ultralytics 8.2.26__py3-none-any.whl → 8.2.27__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

tests/test_cli.py CHANGED
@@ -3,6 +3,7 @@
3
3
  import subprocess
4
4
 
5
5
  import pytest
6
+ from PIL import Image
6
7
 
7
8
  from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE
8
9
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
@@ -74,26 +75,27 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
74
75
  sam_model = FastSAM(model) # or FastSAM-x.pt
75
76
 
76
77
  # Run inference on an image
77
- everything_results = sam_model(source, device="cpu", retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
78
+ for s in (source, Image.open(source)):
79
+ everything_results = sam_model(s, device="cpu", retina_masks=True, imgsz=320, conf=0.4, iou=0.9)
78
80
 
79
- # Remove small regions
80
- new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
81
+ # Remove small regions
82
+ new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
81
83
 
82
- # Everything prompt
83
- prompt_process = FastSAMPrompt(source, everything_results, device="cpu")
84
- ann = prompt_process.everything_prompt()
84
+ # Everything prompt
85
+ prompt_process = FastSAMPrompt(s, everything_results, device="cpu")
86
+ ann = prompt_process.everything_prompt()
85
87
 
86
- # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
87
- ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
88
+ # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
89
+ ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
88
90
 
89
- # Text prompt
90
- ann = prompt_process.text_prompt(text="a photo of a dog")
91
+ # Text prompt
92
+ ann = prompt_process.text_prompt(text="a photo of a dog")
91
93
 
92
- # Point prompt
93
- # Points default [[0,0]] [[x1,y1],[x2,y2]]
94
- # Point_label default [0] [1,0] 0:background, 1:foreground
95
- ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
96
- prompt_process.plot(annotations=ann, output="./")
94
+ # Point prompt
95
+ # Points default [[0,0]] [[x1,y1],[x2,y2]]
96
+ # Point_label default [0] [1,0] 0:background, 1:foreground
97
+ ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
98
+ prompt_process.plot(annotations=ann, output="./")
97
99
 
98
100
 
99
101
  def test_mobilesam():
tests/test_cuda.py CHANGED
@@ -41,6 +41,7 @@ def test_export_engine_matrix(task, dynamic, int8, half, batch):
41
41
  batch=batch,
42
42
  data=TASK2DATA[task],
43
43
  workspace=1, # reduce workspace GB for less resource utilization during testing
44
+ simplify=True, # use 'onnxslim'
44
45
  )
45
46
  YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
46
47
  Path(file).unlink() # cleanup
tests/test_exports.py CHANGED
@@ -72,8 +72,10 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch):
72
72
 
73
73
 
74
74
  @pytest.mark.slow
75
- @pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [True, False], [False], [False], [1, 2]))
76
- def test_export_onnx_matrix(task, dynamic, int8, half, batch):
75
+ @pytest.mark.parametrize(
76
+ "task, dynamic, int8, half, batch, simplify", product(TASKS, [True, False], [False], [False], [1, 2], [True, False])
77
+ )
78
+ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify):
77
79
  """Test YOLO exports to ONNX format."""
78
80
  file = YOLO(TASK2MODEL[task]).export(
79
81
  format="onnx",
@@ -82,6 +84,7 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch):
82
84
  int8=int8,
83
85
  half=half,
84
86
  batch=batch,
87
+ simplify=simplify,
85
88
  )
86
89
  YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
87
90
  Path(file).unlink() # cleanup
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.26"
3
+ __version__ = "8.2.27"
4
4
 
5
5
  import os
6
6
 
@@ -81,7 +81,7 @@ keras: False # (bool) use Kera=s
81
81
  optimize: False # (bool) TorchScript: optimize for mobile
82
82
  int8: False # (bool) CoreML/TF INT8 quantization
83
83
  dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
84
- simplify: False # (bool) ONNX: simplify model
84
+ simplify: False # (bool) ONNX: simplify model using `onnxslim`
85
85
  opset: # (int, optional) ONNX: opset version
86
86
  workspace: 4 # (int) TensorRT: workspace size (GB)
87
87
  nms: False # (bool) CoreML: add NMS
@@ -384,7 +384,7 @@ class Exporter:
384
384
  """YOLOv8 ONNX export."""
385
385
  requirements = ["onnx>=1.12.0"]
386
386
  if self.args.simplify:
387
- requirements += ["cmake", "onnxsim>=0.4.33", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
387
+ requirements += ["onnxslim==0.1.28", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
388
388
  check_requirements(requirements)
389
389
  import onnx # noqa
390
390
 
