ultralytics 8.2.35__py3-none-any.whl → 8.2.36__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.35"
3
+ __version__ = "8.2.36"
4
4
 
5
5
  import os
6
6
 
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9c-seg
2
+ # YOLOv9c-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 654 layers, 27897120 parameters, 159.4 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
11
11
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9c
2
+ # YOLOv9c object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 618 layers, 25590912 parameters, 104.0 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
11
11
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9c-seg
2
+ # YOLOv9e-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 1261 layers, 60512800 parameters, 248.4 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, nn.Identity, []]
11
11
  - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
@@ -40,7 +40,7 @@ backbone:
40
40
  - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
41
41
  - [-1, 1, SPPELAN, [512, 256]] # 29
42
42
 
43
- # gelan head
43
+ # GELAN head
44
44
  head:
45
45
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
46
46
  - [[-1, 25], 1, Concat, [1]] # cat backbone P4
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9e
2
+ # YOLOv9e object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 1225 layers, 58206592 parameters, 193.0 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, nn.Identity, []]
11
11
  - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
@@ -40,7 +40,7 @@ backbone:
40
40
  - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
41
41
  - [-1, 1, SPPELAN, [512, 256]] # 29
42
42
 
43
- # gelan head
43
+ # GELAN head
44
44
  head:
45
45
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
46
46
  - [[-1, 25], 1, Concat, [1]] # cat backbone P4
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9t
2
+ # YOLOv9m object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 603 layers, 20216160 parameters, 77.9 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
11
11
  - [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9s
2
+ # YOLOv9s object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 917 layers, 7318368 parameters, 27.6 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
11
11
  - [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
@@ -1,11 +1,11 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # YOLOv9t
2
+ # YOLOv9t object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
3
3
  # 917 layers, 2128720 parameters, 8.5 GFLOPs
4
4
 
5
- # parameters
5
+ # Parameters
6
6
  nc: 80 # number of classes
7
7
 
8
- # gelan backbone
8
+ # GELAN backbone
9
9
  backbone:
10
10
  - [-1, 1, Conv, [16, 3, 2]] # 0-P1/2
11
11
  - [-1, 1, Conv, [32, 3, 2]] # 1-P2/4
ultralytics/nn/tasks.py CHANGED
@@ -279,6 +279,12 @@ class DetectionModel(BaseModel):
279
279
  """Initialize the YOLOv8 detection model with the given config and parameters."""
280
280
  super().__init__()
281
281
  self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
282
+ if self.yaml["backbone"][0][2] == "Silence":
283
+ LOGGER.warning(
284
+ "WARNING ⚠️ YOLOv9 `Silence` module is deprecated in favor of nn.Identity. "
285
+ "Please delete local *.pt file and re-download the latest model checkpoint."
286
+ )
287
+ self.yaml["backbone"][0][2] = "nn.Identity"
282
288
 
283
289
  # Define model
284
290
  ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
@@ -38,10 +38,12 @@ try:
38
38
  except (ImportError, AssertionError):
39
39
  mlflow = None
40
40
 
41
+
41
42
  def sanitize_dict(x):
42
43
  """Sanitize dictionary keys by removing parentheses and converting values to floats."""
43
44
  return {k.replace("(", "").replace(")", ""): float(v) for k, v in x.items()}
44
45
 
46
+
45
47
  def on_pretrain_routine_end(trainer):
46
48
  """
47
49
  Log training parameters to MLflow at the end of the pretraining routine.
@@ -33,26 +33,26 @@ class Colors:
33
33
  def __init__(self):
34
34
  """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
35
35
  hexs = (
36
- "FF3838",
37
- "FF9D97",
38
- "FF701F",
39
- "FFB21D",
40
- "CFD231",
41
- "48F90A",
42
- "92CC17",
43
- "3DDB86",
44
- "1A9334",
45
- "00D4BB",
46
- "2C99A8",
47
- "00C2FF",
48
- "344593",
49
- "6473FF",
50
- "0018EC",
51
- "8438FF",
52
- "520085",
53
- "CB38FF",
54
- "FF95C8",
55
- "FF37C7",
36
+ "042AFF",
37
+ "0BDBEB",
38
+ "F3F3F3",
39
+ "00DFB7",
40
+ "111F68",
41
+ "FF6FDD",
42
+ "FF444F",
43
+ "CCED00",
44
+ "00F344",
45
+ "BD00FF",
46
+ "00B4FF",
47
+ "DD00BA",
48
+ "00FFFF",
49
+ "26C000",
50
+ "01FFB3",
51
+ "7D24FF",
52
+ "7B0068",
53
+ "FF1B6C",
54
+ "FC6D2F",
55
+ "A2FF0B",
56
56
  )
57
57
  self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
58
58
  self.n = len(self.palette)
@@ -158,9 +158,36 @@ class Annotator:
158
158
 
