ultralytics 8.2.33__py3-none-any.whl → 8.2.35__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

tests/test_cuda.py CHANGED
@@ -19,6 +19,7 @@ def test_checks():
19
19
 
20
20
 
21
21
  @pytest.mark.slow
22
+ @pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
22
23
  @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
23
24
  @pytest.mark.parametrize(
24
25
  "task, dynamic, int8, half, batch",
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.33"
3
+ __version__ = "8.2.35"
4
4
 
5
5
  import os
6
6
 
@@ -221,8 +221,7 @@ names:
221
221
  204: cape
222
222
  205: cappuccino/coffee cappuccino
223
223
  206: car/car automobile/auto/auto automobile/automobile
224
- 207: railcar/railcar part of a train/railway car/railway car part of a train/railroad
225
- car/railroad car part of a train
224
+ 207: railcar/railcar part of a train/railway car/railway car part of a train/railroad car/railroad car part of a train
226
225
  208: elevator car
227
226
  209: car battery/automobile battery
228
227
  210: identity card
@@ -241,8 +240,7 @@ names:
241
240
  223: cast/plaster cast/plaster bandage
242
241
  224: cat
243
242
  225: cauliflower
244
- 226: cayenne/cayenne spice/cayenne pepper/cayenne pepper spice/red pepper/red pepper
245
- spice
243
+ 226: cayenne/cayenne spice/cayenne pepper/cayenne pepper spice/red pepper/red pepper spice
246
244
  227: CD player
247
245
  228: celery
248
246
  229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
@@ -258,8 +256,7 @@ names:
258
256
  239: chessboard
259
257
  240: chicken/chicken animal
260
258
  241: chickpea/garbanzo
261
- 242: chili/chili vegetable/chili pepper/chili pepper vegetable/chilli/chilli vegetable/chilly/chilly
262
- vegetable/chile/chile vegetable
259
+ 242: chili/chili vegetable/chili pepper/chili pepper vegetable/chilli/chilli vegetable/chilly/chilly vegetable/chile/chile vegetable
263
260
  243: chime/gong
264
261
  244: chinaware
265
262
  245: crisp/crisp potato chip/potato chip
@@ -1061,8 +1058,7 @@ names:
1061
1058
  1041: sweater
1062
1059
  1042: sweatshirt
1063
1060
  1043: sweet potato
1064
- 1044: swimsuit/swimwear/bathing suit/swimming costume/bathing costume/swimming trunks/bathing
1065
- trunks
1061
+ 1044: swimsuit/swimwear/bathing suit/swimming costume/bathing costume/swimming trunks/bathing trunks
1066
1062
  1045: sword
1067
1063
  1046: syringe
1068
1064
  1047: Tabasco sauce
@@ -7,7 +7,7 @@ nc: 80 # number of classes
7
7
 
8
8
  # gelan backbone
9
9
  backbone:
10
- - [-1, 1, Silence, []]
10
+ - [-1, 1, nn.Identity, []]
11
11
  - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
12
12
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
13
13
  - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
@@ -7,7 +7,7 @@ nc: 80 # number of classes
7
7
 
