ultralytics 8.2.20__py3-none-any.whl → 8.2.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/__init__.py +22 -0
- tests/conftest.py +71 -0
- tests/test_cli.py +128 -0
- tests/test_cuda.py +134 -0
- tests/test_engine.py +132 -0
- tests/test_explorer.py +61 -0
- tests/test_exports.py +186 -0
- tests/test_integrations.py +145 -0
- tests/test_python.py +576 -0
- ultralytics/__init__.py +1 -1
- ultralytics/data/augment.py +67 -10
- ultralytics/engine/exporter.py +14 -19
- ultralytics/solutions/__init__.py +1 -1
- ultralytics/solutions/analytics.py +2 -0
- ultralytics/solutions/parking_management.py +24 -20
- ultralytics/utils/checks.py +4 -3
- {ultralytics-8.2.20.dist-info → ultralytics-8.2.22.dist-info}/METADATA +1 -1
- {ultralytics-8.2.20.dist-info → ultralytics-8.2.22.dist-info}/RECORD +22 -13
- {ultralytics-8.2.20.dist-info → ultralytics-8.2.22.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.20.dist-info → ultralytics-8.2.22.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.20.dist-info → ultralytics-8.2.22.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.20.dist-info → ultralytics-8.2.22.dist-info}/top_level.txt +0 -0
tests/test_exports.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
import shutil
|
|
4
|
+
import uuid
|
|
5
|
+
from itertools import product
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import pytest
|
|
9
|
+
|
|
10
|
+
from ultralytics import YOLO
|
|
11
|
+
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
12
|
+
from ultralytics.utils import (
|
|
13
|
+
IS_RASPBERRYPI,
|
|
14
|
+
LINUX,
|
|
15
|
+
MACOS,
|
|
16
|
+
WINDOWS,
|
|
17
|
+
Retry,
|
|
18
|
+
checks,
|
|
19
|
+
)
|
|
20
|
+
from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13
|
|
21
|
+
from tests import MODEL, SOURCE
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def test_export_torchscript():
|
|
25
|
+
"""Test YOLO exports to TorchScript format."""
|
|
26
|
+
file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
|
|
27
|
+
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def test_export_onnx():
|
|
31
|
+
"""Test YOLO exports to ONNX format."""
|
|
32
|
+
file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
|
|
33
|
+
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="OpenVINO not supported in Python 3.12")
|
|
37
|
+
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
|
38
|
+
def test_export_openvino():
|
|
39
|
+
"""Test YOLO exports to OpenVINO format."""
|
|
40
|
+
file = YOLO(MODEL).export(format="openvino", imgsz=32)
|
|
41
|
+
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
@pytest.mark.slow
|
|
45
|
+
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="OpenVINO not supported in Python 3.12")
|
|
46
|
+
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
|
47
|
+
@pytest.mark.parametrize(
|
|
48
|
+
"task, dynamic, int8, half, batch",
|
|
49
|
+
[ # generate all combinations but exclude those where both int8 and half are True
|
|
50
|
+
(task, dynamic, int8, half, batch)
|
|
51
|
+
for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
|
|
52
|
+
if not (int8 and half) # exclude cases where both int8 and half are True
|
|
53
|
+
],
|
|
54
|
+
)
|
|
55
|
+
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
|
56
|
+
"""Test YOLO exports to OpenVINO format."""
|
|
57
|
+
file = YOLO(TASK2MODEL[task]).export(
|
|
58
|
+
format="openvino",
|
|
59
|
+
imgsz=32,
|
|
60
|
+
dynamic=dynamic,
|
|
61
|
+
int8=int8,
|
|
62
|
+
half=half,
|
|
63
|
+
batch=batch,
|
|
64
|
+
data=TASK2DATA[task],
|
|
65
|
+
)
|
|
66
|
+
if WINDOWS:
|
|
67
|
+
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
|
|
68
|
+
# See https://github.com/ultralytics/ultralytics/actions/runs/8957949304/job/24601616830?pr=10423
|
|
69
|
+
file = Path(file)
|
|
70
|
+
file = file.rename(file.with_stem(f"{file.stem}-{uuid.uuid4()}"))
|
|
71
|
+
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
|
72
|
+
with Retry(times=3, delay=1): # retry in case of potential lingering multi-threaded file usage errors
|
|
73
|
+
shutil.rmtree(file)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@pytest.mark.slow
|
|
77
|
+
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [True, False], [False], [False], [1, 2]))
|
|
78
|
+
def test_export_onnx_matrix(task, dynamic, int8, half, batch):
|
|
79
|
+
"""Test YOLO exports to ONNX format."""