159
159
  self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
160
160
  self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
161
+ self.dark_colors = {
162
+ (235, 219, 11),
163
+ (243, 243, 243),
164
+ (183, 223, 0),
165
+ (221, 111, 255),
166
+ (0, 237, 204),
167
+ (68, 243, 0),
168
+ (255, 255, 0),
169
+ (179, 255, 1),
170
+ (11, 255, 162),
171
+ }
172
+ self.light_colors = {
173
+ (255, 42, 4),
174
+ (79, 68, 255),
175
+ (255, 0, 189),
176
+ (255, 180, 0),
177
+ (186, 0, 221),
178
+ (0, 192, 38),
179
+ (255, 36, 125),
180
+ (104, 0, 123),
181
+ (108, 27, 255),
182
+ (47, 109, 252),
183
+ (104, 31, 17),
184
+ }
161
185
 
162
186
  def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
163
187
  """Add one xyxy box to image with label."""
188
+ txt_color = (
189
+ (104, 31, 17) if color in self.dark_colors else (255, 255, 255) if color in self.light_colors else txt_color
190
+ )
164
191
  if isinstance(box, torch.Tensor):
165
192
  box = box.tolist()
166
193
  if self.pil or not is_ascii(label):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.35
3
+ Version: 8.2.36
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -93,13 +93,13 @@ Requires-Dist: dvclive >=2.12.0 ; extra == 'logging'
93
93
  <div>
94
94
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
95
95
  <a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
96
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
97
- <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
98
- <a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
96
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLOv8 Citation"></a>
97
+ <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
98
+ <a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
99
99
  <br>
100
- <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
101
- <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
102
- <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
100
+ <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
101
+ <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
102
+ <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
103
103
  </div>
104
104
  <br>
105
105
 