8
8
  # gelan backbone
9
9
  backbone:
10
- - [-1, 1, Silence, []]
10
+ - [-1, 1, nn.Identity, []]
11
11
  - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
12
12
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
13
13
  - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
@@ -0,0 +1,38 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv9t
3
+ # 603 layers, 20216160 parameters, 77.9 GFLOPs
4
+
5
+ # parameters
6
+ nc: 80 # number of classes
7
+
8
+ # gelan backbone
9
+ backbone:
10
+ - [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
11
+ - [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
12
+ - [-1, 1, RepNCSPELAN4, [128, 128, 64, 1]] # 2
13
+ - [-1, 1, AConv, [240]] # 3-P3/8
14
+ - [-1, 1, RepNCSPELAN4, [240, 240, 120, 1]] # 4
15
+ - [-1, 1, AConv, [360]] # 5-P4/16
16
+ - [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 6
17
+ - [-1, 1, AConv, [480]] # 7-P5/32
18
+ - [-1, 1, RepNCSPELAN4, [480, 480, 240, 1]] # 8
19
+ - [-1, 1, SPPELAN, [480, 240]] # 9
20
+
21
+ head:
22
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
23
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
+ - [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 12
25
+
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
+ - [-1, 1, RepNCSPELAN4, [240, 240, 120, 1]] # 15
29
+
30
+ - [-1, 1, AConv, [180]]
31
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
32
+ - [-1, 1, RepNCSPELAN4, [360, 360, 180, 1]] # 18 (P4/16-medium)
33
+
34
+ - [-1, 1, AConv, [240]]
35
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
36
+ - [-1, 1, RepNCSPELAN4, [480, 480, 240, 1]] # 21 (P5/32-large)
37
+
38
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,38 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv9s
3
+ # 917 layers, 7318368 parameters, 27.6 GFLOPs
4
+
5
+ # parameters
6
+ nc: 80 # number of classes
7
+
8
+ # gelan backbone
9
+ backbone:
10
+ - [-1, 1, Conv, [32, 3, 2]] # 0-P1/2
11
+ - [-1, 1, Conv, [64, 3, 2]] # 1-P2/4
12
+ - [-1, 1, ELAN1, [64, 64, 32]] # 2
13
+ - [-1, 1, AConv, [128]] # 3-P3/8
14
+ - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 4
15
+ - [-1, 1, AConv, [192]] # 5-P4/16
16
+ - [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 6
17
+ - [-1, 1, AConv, [256]] # 7-P5/32
18
+ - [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 8
19
+ - [-1, 1, SPPELAN, [256, 128]] # 9
20
+
21
+ head:
22
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
23
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
+ - [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 12
25
+
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
+ - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 15
29
+
30
+ - [-1, 1, AConv, [96]]
31
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
32
+ - [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]] # 18 (P4/16-medium)
33
+
34
+ - [-1, 1, AConv, [128]]
35
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
36
+ - [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 21 (P5/32-large)
37
+
38
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4 P5)
@@ -0,0 +1,38 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv9t
3
+ # 917 layers, 2128720 parameters, 8.5 GFLOPs
4
+
5
+ # parameters
6
+ nc: 80 # number of classes
7
+
8
+ # gelan backbone
9
+ backbone:
10
+ - [-1, 1, Conv, [16, 3, 2]] # 0-P1/2
11
+ - [-1, 1, Conv, [32, 3, 2]] # 1-P2/4
12
+ - [-1, 1, ELAN1, [32, 32, 16]] # 2
13
+ - [-1, 1, AConv, [64]] # 3-P3/8
14
+ - [-1, 1, RepNCSPELAN4, [64, 64, 32, 3]] # 4
15
+ - [-1, 1, AConv, [96]] # 5-P4/16
16
+ - [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 6
17
+ - [-1, 1, AConv, [128]] # 7-P5/32
18
+ - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 8
19
+ - [-1, 1, SPPELAN, [128, 64]] # 9
20
+
21
+ head:
22
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
23
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
+ - [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 12
25
+
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
+ - [-1, 1, RepNCSPELAN4, [64, 64, 32, 3]] # 15
29
+
30
+ - [-1, 1, AConv, [48]]
31
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
32
+ - [-1, 1, RepNCSPELAN4, [96, 96, 48, 3]] # 18 (P4/16-medium)
33
+
34
+ - [-1, 1, AConv, [64]]
35
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
36
+ - [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]] # 21 (P5/32-large)
37
+
38
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -259,7 +259,7 @@ def layout():
259
259
 
260
260
  with col2:
261
261
  similarity_form(selected_imgs)
262
- display_labels = st.checkbox("Labels", value=False, key="display_labels")
262
+ st.checkbox("Labels", value=False, key="display_labels")
263
263
  utralytics_explorer_docs_callback()
264
264
 