@@ -421,14 +421,17 @@ class Exporter:
421
421
  # Simplify
422
422
  if self.args.simplify:
423
423
  try:
424
- import onnxsim
424
+ import onnxslim
425
425
 
426
- LOGGER.info(f"{prefix} simplifying with onnxsim {onnxsim.__version__}...")
427
- # subprocess.run(f'onnxsim "{f}" "{f}"', shell=True)
428
- model_onnx, check = onnxsim.simplify(model_onnx)
429
- assert check, "Simplified ONNX model could not be validated"
426
+ LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
427
+ model_onnx = onnxslim.slim(model_onnx)
428
+
429
+ # ONNX Simplifier (deprecated as must be compiled with 'cmake' in aarch64 and Conda CI environments)
430
+ # import onnxsim
431
+ # model_onnx, check = onnxsim.simplify(model_onnx)
432
+ # assert check, "Simplified ONNX model could not be validated"
430
433
  except Exception as e:
431
- LOGGER.info(f"{prefix} simplifier failure: {e}")
434
+ LOGGER.warning(f"{prefix} simplifier failure: {e}")
432
435
 
433
436
  # Metadata
434
437
  for k, v in self.metadata.items():
@@ -672,8 +675,8 @@ class Exporter:
672
675
  def export_engine(self, prefix=colorstr("TensorRT:")):
673
676
  """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
674
677
  assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
675
- self.args.simplify = True
676
- f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016
678
+ # self.args.simplify = True
679
+ f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
677
680
 
678
681
  try:
679
682
  import tensorrt as trt # noqa
@@ -815,13 +818,12 @@ class Exporter:
815
818
  import tensorflow as tf # noqa
816
819
  check_requirements(
817
820
  (
818
- "cmake", # 'cmake' is needed to build onnxsim on aarch64 and Conda runners
819
821
  "keras", # required by onnx2tf package
820
822
  "tf_keras", # required by onnx2tf package
821
823
  "onnx>=1.12.0",
822
824
  "onnx2tf>1.17.5,<=1.22.3",
823
825
  "sng4onnx>=1.0.1",
824
- "onnxsim>=0.4.33",
826
+ "onnxslim==0.1.28",
825
827
  "onnx_graphsurgeon>=0.3.26",
826
828
  "tflite_support<=0.4.3" if IS_JETSON else "tflite_support", # fix ImportError 'GLIBCXX_3.4.29'
827
829
  "flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package
@@ -24,6 +24,8 @@ class FastSAMPrompt:
24
24
 
25
25
  def __init__(self, source, results, device="cuda") -> None:
26
26
  """Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment."""
27
+ if isinstance(source, (str, Path)) and os.path.isdir(source):
28
+ raise ValueError(f"FastSAM only accepts image paths and PIL Image sources, not directories.")
27
29
  self.device = device
28
30
  self.results = results
29
31
  self.source = source
@@ -261,8 +263,6 @@ class FastSAMPrompt:
261
263
 
