ultralytics 8.2.18__py3-none-any.whl → 8.2.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.18"
3
+ __version__ = "8.2.19"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
@@ -0,0 +1,20 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Signature dataset by Ultralytics
3
+ # Documentation: https://docs.ultralytics.com/datasets/detect/signature/
4
+ # Example usage: yolo train data=signature.yaml
5
+ # parent
6
+ # ├── ultralytics
7
+ # └── datasets
8
+ # └── signature ← downloads here (11.2 MB)
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/signature # dataset root dir
12
+ train: train/images # train images (relative to 'path') 143 images
13
+ val: valid/images # val images (relative to 'path') 35 images
14
+
15
+ # Classes
16
+ names:
17
+ 0: signature
18
+
19
+ # Download script/URL (optional)
20
+ download: https://ultralytics.com/assets/signature.zip
@@ -3,36 +3,36 @@
3
3
  # 654 layers, 27897120 parameters, 159.4 GFLOPs
4
4
 
5
5
  # parameters
6
- nc: 80 # number of classes
6
+ nc: 80 # number of classes
7
7
 
8
8
  # gelan backbone
9
9
  backbone:
10
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
11
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
12
- - [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
13
- - [-1, 1, ADown, [256]] # 3-P3/8
14
- - [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
15
- - [-1, 1, ADown, [512]] # 5-P4/16
16
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
17
- - [-1, 1, ADown, [512]] # 7-P5/32
18
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
19
- - [-1, 1, SPPELAN, [512, 256]] # 9
10
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
11
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
12
+ - [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
13
+ - [-1, 1, ADown, [256]] # 3-P3/8
14
+ - [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
15
+ - [-1, 1, ADown, [512]] # 5-P4/16
16
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
17
+ - [-1, 1, ADown, [512]] # 7-P5/32
18
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
19
+ - [-1, 1, SPPELAN, [512, 256]] # 9
20
20
 
21
21
  head:
22
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
23
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
22
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
23
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
25
25
 
26
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
27
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
- - [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
+ - [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
29
29
 
30
30
  - [-1, 1, ADown, [256]]
31
- - [[-1, 12], 1, Concat, [1]] # cat head P4
32
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
31
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
32
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
33
33
 
34
34
  - [-1, 1, ADown, [512]]
35
- - [[-1, 9], 1, Concat, [1]] # cat head P5
36
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
35
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
36
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
37
37
 
38
- - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
38
+ - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
@@ -3,36 +3,36 @@
3
3
  # 618 layers, 25590912 parameters, 104.0 GFLOPs
4
4
 
5
5
  # parameters
6
- nc: 80 # number of classes
6
+ nc: 80 # number of classes
7
7
 
8
8
  # gelan backbone
9
9
  backbone:
10
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
11
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
12
- - [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
13
- - [-1, 1, ADown, [256]] # 3-P3/8
14
- - [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
15
- - [-1, 1, ADown, [512]] # 5-P4/16
16
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
17
- - [-1, 1, ADown, [512]] # 7-P5/32
18
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
19
- - [-1, 1, SPPELAN, [512, 256]] # 9
10
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
11
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
12
+ - [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
13
+ - [-1, 1, ADown, [256]] # 3-P3/8
14
+ - [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
15
+ - [-1, 1, ADown, [512]] # 5-P4/16
16
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
17
+ - [-1, 1, ADown, [512]] # 7-P5/32
18
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
19
+ - [-1, 1, SPPELAN, [512, 256]] # 9
20
20
 
21
21
  head:
22
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
23
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
22
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
23
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
24
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
25
25
 
26
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
27
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
- - [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
26
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
27
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
28
+ - [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
29
29
 
30
30
  - [-1, 1, ADown, [256]]
31
- - [[-1, 12], 1, Concat, [1]] # cat head P4
32
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
31
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
32
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
33
33
 
34
34
  - [-1, 1, ADown, [512]]
35
- - [[-1, 9], 1, Concat, [1]] # cat head P5
36
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
35
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
36
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
37
37
 