|
|
80
|
+
file = YOLO(TASK2MODEL[task]).export(
|
|
81
|
+
format="onnx",
|
|
82
|
+
imgsz=32,
|
|
83
|
+
dynamic=dynamic,
|
|
84
|
+
int8=int8,
|
|
85
|
+
half=half,
|
|
86
|
+
batch=batch,
|
|
87
|
+
)
|
|
88
|
+
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
|
89
|
+
Path(file).unlink() # cleanup
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
@pytest.mark.slow
|
|
93
|
+
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [False], [False], [False], [1, 2]))
|
|
94
|
+
def test_export_torchscript_matrix(task, dynamic, int8, half, batch):
|
|
95
|
+
"""Test YOLO exports to TorchScript format."""
|
|
96
|
+
file = YOLO(TASK2MODEL[task]).export(
|
|
97
|
+
format="torchscript",
|
|
98
|
+
imgsz=32,
|
|
99
|
+
dynamic=dynamic,
|
|
100
|
+
int8=int8,
|
|
101
|
+
half=half,
|
|
102
|
+
batch=batch,
|
|
103
|
+
)
|
|
104
|
+
YOLO(file)([SOURCE] * 3, imgsz=64 if dynamic else 32) # exported model inference at batch=3
|
|
105
|
+
Path(file).unlink() # cleanup
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
@pytest.mark.slow
|
|
109
|
+
@pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
|
|
110
|
+
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
|
111
|
+
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
|
112
|
+
@pytest.mark.parametrize(
|
|
113
|
+
"task, dynamic, int8, half, batch",
|
|
114
|
+
[ # generate all combinations but exclude those where both int8 and half are True
|
|
115
|
+
(task, dynamic, int8, half, batch)
|
|
116
|
+
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
|
117
|
+
if not (int8 and half) # exclude cases where both int8 and half are True
|
|
118
|
+
],
|
|
119
|
+
)
|
|
120
|
+
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
|
121
|
+
"""Test YOLO exports to CoreML format."""
|
|
122
|
+
file = YOLO(TASK2MODEL[task]).export(
|
|
123
|
+
format="coreml",
|
|
124
|
+
imgsz=32,
|
|
125
|
+
dynamic=dynamic,
|
|
126
|
+
int8=int8,
|
|
127
|
+
half=half,
|
|
128
|
+
batch=batch,
|
|
129
|
+
)
|
|
130
|
+
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
|
131
|
+
shutil.rmtree(file) # cleanup
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
|
135
|
+
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
|
|
136
|
+
@pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi")
|
|
137
|
+
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
|
138
|
+
def test_export_coreml():
|
|
139
|
+
"""Test YOLO exports to CoreML format."""
|
|
140
|
+
if MACOS:
|
|
141
|
+
file = YOLO(MODEL).export(format="coreml", imgsz=32)
|
|
142
|
+
YOLO(file)(SOURCE, imgsz=32) # model prediction only supported on macOS for nms=False models
|
|
143
|
+
else:
|
|
144
|
+
YOLO(MODEL).export(format="coreml", nms=True, imgsz=32)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
|
148
|
+
def test_export_tflite():
|
|
149
|
+
"""
|
|
150
|
+
Test YOLO exports to TFLite format.
|
|
151
|
+
|
|
152
|
+
Note TF suffers from install conflicts on Windows and macOS.
|
|
153
|
+
"""
|
|
154
|
+
model = YOLO(MODEL)
|
|
155
|
+
file = model.export(format="tflite", imgsz=32)
|
|
156
|
+
YOLO(file)(SOURCE, imgsz=32)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
@pytest.mark.skipif(True, reason="Test disabled")
|
|
160
|
+
@pytest.mark.skipif(not LINUX, reason="TF suffers from install conflicts on Windows and macOS")
|
|
161
|
+
def test_export_pb():
|
|
162
|
+
"""
|
|
163
|
+
Test YOLO exports to *.pb format.