262
264
  def _crop_image(self, format_results):
263
265
  """Crops an image based on provided annotation format and returns cropped images and related data."""
264
- if os.path.isdir(self.source):
265
- raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
266
266
  image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))
267
267
  ori_w, ori_h = image.size
268
268
  annotations = format_results
@@ -287,8 +287,6 @@ class FastSAMPrompt:
287
287
  """Modifies the bounding box properties and calculates IoU between masks and bounding box."""
288
288
  if self.results[0].masks is not None:
289
289
  assert bbox[2] != 0 and bbox[3] != 0
290
- if os.path.isdir(self.source):
291
- raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
292
290
  masks = self.results[0].masks.data
293
291
  target_height, target_width = self.results[0].orig_shape
294
292
  h = masks.shape[1]
@@ -321,8 +319,6 @@ class FastSAMPrompt:
321
319
  def point_prompt(self, points, pointlabel): # numpy
322
320
  """Adjusts points on detected masks based on user input and returns the modified results."""
323
321
  if self.results[0].masks is not None:
324
- if os.path.isdir(self.source):
325
- raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
326
322
  masks = self._format_results(self.results[0], 0)
327
323
  target_height, target_width = self.results[0].orig_shape
328
324
  h = masks[0]["segmentation"].shape[0]
@@ -13,7 +13,7 @@ Example:
13
13
  m = Conv(128, 128)
14
14
  f = f'{m._get_name()}.onnx'
15
15
  torch.onnx.export(m, x, f)
16
- os.system(f'onnxsim {f} {f} && open {f}')
16
+ os.system(f'onnxslim {f} {f} && open {f}') # pip install onnxslim
17
17
  ```
18
18
  """
19
19
 
@@ -457,6 +457,8 @@ class ProfileModels:
457
457
 
458
458
  input_tensor = sess.get_inputs()[0]
459
459
  input_type = input_tensor.type
460
+ dynamic = not all(isinstance(dim, int) and dim >= 0 for dim in input_tensor.shape) # dynamic input shape
461
+ input_shape = (1, 3, self.imgsz, self.imgsz) if dynamic else input_tensor.shape
460
462
 
461
463
  # Mapping ONNX datatype to numpy datatype
462
464
  if "float16" in input_type:
@@ -472,7 +474,7 @@ class ProfileModels:
472
474
  else:
473
475
  raise ValueError(f"Unsupported ONNX datatype {input_type}")
474
476
 
475
- input_data = np.random.rand(*input_tensor.shape).astype(input_dtype)
477
+ input_data = np.random.rand(*input_shape).astype(input_dtype)
476
478
  input_name = input_tensor.name
477
479
  output_name = sess.get_outputs()[0].name
478
480
 
ultralytics/utils/ops.py CHANGED
@@ -518,59 +518,58 @@ def ltwh2xywh(x):
518
518
  return y
519
519
 
520
520
 
521
- def xyxyxyxy2xywhr(corners):
521
+ def xyxyxyxy2xywhr(x):
522
522
  """
523
523
  Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation]. Rotation values are
524
524
  expected in degrees from 0 to 90.
525
525
 
526
526
  Args:
527
- corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8).
527
+ x (numpy.ndarray | torch.Tensor): Input box corners [xy1, xy2, xy3, xy4] of shape (n, 8).
528
528
 
529
529
  Returns:
530
530
  (numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
531
531
  """
532
- is_torch = isinstance(corners, torch.Tensor)
533
- points = corners.cpu().numpy() if is_torch else corners
534
- points = points.reshape(len(corners), -1, 2)
532
+ is_torch = isinstance(x, torch.Tensor)