265
265
 
@@ -23,9 +23,11 @@ from .block import (
23
23
  C3,
24
24
  C3TR,
25
25
  DFL,
26
+ ELAN1,
26
27
  SPP,
27
28
  SPPELAN,
28
29
  SPPF,
30
+ AConv,
29
31
  ADown,
30
32
  BNContrastiveHead,
31
33
  Bottleneck,
@@ -45,7 +47,6 @@ from .block import (
45
47
  RepC3,
46
48
  RepNCSPELAN4,
47
49
  ResNetLayer,
48
- Silence,
49
50
  )
50
51
  from .conv import (
51
52
  CBAM,
@@ -134,5 +135,6 @@ __all__ = (
134
135
  "SPPELAN",
135
136
  "CBFuse",
136
137
  "CBLinear",
137
- "Silence",
138
+ "AConv",
139
+ "ELAN1",
138
140
  )
@@ -32,7 +32,9 @@ __all__ = (
32
32
  "RepC3",
33
33
  "ResNetLayer",
34
34
  "RepNCSPELAN4",
35
+ "ELAN1",
35
36
  "ADown",
37
+ "AConv",
36
38
  "SPPELAN",
37
39
  "CBFuse",
38
40
  "CBLinear",
@@ -603,6 +605,33 @@ class RepNCSPELAN4(nn.Module):
603
605
  return self.cv4(torch.cat(y, 1))
604
606
 
605
607
 
608
+ class ELAN1(RepNCSPELAN4):
609
+ """ELAN1 module with 4 convolutions."""
610
+
611
+ def __init__(self, c1, c2, c3, c4):
612
+ """Initializes ELAN1 layer with specified channel sizes."""
613
+ super().__init__(c1, c2, c3, c4)
614
+ self.c = c3 // 2
615
+ self.cv1 = Conv(c1, c3, 1, 1)
616
+ self.cv2 = Conv(c3 // 2, c4, 3, 1)
617
+ self.cv3 = Conv(c4, c4, 3, 1)
618
+ self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
619
+
620
+
621
+ class AConv(nn.Module):
622
+ """AConv."""
623
+
624
+ def __init__(self, c1, c2):
625
+ """Initializes AConv module with convolution layers."""
626
+ super().__init__()
627
+ self.cv1 = Conv(c1, c2, 3, 2, 1)
628
+
629
+ def forward(self, x):
630
+ """Forward pass through AConv layer."""
631
+ x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
632
+ return self.cv1(x)
633
+
634
+
606
635
  class ADown(nn.Module):
607
636
  """ADown."""
608
637
 
ultralytics/nn/tasks.py CHANGED
@@ -13,10 +13,12 @@ from ultralytics.nn.modules import (
13
13
  C2,
14
14
  C3,
15
15
  C3TR,
16
+ ELAN1,
16
17
  OBB,
17
18
  SPP,
18
19
  SPPELAN,
19
20
  SPPF,
21
+ AConv,
20
22
  ADown,
21
23
  Bottleneck,
22
24
  BottleneckCSP,
@@ -292,8 +294,12 @@ class DetectionModel(BaseModel):
292
294
  if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
293
295
  s = 256 # 2x min stride
294
296
  m.inplace = self.inplace
295
- forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)
296
- m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
297
+
298
+ def _forward(x):
299
+ """Performs a forward pass through the model, handling different Detect subclass types accordingly."""
300
+ return self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)
301
+
302
+ m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
297
303
  self.stride = m.stride
298
304
  m.bias_init() # only run once
299
305
  else:
@@ -874,7 +880,9 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
874
880
  C2,
875
881
  C2f,
876
882
  RepNCSPELAN4,
883
+ ELAN1,
877
884
  ADown,
885
+ AConv,
878
886
  SPPELAN,
879
887
  C2fAttn,
880
888
  C3,
@@ -34,11 +34,13 @@ try:
34
34
  from pathlib import Path
35
35
 
36
36
  PREFIX = colorstr("MLflow: ")
37
- SANITIZE = lambda x: {k.replace("(", "").replace(")", ""): float(v) for k, v in x.items()}
38
37
 
39
38
  except (ImportError, AssertionError):
40
39
  mlflow = None
41
40
 
41
+ def sanitize_dict(x):
42
+ """Sanitize dictionary keys by removing parentheses and converting values to floats."""
43
+ return {k.replace("(", "").replace(")", ""): float(v) for k, v in x.items()}
42
44
 
