytics-8.2.37.dist-info → ultralytics-8.2.39.dist-info}/entry_points.txt +0 -0
  32. {ultralytics-8.2.37.dist-info → ultralytics-8.2.39.dist-info}/top_level.txt +0 -0
ultralytics/utils/loss.py CHANGED
@@ -148,7 +148,7 @@ class KeypointLoss(nn.Module):
148
148
  class v8DetectionLoss:
149
149
  """Criterion class for computing training losses."""
150
150
 
151
- def __init__(self, model): # model must be de-paralleled
151
+ def __init__(self, model, tal_topk=10): # model must be de-paralleled
152
152
  """Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
153
153
  device = next(model.parameters()).device # get model device
154
154
  h = model.args # hyperparameters
@@ -164,7 +164,7 @@ class v8DetectionLoss:
164
164
 
165
165
  self.use_dfl = m.reg_max > 1
166
166
 
167
- self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
167
+ self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)
168
168
  self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
169
169
  self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
170
170
 
@@ -714,3 +714,21 @@ class v8OBBLoss(v8DetectionLoss):
714
714
  b, a, c = pred_dist.shape # batch, anchors, channels
715
715
  pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
716
716
  return torch.cat((dist2rbox(pred_dist, pred_angle, anchor_points), pred_angle), dim=-1)
717
+
718
+
719
+ class E2EDetectLoss:
720
+ """Criterion class for computing training losses."""
721
+
722
+ def __init__(self, model):
723
+ """Initialize E2EDetectLoss with one-to-many and one-to-one detection losses using the provided model."""
724
+ self.one2many = v8DetectionLoss(model, tal_topk=10)
725
+ self.one2one = v8DetectionLoss(model, tal_topk=1)
726
+
727
+ def __call__(self, preds, batch):
728
+ """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
729
+ preds = preds[1] if isinstance(preds, tuple) else preds
730
+ one2many = preds["one2many"]
731
+ loss_one2many = self.one2many(one2many, batch)
732
+ one2one = preds["one2one"]
733
+ loss_one2one = self.one2one(one2one, batch)
734
+ return loss_one2many[0] + loss_one2one[0], loss_one2many[1] + loss_one2one[1]
@@ -64,8 +64,9 @@ def box_iou(box1, box2, eps=1e-7):
64
64
  (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
65
65
  """
66
66
 
67
+ # NOTE: Need .float() to get accurate iou values
67
68
  # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
68
- (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
69
+ (a1, a2), (b1, b2) = box1.float().unsqueeze(1).chunk(2, 2), box2.float().unsqueeze(0).chunk(2, 2)
69
70
  inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)
70
71
 
71
72
  # IoU = inter / (area1 + area2 - inter)
ultralytics/utils/ops.py CHANGED
@@ -213,6 +213,9 @@ def non_max_suppression(
213
213
  if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
214
214
  prediction = prediction[0] # select only inference output
215
215
 
216
+ if prediction.shape[-1] == 6: # end-to-end model
217
+ return [pred[pred[:, 4] > conf_thres] for pred in prediction]
218
+
216
219
  bs = prediction.shape[0] # batch size
217
220
  nc = nc or (prediction.shape[1] - 4) # number of classes
218
221
  nm = prediction.shape[1] - nc - 4 # number of masks
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.37
3
+ Version: 8.2.39
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -122,7 +122,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
122
122
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
123
123
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
124
124
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
125
- <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
125
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
126
126
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
127
127
  <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
128
128
  </div>
@@ -313,7 +313,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
313
313
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
314
314
 
315
315
  <br>
316
- <a href="https://bit.ly/ultralytics_hub" target="_blank">
316
+ <a href="https://ultralytics.com/hub" target="_blank">
317
317
  <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
318
318
  <br>
319
319
  <br>
@@ -338,9 +338,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
338
338
 
339
339
  ## <div align="center">Ultralytics HUB</div>
340
340
 
341
- Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
341
+ Experience seamless AI with [Ultralytics HUB](https://ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
342
342
 
343
- <a href="https://bit.ly/ultralytics_hub" target="_blank">
343
+ <a href="https://ultralytics.com/hub" target="_blank">
344
344
  <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
345
345
 