|
|
164
|
+
|
|
165
|
+
Note TF suffers from install conflicts on Windows and macOS.
|
|
166
|
+
"""
|
|
167
|
+
model = YOLO(MODEL)
|
|
168
|
+
file = model.export(format="pb", imgsz=32)
|
|
169
|
+
YOLO(file)(SOURCE, imgsz=32)
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
@pytest.mark.skipif(True, reason="Test disabled as Paddle protobuf and ONNX protobuf requirementsk conflict.")
|
|
173
|
+
def test_export_paddle():
|
|
174
|
+
"""
|
|
175
|
+
Test YOLO exports to Paddle format.
|
|
176
|
+
|
|
177
|
+
Note Paddle protobuf requirements conflicting with onnx protobuf requirements.
|
|
178
|
+
"""
|
|
179
|
+
YOLO(MODEL).export(format="paddle", imgsz=32)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@pytest.mark.slow
|
|
183
|
+
def test_export_ncnn():
|
|
184
|
+
"""Test YOLO exports to NCNN format."""
|
|
185
|
+
file = YOLO(MODEL).export(format="ncnn", imgsz=32)
|
|
186
|
+
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
import contextlib
|
|
4
|
+
import os
|
|
5
|
+
import subprocess
|
|
6
|
+
import time
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
|
|
9
|
+
import pytest
|
|
10
|
+
|
|
11
|
+
from ultralytics import YOLO, download
|
|
12
|
+
from ultralytics.utils import DATASETS_DIR, SETTINGS
|
|
13
|
+
from ultralytics.utils.checks import check_requirements
|
|
14
|
+
|
|
15
|
+
from tests import MODEL, SOURCE, TMP
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@pytest.mark.skipif(not check_requirements("ray", install=False), reason="ray[tune] not installed")
|
|
19
|
+
def test_model_ray_tune():
|
|
20
|
+
"""Tune YOLO model with Ray optimization library."""
|
|
21
|
+
YOLO("yolov8n-cls.yaml").tune(
|
|
22
|
+
use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu"
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
|
|
27
|
+
def test_mlflow():
|
|
28
|
+
"""Test training with MLflow tracking enabled."""
|
|
29
|
+
SETTINGS["mlflow"] = True
|
|
30
|
+
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu")
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@pytest.mark.skipif(True, reason="Test failing in scheduled CI https://github.com/ultralytics/ultralytics/pull/8868")
|
|
34
|
+
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
|
|
35
|
+
def test_mlflow_keep_run_active():
|
|
36
|
+
import mlflow
|
|
37
|
+
|
|
38
|
+
"""Test training with MLflow tracking enabled."""
|
|
39
|
+
SETTINGS["mlflow"] = True
|
|
40
|
+
run_name = "Test Run"
|
|
41
|
+
os.environ["MLFLOW_RUN"] = run_name
|
|
42
|
+
|
|
43
|
+
# Test with MLFLOW_KEEP_RUN_ACTIVE=True
|
|
44
|
+
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True"
|
|
45
|
+
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
|
46
|
+
status = mlflow.active_run().info.status
|
|
47
|
+
assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True"
|
|
48
|
+
|
|
49
|
+
run_id = mlflow.active_run().info.run_id
|
|
50
|
+
|
|
51
|
+
# Test with MLFLOW_KEEP_RUN_ACTIVE=False
|
|
52
|
+
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False"
|
|
53
|
+
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
|
54
|
+
status = mlflow.get_run(run_id=run_id).info.status
|
|
55
|
+
assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False"
|
|
56
|
+
|
|
57
|
+
# Test with MLFLOW_KEEP_RUN_ACTIVE not set
|
|
58
|
+
os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None)
|
|
59
|
+
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
|
60
|
+
status = mlflow.get_run(run_id=run_id).info.status
|
|
61
|
+
assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set"
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed")
|
|
65
|
+
def test_triton():
|
|
66
|
+
"""Test NVIDIA Triton Server functionalities."""