43
45
  def on_pretrain_routine_end(trainer):
44
46
  """
@@ -88,8 +90,8 @@ def on_train_epoch_end(trainer):
88
90
  if mlflow:
89
91
  mlflow.log_metrics(
90
92
  metrics={
91
- **SANITIZE(trainer.lr),
92
- **SANITIZE(trainer.label_loss_items(trainer.tloss, prefix="train")),
93
+ **sanitize_dict(trainer.lr),
94
+ **sanitize_dict(trainer.label_loss_items(trainer.tloss, prefix="train")),
93
95
  },
94
96
  step=trainer.epoch,
95
97
  )
@@ -98,7 +100,7 @@ def on_train_epoch_end(trainer):
98
100
  def on_fit_epoch_end(trainer):
99
101
  """Log training metrics at the end of each fit epoch to MLflow."""
100
102
  if mlflow:
101
- mlflow.log_metrics(metrics=SANITIZE(trainer.metrics), step=trainer.epoch)
103
+ mlflow.log_metrics(metrics=sanitize_dict(trainer.metrics), step=trainer.epoch)
102
104
 
103
105
 
104
106
  def on_train_end(trainer):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.33
3
+ Version: 8.2.35
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -44,7 +44,7 @@ Requires-Dist: psutil
44
44
  Requires-Dist: py-cpuinfo
45
45
  Requires-Dist: pandas >=1.1.4
46
46
  Requires-Dist: seaborn >=0.11.0
47
- Requires-Dist: ultralytics-thop >=0.2.5
47
+ Requires-Dist: ultralytics-thop >=2.0.0
48
48
  Provides-Extra: dev
49
49
  Requires-Dist: ipython ; extra == 'dev'
50
50
  Requires-Dist: check-manifest ; extra == 'dev'
@@ -57,7 +57,7 @@ Requires-Dist: mkdocs-material >=9.5.9 ; extra == 'dev'
57
57
  Requires-Dist: mkdocstrings[python] ; extra == 'dev'
58
58
  Requires-Dist: mkdocs-jupyter ; extra == 'dev'
59
59
  Requires-Dist: mkdocs-redirects ; extra == 'dev'
60
- Requires-Dist: mkdocs-ultralytics-plugin >=0.0.45 ; extra == 'dev'
60
+ Requires-Dist: mkdocs-ultralytics-plugin >=0.0.48 ; extra == 'dev'
61
61
  Provides-Extra: explorer
62
62
  Requires-Dist: lancedb ; extra == 'explorer'
63
63
  Requires-Dist: duckdb <=0.9.2 ; extra == 'explorer'
@@ -1,13 +1,13 @@
1
1
  tests/__init__.py,sha256=9evx3lOdKZeY1iWXvH-FkMkgf8jLucWICoabzeD6aYg,626
2
2
  tests/conftest.py,sha256=WOrMDmrxdYskt1nQmbPPhZ6zo1cJzS4vO7gVcKuEo2k,2545
3
3
  tests/test_cli.py,sha256=nQs3UUfEq713bgRc082eFAVROce1XkPklWpg0uOJQ6o,4979
4
- tests/test_cuda.py,sha256=3BCcWmzj8m-IJnvmClQGSJJg1vNTv1Of_lMS6qIaygY,4839
4
+ tests/test_cuda.py,sha256=ErmZucvQrw6oGGXOM9TRW7vijNELfEVjYXoCnb_m29I,4957
5
5
  tests/test_engine.py,sha256=fFzcbqZuMkzZHjA5FMddWcqVE703iq8HB_a0Q2lcBKM,4705
6
6
  tests/test_explorer.py,sha256=r1pWer2y290Y0DqsM-La7egfEY0497YCdC4rwq3URV4,2178
7
7
  tests/test_exports.py,sha256=qc4YOgsGixqYLO6IRNY16-v6z14R0dp5fdni1v222xw,8034
8
8
  tests/test_integrations.py,sha256=8Ru7GyKV8j44EEc8X9_E7q7aR4CTOIMPuSagXjSGUxw,5847
9
9
  tests/test_python.py,sha256=5cTM45P77LoOl-qixJ7TQmf66zw69adj01kNaaSxHqE,20265
10
- ultralytics/__init__.py,sha256=huUpxgOeJLNPZD1je-sXNjDgkx783qIHvJ1pCARCteA,694
10
+ ultralytics/__init__.py,sha256=8W6USnulq-5lM79JviwPwZPJkWTGtGBW-gUMhtDKvOk,694
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=JblkT6Ze9MZ8hSs8gkV8JPcEKNMm-YqRqM4x501Dn9g,21507