346
346
  ## <div align="center">Contribute</div>
@@ -375,7 +375,7 @@ For Ultralytics bug reports and feature requests please visit [GitHub Issues](ht
375
375
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
376
376
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
377
377
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
378
- <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="Ultralytics Instagram"></a>
378
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
379
379
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
380
380
  <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
381
381
  </div>
@@ -6,8 +6,8 @@ tests/test_engine.py,sha256=fFzcbqZuMkzZHjA5FMddWcqVE703iq8HB_a0Q2lcBKM,4705
6
6
  tests/test_explorer.py,sha256=r1pWer2y290Y0DqsM-La7egfEY0497YCdC4rwq3URV4,2178
7
7
  tests/test_exports.py,sha256=qc4YOgsGixqYLO6IRNY16-v6z14R0dp5fdni1v222xw,8034
8
8
  tests/test_integrations.py,sha256=8Ru7GyKV8j44EEc8X9_E7q7aR4CTOIMPuSagXjSGUxw,5847
9
- tests/test_python.py,sha256=5cTM45P77LoOl-qixJ7TQmf66zw69adj01kNaaSxHqE,20265
10
- ultralytics/__init__.py,sha256=SZ2J0Bd3FrWlOh7a0GS_8EnhlKDLXT2cih66PzAHgfU,694
9
+ tests/test_python.py,sha256=9KjBKQXj6T9hRfX-4nnERd7OR3xx2ejV8430BoXjHro,20536
10
+ ultralytics/__init__.py,sha256=mkhFNTFZ9peN-6tReInnBdHL_JDPx-SsIZcBFTJSXW0,694
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=JblkT6Ze9MZ8hSs8gkV8JPcEKNMm-YqRqM4x501Dn9g,21507
@@ -43,6 +43,12 @@ ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW
43
43
  ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=o0nWoKciT-vypC2eS5qIEWNSac0L6vwLtbK9ucQluG4,1512
44
44
  ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=rb64WQK-3a_PebUcy6CbpskvlC74H9M3tMIr3R5vHDU,1510
45
45
  ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=E5utqNL7oNztyPKySGPoVET8RIUeqAqchdaslu5Zb5g,2141
46
+ ultralytics/cfg/models/v10/yolov10b.yaml,sha256=GBN4p-I54eSvbFv4VpUavOY9uuUSv3wAnAXyvYZkE5w,1401
47
+ ultralytics/cfg/models/v10/yolov10l.yaml,sha256=vXbJXGj-rISV83doIKujlI5XjeD3PUyzSrNleSPns1g,1401
48
+ ultralytics/cfg/models/v10/yolov10m.yaml,sha256=VS915roEcpJDtVNtzH0OrJNM9FY2rCsz7zY0YU6v9gs,1392
49
+ ultralytics/cfg/models/v10/yolov10n.yaml,sha256=f7sJ49GL2IF5kXd9oh19W_cdUgbrFZLlp5jz6j-jO0M,1387
50
+ ultralytics/cfg/models/v10/yolov10s.yaml,sha256=WaOa5eAGiNEwPZsni01dlcLWyNkonZ4Tjvxxm7w0WFE,1396
51
+ ultralytics/cfg/models/v10/yolov10x.yaml,sha256=kMtkDJutUSTkw_aznpaoQ4YGUJpFTxoR1cxz31oqOKA,1404
46
52
  ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=NfKJeBpDgDSwXo7fSN8myQUQ68YLB9xRtqdBgGlVPHs,1525
47
53
  ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=5mnGGCN-mNDvqvOz2AzGhfwEg01exzeHNPS3NA3poiY,1229
48
54
  ultralytics/cfg/models/v3/yolov3.yaml,sha256=-94p4tePdDtdpnz79u7O1sChV69kTi01lFxcVGoJ8MY,1512
@@ -57,7 +63,7 @@ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=kqgbEKNua7XwH95zteW6IzXaAj
57
63
  ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=WUHOI18aA11kgANDCWbDDy3jswNlP_nIkpWX09BfBuI,2096
58
64
  ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=Tv5JDZTLOrfyBj3ggqse9ShjDpM-nIFIxhiseQKwJEA,1899