533
+ points = x.cpu().numpy() if is_torch else x
534
+ points = points.reshape(len(x), -1, 2)
535
535
  rboxes = []
536
536
  for pts in points:
537
537
  # NOTE: Use cv2.minAreaRect to get accurate xywhr,
538
538
  # especially some objects are cut off by augmentations in dataloader.
539
- (x, y), (w, h), angle = cv2.minAreaRect(pts)
540
- rboxes.append([x, y, w, h, angle / 180 * np.pi])
541
- return (
542
- torch.tensor(rboxes, device=corners.device, dtype=corners.dtype)
543
- if is_torch
544
- else np.asarray(rboxes, dtype=points.dtype)
545
- ) # rboxes
539
+ (cx, cy), (w, h), angle = cv2.minAreaRect(pts)
540
+ rboxes.append([cx, cy, w, h, angle / 180 * np.pi])
541
+ return torch.tensor(rboxes, device=x.device, dtype=x.dtype) if is_torch else np.asarray(rboxes)
546
542
 
547
543
 
548
- def xywhr2xyxyxyxy(rboxes):
544
+ def xywhr2xyxyxyxy(x):
549
545
  """
550
546
  Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4]. Rotation values should
551
547
  be in degrees from 0 to 90.
552
548
 
553
549
  Args:
554
- rboxes (numpy.ndarray | torch.Tensor): Boxes in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
550
+ x (numpy.ndarray | torch.Tensor): Boxes in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
555
551
 
556
552
  Returns:
557
553
  (numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 4, 2) or (b, n, 4, 2).
558
554
  """
559
- is_numpy = isinstance(rboxes, np.ndarray)
560
- cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)
555
+ cos, sin, cat, stack = (
556
+ (torch.cos, torch.sin, torch.cat, torch.stack)
557
+ if isinstance(x, torch.Tensor)
558
+ else (np.cos, np.sin, np.concatenate, np.stack)
559
+ )
561
560
 
562
- ctr = rboxes[..., :2]
563
- w, h, angle = (rboxes[..., i : i + 1] for i in range(2, 5))
561
+ ctr = x[..., :2]
562
+ w, h, angle = (x[..., i : i + 1] for i in range(2, 5))
564
563
  cos_value, sin_value = cos(angle), sin(angle)
565
564
  vec1 = [w / 2 * cos_value, w / 2 * sin_value]
566
565
  vec2 = [-h / 2 * sin_value, h / 2 * cos_value]
567
- vec1 = np.concatenate(vec1, axis=-1) if is_numpy else torch.cat(vec1, dim=-1)
568
- vec2 = np.concatenate(vec2, axis=-1) if is_numpy else torch.cat(vec2, dim=-1)
566
+ vec1 = cat(vec1, -1)
567
+ vec2 = cat(vec2, -1)
569
568
  pt1 = ctr + vec1 + vec2
570
569
  pt2 = ctr + vec1 - vec2
571
570
  pt3 = ctr - vec1 - vec2
572
571
  pt4 = ctr - vec1 + vec2
573
- return np.stack([pt1, pt2, pt3, pt4], axis=-2) if is_numpy else torch.stack([pt1, pt2, pt3, pt4], dim=-2)
572
+ return stack([pt1, pt2, pt3, pt4], -2)
574
573
 
575
574
 
576
575
  def ltwh2xyxy(x):
@@ -785,7 +784,7 @@ def regularize_rboxes(rboxes):
785
784
  Regularize rotated boxes in range [0, pi/2].
786
785
 
787
786
  Args:
788
- rboxes (torch.Tensor): (N, 5), xywhr.
787
+ rboxes (torch.Tensor): Input boxes of shape(N, 5) in xywhr format.
789
788
 
790
789
  Returns:
791
790
  (torch.Tensor): The regularized boxes.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.26
3
+ Version: 8.2.27
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -1,17 +1,17 @@
1
1
  tests/__init__.py,sha256=9evx3lOdKZeY1iWXvH-FkMkgf8jLucWICoabzeD6aYg,626
2
2
  tests/conftest.py,sha256=WOrMDmrxdYskt1nQmbPPhZ6zo1cJzS4vO7gVcKuEo2k,2545
3
- tests/test_cli.py,sha256=VPvaVO8POqA9RiG3doO_WpK3VwloSp7qvhCXbeiC10k,4865
4