@@ -33,7 +33,7 @@ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=hH0sEb_ZdtjziVg9PNNjdZADuYIbvYLD9
33
33
  ultralytics/cfg/datasets/coco8.yaml,sha256=yGDMRSehDIsT1h36JA-FTWZrtJRertD3tfoBLsS2Ydc,1840
34
34
  ultralytics/cfg/datasets/crack-seg.yaml,sha256=asdmbm4UXsUDovHvsMZdhbAa97vtd3bN72EqEjfnP-0,791
35
35
  ultralytics/cfg/datasets/dota8.yaml,sha256=HlwU4tpnUCCn7DQBXYRBGbfARNcALfCCRJnqycmHprg,1042
36
- ultralytics/cfg/datasets/lvis.yaml,sha256=-pMOD5-00zrvArVTErHrrKA9X8sA9vkRnw-A_Ub762M,29705
36
+ ultralytics/cfg/datasets/lvis.yaml,sha256=F9QyWkwTZMyP7AJwrkAAvz8HOAp_zVIUZtVsaeSOp3I,29689
37
37
  ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
38
38
  ultralytics/cfg/datasets/package-seg.yaml,sha256=t6iu8MwulLxLVT2QdeOXz2fcCRcqufGpKOXUjTg2gMA,801
39
39
  ultralytics/cfg/datasets/signature.yaml,sha256=lHAS4HsFIhUbIhoBvCQd7T3ADmCfc5QG_wrEvOmq2NA,728
@@ -68,8 +68,11 @@ ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=fvGVUxvlBOjN6LUiiaiGsnjK5ZK
68
68
  ultralytics/cfg/models/v8/yolov8.yaml,sha256=VjSe_V2Gn9ZpJrwTtz0A6_6IMp6UuugNiR7aEShR5rc,1889
69
69
  ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=526Rv4rjzHT-Vkm1JIhe3E7FEQ5FOCVkKesVd1bsc6k,1251
70
70
  ultralytics/cfg/models/v9/yolov9c.yaml,sha256=eya4Dv8YUHcdFpQcqOPLA9f1tdvoNW12erOb5BqqQFY,1236
71
- ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=XOXSAY1Mt7R4qi8TwzrJEYnJ1lSCHjyk5yOIDjYv_a8,2178
72
- ultralytics/cfg/models/v9/yolov9e.yaml,sha256=BBy8Ghz51gghMDbc0bTbAmYmVuATaFFY2QEpoPCmmZo,2162
71
+ ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=BaleOWTpGuMSTMg4y2v_12e1RbZU_L4gM6FtlDcHAUQ,2182
72
+ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=vLIw0Y3jULtTd_ePxb2lXfZx9YidjCEO0q4JcJarn10,2166
73
+ ultralytics/cfg/models/v9/yolov9m.yaml,sha256=CV_Y59Ou24eLgdpeMkXKR6l78id56hdLJdRwmsFDhWU,1221
74
+ ultralytics/cfg/models/v9/yolov9s.yaml,sha256=bvfbEZsXy3qHPo7QR7ca64iXiM4ipL08Rllj4cNC8BM,1201
75
+ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=1Y0DFei9RYdisXgBHQjX-Eoec_AfClhTnE4Nj9l5FSM,1185
73
76
  ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
74
77
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
75
78
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
@@ -86,7 +89,7 @@ ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTF
86
89
  ultralytics/data/explorer/explorer.py,sha256=GqQcHkETxlS0w-lYUnTE_RJ9wPReK7c9XG41-k9FoxE,18668
87
90
  ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yfi8NIA,7085
88
91
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
89
- ultralytics/data/explorer/gui/dash.py,sha256=3mLrH0h-k_AthlgqVNXOHdlKoqjwNwFlnMYiMPAdL6Q,10059
92
+ ultralytics/data/explorer/gui/dash.py,sha256=CPlFIIhf53j_YVAqealsC3AbcztdPqZxfniQcBnlKK4,10042
90
93
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
91
94
  ultralytics/engine/exporter.py,sha256=JWVmXMD8RpXOayisS2_Q4gSeqvKAeXfMt2Y-azOZiIo,58464
92
95
  ultralytics/engine/model.py,sha256=qSvCT-l8mLT-CDixy6mjyC7N5x3edsWmobRWbojwLUM,40073