59
65
  ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=tfHkkVAC0fkCc7AbisTzGpXW3Ffk2-K5-wjReSbm7Gw,1731
60
- ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=9xVJo6qVuxRRDJfGNmTIPqjAvoJmxcdQOgewuNVOHHg,1835
66
+ ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=lAFASwFhjvUpfCdzrnGZiU4Fy9EwbJ5QbJhrRyUm210,2296
61
67
  ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=yzxI20bMBdo6f5kd53VfuEHm_QqE_V3uwAvFJE0Tbr0,1927
62
68
  ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=DHoJd7q7Hw89JBX5im-M3NWG8mge3VdPVNb4K4jTzIQ,1563
63
69
  ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=ofujf77LW3stXS6-leVM_ExROWifJ84D5WqRhujyVJI,1896
@@ -77,13 +83,13 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q
77
83
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
78
84
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
79
85
  ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
80
- ultralytics/data/augment.py,sha256=_zVVyJBFGfdpFerKYNfhyycXE2AoxiAfPkyOso4OvKU,59542
86
+ ultralytics/data/augment.py,sha256=zekY4Lw_dxsbPpm4jDSr7PYtWwj7iBaRqBcAeeDFDS4,59554
81
87
  ultralytics/data/base.py,sha256=C3teLnw97ZTbpJHT9P7yYWosAKocMzgJjRe1rxgfpls,13524
82
88
  ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
83
- ultralytics/data/converter.py,sha256=NLDiV67RshbKQnMJUiQQF11boVzEqgi2Hz39nKVAI4U,17528
89
+ ultralytics/data/converter.py,sha256=7640xKuf7LPeoTwoCvgbIXM5xbzyq72Hu2Rf2lrgjRY,17554
84
90
  ultralytics/data/dataset.py,sha256=NFaXyHRn64TyTEbtSkr7SkqWXK8bEJl6lZ6M1JwO3MY,22201
85
91
  ultralytics/data/loaders.py,sha256=eqfgFwrQeCiqiZKfkmZ54SN0APVJDGhnlXTTFqeKFSU,23932
86
- ultralytics/data/split_dota.py,sha256=xiPScUhknxAyBgJ_J7g8SJdgjJdomSVVAosfZ51rGWA,10072
92
+ ultralytics/data/split_dota.py,sha256=fWezt1Bo3jiZ6AyUWdBtTUuvLamPv1t7JD-DirM9gQ8,10142
87
93
  ultralytics/data/utils.py,sha256=zqFg4xaWU--fastZmwvZ3DxGyJQ3i4tVNLuYnqS1xxs,31044
88
94
  ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
89
95
  ultralytics/data/explorer/explorer.py,sha256=GqQcHkETxlS0w-lYUnTE_RJ9wPReK7c9XG41-k9FoxE,18668
@@ -91,8 +97,8 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
91
97
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
92
98
  ultralytics/data/explorer/gui/dash.py,sha256=CPlFIIhf53j_YVAqealsC3AbcztdPqZxfniQcBnlKK4,10042
93
99
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
94
- ultralytics/engine/exporter.py,sha256=JWVmXMD8RpXOayisS2_Q4gSeqvKAeXfMt2Y-azOZiIo,58464
95
- ultralytics/engine/model.py,sha256=qSvCT-l8mLT-CDixy6mjyC7N5x3edsWmobRWbojwLUM,40073
100
+ ultralytics/engine/exporter.py,sha256=RVREJjFJ7Y-pnLq_i0yM5x9QRlKoLr0WnQWepkbFD_Y,58534
101
+ ultralytics/engine/model.py,sha256=wzIlzNNJUWWTb_nygVY0mK2nq3g3CyDST3lRlk-HH5M,40044
96
102
  ultralytics/engine/predictor.py,sha256=W58kDCFH2AfoFzpGbos3k8zUEVsLunBuM8sc2B64rPY,17449
97
103
  ultralytics/engine/results.py,sha256=zRuEIrBtpoCQ3M6a_YscnyXrWSP-zpL3ACv0gTdrDaw,30987
98
104
  ultralytics/engine/trainer.py,sha256=Gkh7tFa5BlQv4pZhcAKCfKBHwR28w4AHLqALxKa8ask,35264
@@ -127,7 +133,7 @@ ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz
127
133
  ultralytics/models/sam/modules/decoders.py,sha256=7NWnBNupxGYvH0S1N0R6NBHxdVFRUrrnL9EqAw09J4E,7816
128
134
  ultralytics/models/sam/modules/encoders.py,sha256=pRNZHzt2J2xD_D0Btu8pk4DcItfr6dRr9rcRfxoZZhU,24746
129
135
  ultralytics/models/sam/modules/sam.py,sha256=zC4l4kcrIQD_ekczjl2l6dgaABqqjROZxQ-FDb-itt0,2783
130
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=lVmz33WJrU2O6L-pwubKFu4ydUZmQeVhuhLcyKspdAI,29145
136
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=_fdtgoYcsQKmvit7Ii9iUmL3Zh42IziEswtZZ38JXrk,29181
131
137
  ultralytics/models/sam/modules/transformer.py,sha256=VINZMb4xkx4IHAbJdhCq2XLDvaFBMup7RGC16DLS7OY,11164
132
138
  ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
133
139
  ultralytics/models/utils/loss.py,sha256=PmlKDe4xQTiYkPSCdNUabxJC7bh43zGxiKVIxsXBVGE,15135
@@ -159,14 +165,14 @@ ultralytics/models/yolo/world/train.py,sha256=acYN2-onL69LrL4av6_hY2r5AY0urC0WVi
159
165
  ultralytics/models/yolo/world/train_world.py,sha256=n0XTAHYxufHU5OZ_QjpkHieKik-24z0LrYKzWYbCLvA,4798
160
166
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
161
167
  ultralytics/nn/autobackend.py,sha256=zsMF-GS12xtMBeQEkSoJ5cudEHyzMaRSQBuXcfuBNdo,31210
162
- ultralytics/nn/tasks.py,sha256=extgDOPk2wHFxjiyOMotM68AqeGzNrMwehEdi5lX0JE,44954
163
- ultralytics/nn/modules/__init__.py,sha256=JPj_TloK33DdxS8gvA8Pcet5ax1SgbRcb5mTTOS0DCI,2371
164
- ultralytics/nn/modules/block.py,sha256=3SfxkNMBKbjzAzNrt_CeGxpeBLkrdko7n07cDSIY6gg,25781
168
+ ultralytics/nn/tasks.py,sha256=1fempWanr6FrjoDZ10ukZvcnvG80ahYBKtaX8KLJtRM,45547
169
+ ultralytics/nn/modules/__init__.py,sha256=mARjWk83WPYF5phXhXfPbAu2ZohtdbHdi5zzoxyMubo,2553
170
+ ultralytics/nn/modules/block.py,sha256=JiPwcbLzb7O_O5T1KkW0dIGJSfBwPaS-NNYuVkLBDwg,34384
165
171
  ultralytics/nn/modules/conv.py,sha256=Ywe87IhuaS22mR2JJ9xjnW8Sb-m7WTjxuqIxV_Dv8lI,12722
166
- ultralytics/nn/modules/head.py,sha256=3N_4zW1UvhI1jCrIxIkNYxQDdiW6HxtxpaNAAudq6NU,22236
172
+ ultralytics/nn/modules/head.py,sha256=6VV6t2OJ_t9fCdhFxzcMcirp6lonv-xSm0o2yFghZZ0,26747
167
173
  ultralytics/nn/modules/transformer.py,sha256=AxD9uURpCl-EqvXe3DiG6JW-pBzB16G-AahLdZ7yayo,17909
168
174
  ultralytics/nn/modules/utils.py,sha256=779QnnKp9v8jv251ESduTXJ0ol8HkIOLbGQWwEGQjhU,3196
169
- ultralytics/solutions/__init__.py,sha256=S4m7p_rpg2pk9PdnqqD-6Sk--wDHxZSo7cUZjSwj_iQ,561
175
+ ultralytics/solutions/__init__.py,sha256=aO9h0JQDfaQR2PCk7yCRxu2odb3Zxu76RdYSv9JPfm8,588
170
176
  ultralytics/solutions/ai_gym.py,sha256=RdkV15IW8CLYn9pGCzkvU1Gor2o71da-TLJVvsFM8a0,4665
171
177
  ultralytics/solutions/analytics.py,sha256=UI8HoegfIJGgvQPOt4-e9A0ss2_ofM7zzxcbKlhe66k,11572
172
178
  ultralytics/solutions/distance_calculation.py,sha256=pSIkyytHGRAaNzIrkkNkiOnSVWU1PYvURlCIV_jRORA,6505
@@ -184,18 +190,18 @@ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7J
184
190
  ultralytics/trackers/utils/gmc.py,sha256=-1oBNFRB-9EawJmUOT566AygLCVxJw-jsPSIOl5j_Hk,13683
185
191
  ultralytics/trackers/utils/kalman_filter.py,sha256=0oqhk59NKEiwcJ2FXnw6_sT4bIFC6Wu5IY2B-TGxJKU,15168
186