- tests/test_cuda.py,sha256=m2OS06a9aiYs60vK58gpOPiIpCnggNhhgeiJwbAKFQY,4798
3
+ tests/test_cli.py,sha256=nQs3UUfEq713bgRc082eFAVROce1XkPklWpg0uOJQ6o,4979
4
+ tests/test_cuda.py,sha256=3BCcWmzj8m-IJnvmClQGSJJg1vNTv1Of_lMS6qIaygY,4839
5
5
  tests/test_engine.py,sha256=fFzcbqZuMkzZHjA5FMddWcqVE703iq8HB_a0Q2lcBKM,4705
6
6
  tests/test_explorer.py,sha256=r1pWer2y290Y0DqsM-La7egfEY0497YCdC4rwq3URV4,2178
7
- tests/test_exports.py,sha256=TC4Ckp7OefOv4qS9NR2D1K7PQIf_P-vb_BelMmhqC48,7966
7
+ tests/test_exports.py,sha256=qc4YOgsGixqYLO6IRNY16-v6z14R0dp5fdni1v222xw,8034
8
8
  tests/test_integrations.py,sha256=8Ru7GyKV8j44EEc8X9_E7q7aR4CTOIMPuSagXjSGUxw,5847
9
9
  tests/test_python.py,sha256=3qV963KPGGnYwSiEG5YcDf6g_ozo3NtQEjDDtH32rV4,20212
10
- ultralytics/__init__.py,sha256=Wncc3o00fwuTHDNtKdox2p_ESH2FKRiR0VDemd1hJwM,694
10
+ ultralytics/__init__.py,sha256=9lgJTJTMVbv_Y67eEbEFa_KC-wW_1I99noo9PENPhlg,694
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=lR6jykSO_0cigsjrqSyFj_8JG_LvYi796viasyWhcfs,21358
14
- ultralytics/cfg/default.yaml,sha256=KoXq5DHQK-Voge9DbkySd2rRpDizG6Oq-A4Byqz5Exc,8211
14
+ ultralytics/cfg/default.yaml,sha256=Amh7abuPtqqtjq_f-KqRiRlP9yc40RnDz0Wc31tKfMo,8228
15
15
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
16
16
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=YDsyFPI6F6-OQXLBM3hOXo3vADYREwZzmMQfJNdpWyM,1193
17
17
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=dxLUliHvJOW4q4vJRu5qIYVvNfjvXWB7GVh_Fhk--dM,1163
@@ -88,7 +88,7 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
88
88
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
89
89
  ultralytics/data/explorer/gui/dash.py,sha256=3mLrH0h-k_AthlgqVNXOHdlKoqjwNwFlnMYiMPAdL6Q,10059
90
90
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
91
- ultralytics/engine/exporter.py,sha256=FbFO435RT1HIWFsbgdDnOmW0zdZLvl6ymTGSpgJjIpw,58169
91
+ ultralytics/engine/exporter.py,sha256=_Pl42UD1kRsTUPGLXmr7tZFYuDEYv4FdYIluQE-1h-0,58216
92
92
  ultralytics/engine/model.py,sha256=IE6HE9VIzqO3DscxSLexub0LUR673eiPFrCPCt6ozEE,40103
93
93
  ultralytics/engine/predictor.py,sha256=wQRKdWGDTP5A6CS0gTC6U3RPDMhP3QkEzWSPm6eqCkU,17022
94
94
  ultralytics/engine/results.py,sha256=zRuEIrBtpoCQ3M6a_YscnyXrWSP-zpL3ACv0gTdrDaw,30987
@@ -103,7 +103,7 @@ ultralytics/models/__init__.py,sha256=TT9iLCL_n9Y80dcUq0Fo-p-GRZCSU2vrWXM3CoMwqq
103
103
  ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
104
104
  ultralytics/models/fastsam/model.py,sha256=c7GGwaa9AXssJFwrcuytFHpPOlgSrS3n0utyf4JSL2o,1055
105
105
  ultralytics/models/fastsam/predict.py,sha256=0WHUFrqHUNy1cTNpLKsN0FKqLKCvr7fHU6pp91_QVg0,4121
106
- ultralytics/models/fastsam/prompt.py,sha256=v_aS-8EAPtK6ug70f_QtsMBoRAZA47_x6I_owA2rJlI,16182
106
+ ultralytics/models/fastsam/prompt.py,sha256=PvK9mCCmotf2qeWX5P8ffNMJ_xhC4WV0lvBuzRxRZeo,15916
107
107
  ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
108
108
  ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
109
109
  ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
@@ -157,7 +157,7 @@ ultralytics/models/yolo/world/train_world.py,sha256=ICPsYNbuPkq_qf3FHl2YJ-q3g7ik
157
157
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
158
158
  ultralytics/nn/autobackend.py,sha256=6amaXnbDlvh0kTIbeHV3kIM6X7P1r0T3le1GPxIgkOs,30864
159
159
  ultralytics/nn/tasks.py,sha256=JK-sKA0RWz612RpVfUI9zeevy4M7Fh6bysbana90wMs,43679