@@ -156,9 +159,9 @@ ultralytics/models/yolo/world/train.py,sha256=acYN2-onL69LrL4av6_hY2r5AY0urC0WVi
156
159
  ultralytics/models/yolo/world/train_world.py,sha256=n0XTAHYxufHU5OZ_QjpkHieKik-24z0LrYKzWYbCLvA,4798
157
160
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
158
161
  ultralytics/nn/autobackend.py,sha256=zsMF-GS12xtMBeQEkSoJ5cudEHyzMaRSQBuXcfuBNdo,31210
159
- ultralytics/nn/tasks.py,sha256=sz5i7mWFFQeGIXsMGhIHH9YE66t6CN1dY2CGdwh6LpE,43667
160
- ultralytics/nn/modules/__init__.py,sha256=EohTpjqDmi9-ZWu7B9UDyl-esFvv6_S-VvPKNzHK2OU,2351
161
- ultralytics/nn/modules/block.py,sha256=HfIrLytRtjprvpl-Emkgdoks5yXaIqKiszgkBwwnlLw,25213
162
+ ultralytics/nn/tasks.py,sha256=_mEgl8urgF6l9rAWtjRyalPiaSM52njwdUhtnBsGeV0,43869
163
+ ultralytics/nn/modules/__init__.py,sha256=JPj_TloK33DdxS8gvA8Pcet5ax1SgbRcb5mTTOS0DCI,2371
164
+ ultralytics/nn/modules/block.py,sha256=T7XV7nykPsVL6y1JsFsK566d6kAGN1DICh25g3ooWjU,26033
162
165
  ultralytics/nn/modules/conv.py,sha256=Ywe87IhuaS22mR2JJ9xjnW8Sb-m7WTjxuqIxV_Dv8lI,12722
163
166
  ultralytics/nn/modules/head.py,sha256=3N_4zW1UvhI1jCrIxIkNYxQDdiW6HxtxpaNAAudq6NU,22236
164
167
  ultralytics/nn/modules/transformer.py,sha256=AxD9uURpCl-EqvXe3DiG6JW-pBzB16G-AahLdZ7yayo,17909
@@ -205,14 +208,14 @@ ultralytics/utils/callbacks/clearml.py,sha256=M9Fi1OfdWqcm8uVkauuX3zJIYhNh6Tp7Jo
205
208
  ultralytics/utils/callbacks/comet.py,sha256=QR3-9f0L_W7nZWWg_OEN7t8La2JotapSS-CnNYVjCdk,13744
206
209
  ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
207
210
  ultralytics/utils/callbacks/hub.py,sha256=IPNnCRlAEFA-Dt18JWTuHhaQpcAy3XGgxBD4JhO0jSs,3586
208
- ultralytics/utils/callbacks/mlflow.py,sha256=7VPjXREPI7_bwds9keLEMRklyH46XeJknMThKlO9AAg,5274
211
+ ultralytics/utils/callbacks/mlflow.py,sha256=_1mbw2zg-IY2dg16GhqcMxm0pQdMzwn3PdElJ7kjxUc,5389
209
212
  ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyzC5q7p4ipQ,3756
210
213
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
211
214
  ultralytics/utils/callbacks/tensorboard.py,sha256=QEgOVhUqY9akOs5TJIwz1Rvn6l32xWLpOxlwEyWF0B8,4136
212
215
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
213
- ultralytics-8.2.33.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
214
- ultralytics-8.2.33.dist-info/METADATA,sha256=aQI3X8ZW_KciDWdIlCboLqZHJrrcd3OlRJPhGL2HMII,41240
215
- ultralytics-8.2.33.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
216
- ultralytics-8.2.33.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
217
- ultralytics-8.2.33.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
218
- ultralytics-8.2.33.dist-info/RECORD,,
216
+ ultralytics-8.2.35.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
217
+ ultralytics-8.2.35.dist-info/METADATA,sha256=bYE30qcGkZFsx0WsQU8f9g0hoB7-CnoopHig0mW5GvY,41240
218
+ ultralytics-8.2.35.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
219
+ ultralytics-8.2.35.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
220
+ ultralytics-8.2.35.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
221
+ ultralytics-8.2.35.dist-info/RECORD,,