192
  ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuUB6PfVNkb4,5404
187
- ultralytics/utils/__init__.py,sha256=jrPWtLQEZJtbumqRrctgUikpAzS62Xm0iPy73iqIGSs,38640
193
+ ultralytics/utils/__init__.py,sha256=WdStmMYcXE7q4V3RgTYGmLEicMJR0mTQawGtK5_q9Is,38657
188
194
  ultralytics/utils/autobatch.py,sha256=gPFcREMsMHRAuTQiBnNZ9Mm1XNqmQW-uMPhveDFEQ_Y,3966
189
- ultralytics/utils/benchmarks.py,sha256=tBVe5Q4HZABpjpI1LDqpT8bJSoZFhsAEtyZCHx8dMIg,23120
195
+ ultralytics/utils/benchmarks.py,sha256=tDX7wu0TpMMlEQDOFqfkjxl156ssS7Lh_5tFWIXdJfg,23549
190
196
  ultralytics/utils/checks.py,sha256=PDY1eHlsyDVEIiKRjvb81uz2jniL1MqgP_TmXH_78KM,28379
191
197
  ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
192
- ultralytics/utils/downloads.py,sha256=cmO2Ev1DV1m_lYgQ2yGDG5xVRIBVS_z9nS_Frec_NeU,21496
198
+ ultralytics/utils/downloads.py,sha256=AcO0vT4jZd3BJz4dhYYci8PKWJxlqAGraqo_IlU2kYE,21539
193
199
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
194
200
  ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,6761
195
201
  ultralytics/utils/instance.py,sha256=5daM5nkxBv9hr5QzyII8zmuFj24hHuNtcr4EMCHAtpY,15654
196
- ultralytics/utils/loss.py,sha256=ejXnPEIAzNEoNz2UjW0_fcdeUs9Hy-jPzUrJ3FiIIwE,32717
197
- ultralytics/utils/metrics.py,sha256=XPD-xP0fchR8KgCuTcihV2-n0EK1cWi3-53BWN_pLuA,53518
198
- ultralytics/utils/ops.py,sha256=J9wbb9aTW9aaI5DJRqA72BZAX77cmVyCJdnGuwkDu-k,33089
202
+ ultralytics/utils/loss.py,sha256=RF0st6IPW5pFhUMYHXCQ9msNJbPPeD8dRdQDn6HwZN8,33539
203
+ ultralytics/utils/metrics.py,sha256=3nuFZK_7rnhf6KjhflnRfHVN2i_ZB-LbGvIdbc177N8,53587
204
+ ultralytics/utils/ops.py,sha256=A6MnypWNEpgOQRJpPwE3JMi2rUQWaDmBklIaaqvu3Lc,33214
199
205
  ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
200
206
  ultralytics/utils/plotting.py,sha256=I3YYLSsmj1BX8S5DphsedAm0RfisrPbeLpyuzsKXbqY,53288
201
207
  ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
@@ -213,9 +219,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
213
219
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
214
220
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
215
221
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
216
- ultralytics-8.2.37.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
217
- ultralytics-8.2.37.dist-info/METADATA,sha256=LHuqk6NTu__ZhHOS1G0EldVE8hSCUtsXdmGtp55pHRQ,41316
218
- ultralytics-8.2.37.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
219
- ultralytics-8.2.37.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
220
- ultralytics-8.2.37.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
221
- ultralytics-8.2.37.dist-info/RECORD,,
222
+ ultralytics-8.2.39.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
223
+ ultralytics-8.2.39.dist-info/METADATA,sha256=XHc9CKRpOfE9imi40-J_ziVia8M_K-JzvXbaO_ga518,41291
224
+ ultralytics-8.2.39.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
225
+ ultralytics-8.2.39.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
226
+ ultralytics-8.2.39.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
227
+ ultralytics-8.2.39.dist-info/RECORD,,