@@ -7,7 +7,7 @@ tests/test_explorer.py,sha256=r1pWer2y290Y0DqsM-La7egfEY0497YCdC4rwq3URV4,2178
7
7
  tests/test_exports.py,sha256=qc4YOgsGixqYLO6IRNY16-v6z14R0dp5fdni1v222xw,8034
8
8
  tests/test_integrations.py,sha256=8Ru7GyKV8j44EEc8X9_E7q7aR4CTOIMPuSagXjSGUxw,5847
9
9
  tests/test_python.py,sha256=5cTM45P77LoOl-qixJ7TQmf66zw69adj01kNaaSxHqE,20265
10
- ultralytics/__init__.py,sha256=8W6USnulq-5lM79JviwPwZPJkWTGtGBW-gUMhtDKvOk,694
10
+ ultralytics/__init__.py,sha256=1Edv7ZpFN2p9aTfU0xIEDc_e8ajnzH-lQ6We20LXv2g,694
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=JblkT6Ze9MZ8hSs8gkV8JPcEKNMm-YqRqM4x501Dn9g,21507
@@ -66,13 +66,13 @@ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=fN85m_aDMCH4oTJ3z-ft98Pdh6dk0pZ
66
66
  ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=RXTp_tgix8dbnVHprapxiK2aax7M2qIfmuR-aAve4sU,2019
67
67
  ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=fvGVUxvlBOjN6LUiiaiGsnjK5ZKjwYGWxgkJ49hGmMg,1956
68
68
  ultralytics/cfg/models/v8/yolov8.yaml,sha256=VjSe_V2Gn9ZpJrwTtz0A6_6IMp6UuugNiR7aEShR5rc,1889
69
- ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=526Rv4rjzHT-Vkm1JIhe3E7FEQ5FOCVkKesVd1bsc6k,1251
70
- ultralytics/cfg/models/v9/yolov9c.yaml,sha256=eya4Dv8YUHcdFpQcqOPLA9f1tdvoNW12erOb5BqqQFY,1236
71
- ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=BaleOWTpGuMSTMg4y2v_12e1RbZU_L4gM6FtlDcHAUQ,2182
72
- ultralytics/cfg/models/v9/yolov9e.yaml,sha256=vLIw0Y3jULtTd_ePxb2lXfZx9YidjCEO0q4JcJarn10,2166
73
- ultralytics/cfg/models/v9/yolov9m.yaml,sha256=CV_Y59Ou24eLgdpeMkXKR6l78id56hdLJdRwmsFDhWU,1221
74
- ultralytics/cfg/models/v9/yolov9s.yaml,sha256=bvfbEZsXy3qHPo7QR7ca64iXiM4ipL08Rllj4cNC8BM,1201
75
- ultralytics/cfg/models/v9/yolov9t.yaml,sha256=1Y0DFei9RYdisXgBHQjX-Eoec_AfClhTnE4Nj9l5FSM,1185
69
+ ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=Bled9VT_X3AGGe9OATXGA8arq_USbGUc8pjsy684A7w,1346
70
+ ultralytics/cfg/models/v9/yolov9c.yaml,sha256=vPfYbdDDg2aDm2yVRfyjXNOgFryTUWFG60lcHQjLpuA,1326
71
+ ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=ycMexB2qKdte-hko7SF9PY4qOng1moIoq-ssg4a3teA,2277
72
+ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=dhaR47WxuLOrZWDCceS4bQG00sQdrMc8FQ5K3mKsnaU,2256
73
+ ultralytics/cfg/models/v9/yolov9m.yaml,sha256=l6CmivzNu44sRVmkQXk4-tXflbV1nWnk5MSc8su2vhs,1311
74
+ ultralytics/cfg/models/v9/yolov9s.yaml,sha256=lPWcu-6ub1kCBD6zIDFwthYZ3RvdJfODWKy3vEQWRjo,1291
75
+ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=qL__kr6GoefpQWP4jV0jdzwTp46bdFUcqtPRnfDbkY8,1275
76
76
  ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
77
77
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
78
78
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
@@ -159,7 +159,7 @@ ultralytics/models/yolo/world/train.py,sha256=acYN2-onL69LrL4av6_hY2r5AY0urC0WVi
159
159
  ultralytics/models/yolo/world/train_world.py,sha256=n0XTAHYxufHU5OZ_QjpkHieKik-24z0LrYKzWYbCLvA,4798
160
160
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
161
161
  ultralytics/nn/autobackend.py,sha256=zsMF-GS12xtMBeQEkSoJ5cudEHyzMaRSQBuXcfuBNdo,31210
162
- ultralytics/nn/tasks.py,sha256=_mEgl8urgF6l9rAWtjRyalPiaSM52njwdUhtnBsGeV0,43869
162
+ ultralytics/nn/tasks.py,sha256=g2NDjtWGHhNb3OXS7A-IMb7Smdvf0ugpftum3qNf000,44210
163
163
  ultralytics/nn/modules/__init__.py,sha256=JPj_TloK33DdxS8gvA8Pcet5ax1SgbRcb5mTTOS0DCI,2371
164
164
  ultralytics/nn/modules/block.py,sha256=T7XV7nykPsVL6y1JsFsK566d6kAGN1DICh25g3ooWjU,26033
165
165
  ultralytics/nn/modules/conv.py,sha256=Ywe87IhuaS22mR2JJ9xjnW8Sb-m7WTjxuqIxV_Dv8lI,12722
@@ -197,7 +197,7 @@ ultralytics/utils/loss.py,sha256=ejXnPEIAzNEoNz2UjW0_fcdeUs9Hy-jPzUrJ3FiIIwE,327
197
197
  ultralytics/utils/metrics.py,sha256=XPD-xP0fchR8KgCuTcihV2-n0EK1cWi3-53BWN_pLuA,53518
198
198
  ultralytics/utils/ops.py,sha256=J9wbb9aTW9aaI5DJRqA72BZAX77cmVyCJdnGuwkDu-k,33089
199
199
  ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
200
- ultralytics/utils/plotting.py,sha256=rM6FbEHD_TYtAjl_jrBztKgJYg4QSpWPW-P7demEEcw,48262
200
+ ultralytics/utils/plotting.py,sha256=KBZWfRGfptzmNBJqZSgMHpMJS3cHuaHiLNqkGUm-RT8,49040
201
201
  ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
202
202
  ultralytics/utils/torch_utils.py,sha256=G8gVzI3sOSVSHORi5a2u-iFhUCGGHn5_eKHaOaLfsOY,27047
203
203
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
@@ -208,14 +208,14 @@ ultralytics/utils/callbacks/clearml.py,sha256=M9Fi1OfdWqcm8uVkauuX3zJIYhNh6Tp7Jo
208
208
  ultralytics/utils/callbacks/comet.py,sha256=QR3-9f0L_W7nZWWg_OEN7t8La2JotapSS-CnNYVjCdk,13744
209
209
  ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
210
210
  ultralytics/utils/callbacks/hub.py,sha256=IPNnCRlAEFA-Dt18JWTuHhaQpcAy3XGgxBD4JhO0jSs,3586
211
- ultralytics/utils/callbacks/mlflow.py,sha256=_1mbw2zg-IY2dg16GhqcMxm0pQdMzwn3PdElJ7kjxUc,5389
211
+ ultralytics/utils/callbacks/mlflow.py,sha256=_bUzHyPb0npne0WFlGzlGCy-X5sxGQhC_xA3dZbF08I,5391
212
212
  ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyzC5q7p4ipQ,3756
213
213
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
214
214
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
215
215
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
216
- ultralytics-8.2.35.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
217
- ultralytics-8.2.35.dist-info/METADATA,sha256=bYE30qcGkZFsx0WsQU8f9g0hoB7-CnoopHig0mW5GvY,41240
218
- ultralytics-8.2.35.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
219
- ultralytics-8.2.35.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
220
- ultralytics-8.2.35.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
221
- ultralytics-8.2.35.dist-info/RECORD,,
216
+ ultralytics-8.2.36.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
217
+ ultralytics-8.2.36.dist-info/METADATA,sha256=Ue0E-rgJZzMjkdxsVkLHfmZX4KAnjWviz-wAUoKj8tg,41312
218
+ ultralytics-8.2.36.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
219
+ ultralytics-8.2.36.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
220
+ ultralytics-8.2.36.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
221
+ ultralytics-8.2.36.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (70.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5