160
- ultralytics/nn/modules/__init__.py,sha256=KzLoyn2ldfReiQL8H8xsMC49Xvtb8Kv9ikE5Q3OBoAs,2326
160
+ ultralytics/nn/modules/__init__.py,sha256=EohTpjqDmi9-ZWu7B9UDyl-esFvv6_S-VvPKNzHK2OU,2351
161
161
  ultralytics/nn/modules/block.py,sha256=smIz3oNTDA7UKrAH5FfSMh08C12-avgWTeIkbgZIv18,25251
162
162
  ultralytics/nn/modules/conv.py,sha256=Ywe87IhuaS22mR2JJ9xjnW8Sb-m7WTjxuqIxV_Dv8lI,12722
163
163
  ultralytics/nn/modules/head.py,sha256=3N_4zW1UvhI1jCrIxIkNYxQDdiW6HxtxpaNAAudq6NU,22236
@@ -183,7 +183,7 @@ ultralytics/trackers/utils/kalman_filter.py,sha256=0oqhk59NKEiwcJ2FXnw6_sT4bIFC6
183
183
  ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuUB6PfVNkb4,5404
184
184
  ultralytics/utils/__init__.py,sha256=dlKr7P0h2Ez3Q-WLQ49p0jsjjWkKq3CRkhlCJLGKlMk,38620
185
185
  ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
186
- ultralytics/utils/benchmarks.py,sha256=oCngvKzfZu4dFFd3U3ZcNR-BKM1kJLbWuR_egg_qSRw,23609
186
+ ultralytics/utils/benchmarks.py,sha256=dCuhgqEXcuEYFhja6Dj3t9J0DuCRa4HgYwgABtMj7Lk,23804
187
187
  ultralytics/utils/checks.py,sha256=4OQkddqlxh6Lldvhr8YOpyqaLVCohgTvr0R15Uanzq4,28376
188
188
  ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
189
189
  ultralytics/utils/downloads.py,sha256=cmO2Ev1DV1m_lYgQ2yGDG5xVRIBVS_z9nS_Frec_NeU,21496
@@ -192,7 +192,7 @@ ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,67
192
192
  ultralytics/utils/instance.py,sha256=5daM5nkxBv9hr5QzyII8zmuFj24hHuNtcr4EMCHAtpY,15654
193
193
  ultralytics/utils/loss.py,sha256=ejXnPEIAzNEoNz2UjW0_fcdeUs9Hy-jPzUrJ3FiIIwE,32717
194
194
  ultralytics/utils/metrics.py,sha256=XPD-xP0fchR8KgCuTcihV2-n0EK1cWi3-53BWN_pLuA,53518
195
- ultralytics/utils/ops.py,sha256=wZCWx7dm5GJNIJHyZaFJRetGcQ7prdv-anplqq9figQ,33309
195
+ ultralytics/utils/ops.py,sha256=5E6S_aYSg4OjNd9c-mpdbHkW-MMIWu9dNmlIdJmF9wE,33123
196
196
  ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
197
197
  ultralytics/utils/plotting.py,sha256=47mfSDCP7Pt3jT_IlgnIwIH3wcBeSh04lbzep_F2wPc,48207
198
198
  ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
@@ -210,9 +210,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
210
210
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
211
211
  ultralytics/utils/callbacks/tensorboard.py,sha256=Z1veCVcn9THPhdplWuIzwlsW2yF7y-On9IZIk3khM0Y,4135
212
212
  ultralytics/utils/callbacks/wb.py,sha256=DViD0KeXH_i3eVT_CLR4bZFs1TMMUZBVBBYIS3aUfp0,6745
213
- ultralytics-8.2.26.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
214
- ultralytics-8.2.26.dist-info/METADATA,sha256=cWBae60M9_nsJ4ZUkX50l8a7GNojD-bZqkb4oQckp2M,41200
215
- ultralytics-8.2.26.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
216
- ultralytics-8.2.26.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
217
- ultralytics-8.2.26.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
218
- ultralytics-8.2.26.dist-info/RECORD,,
213
+ ultralytics-8.2.27.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
214
+ ultralytics-8.2.27.dist-info/METADATA,sha256=e_OAAn54qG7kXEU1jhJkvEPvNzOKlK8jkWuERxkGgt4,41200
215
+ ultralytics-8.2.27.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
216
+ ultralytics-8.2.27.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
217
+ ultralytics-8.2.27.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
218
+ ultralytics-8.2.27.dist-info/RECORD,,