|
|
67
|
+
check_requirements("tritonclient[all]")
|
|
68
|
+
from tritonclient.http import InferenceServerClient # noqa
|
|
69
|
+
|
|
70
|
+
# Create variables
|
|
71
|
+
model_name = "yolo"
|
|
72
|
+
triton_repo = TMP / "triton_repo" # Triton repo path
|
|
73
|
+
triton_model = triton_repo / model_name # Triton model path
|
|
74
|
+
|
|
75
|
+
# Export model to ONNX
|
|
76
|
+
f = YOLO(MODEL).export(format="onnx", dynamic=True)
|
|
77
|
+
|
|
78
|
+
# Prepare Triton repo
|
|
79
|
+
(triton_model / "1").mkdir(parents=True, exist_ok=True)
|
|
80
|
+
Path(f).rename(triton_model / "1" / "model.onnx")
|
|
81
|
+
(triton_model / "config.pbtxt").touch()
|
|
82
|
+
|
|
83
|
+
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
|
|
84
|
+
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB
|
|
85
|
+
|
|
86
|
+
# Pull the image
|
|
87
|
+
subprocess.call(f"docker pull {tag}", shell=True)
|
|
88
|
+
|
|
89
|
+
# Run the Triton server and capture the container ID
|
|
90
|
+
container_id = (
|
|
91
|
+
subprocess.check_output(
|
|
92
|
+
f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
|
|
93
|
+
shell=True,
|
|
94
|
+
)
|
|
95
|
+
.decode("utf-8")
|
|
96
|
+
.strip()
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
# Wait for the Triton server to start
|
|
100
|
+
triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False)
|
|
101
|
+
|
|
102
|
+
# Wait until model is ready
|
|
103
|
+
for _ in range(10):
|
|
104
|
+
with contextlib.suppress(Exception):
|
|
105
|
+
assert triton_client.is_model_ready(model_name)
|
|
106
|
+
break
|
|
107
|
+
time.sleep(1)
|
|
108
|
+
|
|
109
|
+
# Check Triton inference
|
|
110
|
+
YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference
|
|
111
|
+
|
|
112
|
+
# Kill and remove the container at the end of the test
|
|
113
|
+
subprocess.call(f"docker kill {container_id}", shell=True)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
@pytest.mark.skipif(not check_requirements("pycocotools", install=False), reason="pycocotools not installed")
|
|
117
|
+
def test_pycocotools():
|
|
118
|
+
"""Validate model predictions using pycocotools."""
|
|
119
|
+
from ultralytics.models.yolo.detect import DetectionValidator
|
|
120
|
+
from ultralytics.models.yolo.pose import PoseValidator
|
|
121
|
+
from ultralytics.models.yolo.segment import SegmentationValidator
|
|
122
|
+
|
|
123
|
+
# Download annotations after each dataset downloads first
|
|
124
|
+
url = "https://github.com/ultralytics/assets/releases/download/v8.2.0/"
|
|
125
|
+
|
|
126
|
+
args = {"model": "yolov8n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64}
|
|
127
|
+
validator = DetectionValidator(args=args)
|
|
128
|
+
validator()
|
|
129
|
+
validator.is_coco = True
|
|
130
|
+
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations")
|
|
131
|
+
_ = validator.eval_json(validator.stats)
|
|
132
|
+
|
|
133
|
+
args = {"model": "yolov8n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64}
|
|
134
|
+
validator = SegmentationValidator(args=args)
|
|
135
|
+
validator()
|
|
136
|
+
validator.is_coco = True
|
|
137
|
+
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations")
|
|
138
|
+
_ = validator.eval_json(validator.stats)
|
|
139
|
+
|
|
140
|
+
args = {"model": "yolov8n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64}
|
|
141
|
+
validator = PoseValidator(args=args)
|
|
142
|
+
validator()
|
|
143
|
+
validator.is_coco = True
|
|
144
|
+
download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations")
|
|
145
|
+
_ = validator.eval_json(validator.stats)
|