38
- - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
38
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -3,20 +3,20 @@
3
3
  # 1261 layers, 60512800 parameters, 248.4 GFLOPs
4
4
 
5
5
  # parameters
6
- nc: 80 # number of classes
6
+ nc: 80 # number of classes
7
7
 
8
8
  # gelan backbone
9
9
  backbone:
10
10
  - [-1, 1, Silence, []]
11
- - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
12
- - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
13
- - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
14
- - [-1, 1, ADown, [256]] # 4-P3/8
15
- - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
16
- - [-1, 1, ADown, [512]] # 6-P4/16
17
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
18
- - [-1, 1, ADown, [1024]] # 8-P5/32
19
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
11
+ - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
12
+ - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
13
+ - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
14
+ - [-1, 1, ADown, [256]] # 4-P3/8
15
+ - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
16
+ - [-1, 1, ADown, [512]] # 6-P4/16
17
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
18
+ - [-1, 1, ADown, [1024]] # 8-P5/32
19
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
20
20
 
21
21
  - [1, 1, CBLinear, [[64]]] # 10
22
22
  - [3, 1, CBLinear, [[64, 128]]] # 11
@@ -24,38 +24,38 @@ backbone:
24
24
  - [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
25
25
  - [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
26
26
 
27
- - [0, 1, Conv, [64, 3, 2]] # 15-P1/2
27
+ - [0, 1, Conv, [64, 3, 2]] # 15-P1/2
28
28
  - [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
29
- - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
30
- - [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
31
- - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
32
- - [-1, 1, ADown, [256]] # 20-P3/8
33
- - [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
34
- - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
35
- - [-1, 1, ADown, [512]] # 23-P4/16
36
- - [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
37
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
38
- - [-1, 1, ADown, [1024]] # 26-P5/32
29
+ - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
30
+ - [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
31
+ - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
32
+ - [-1, 1, ADown, [256]] # 20-P3/8
33
+ - [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
34
+ - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
35
+ - [-1, 1, ADown, [512]] # 23-P4/16
36
+ - [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
37
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
38
+ - [-1, 1, ADown, [1024]] # 26-P5/32
39
39
  - [[14, -1], 1, CBFuse, [[4]]] # 27
40
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
41
- - [-1, 1, SPPELAN, [512, 256]] # 29
40
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
41
+ - [-1, 1, SPPELAN, [512, 256]] # 29
42
42
 
43
43
  # gelan head
44
44
  head:
45
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
46
- - [[-1, 25], 1, Concat, [1]] # cat backbone P4
47
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
45
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
46
+ - [[-1, 25], 1, Concat, [1]] # cat backbone P4
47
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
48
48
 
49
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
50
- - [[-1, 22], 1, Concat, [1]] # cat backbone P3
51
- - [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
49
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
50
+ - [[-1, 22], 1, Concat, [1]] # cat backbone P3
51
+ - [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
52
52
 
53
53
  - [-1, 1, ADown, [256]]
54
- - [[-1, 32], 1, Concat, [1]] # cat head P4
55
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
54
+ - [[-1, 32], 1, Concat, [1]] # cat head P4
55
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
56
56
 
57
57
  - [-1, 1, ADown, [512]]
58
- - [[-1, 29], 1, Concat, [1]] # cat head P5
59
- - [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
58
+ - [[-1, 29], 1, Concat, [1]] # cat head P5
59
+ - [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
60
60
 
61
- - [[35, 38, 41], 1, Segment, [nc, 32, 256]] # Segment (P3, P4, P5)
61
+ - [[35, 38, 41], 1, Segment, [nc, 32, 256]] # Segment (P3, P4, P5)
@@ -3,20 +3,20 @@
3
3
  # 1225 layers, 58206592 parameters, 193.0 GFLOPs
4
4
 
5
5
  # parameters
6
- nc: 80 # number of classes
6
+ nc: 80 # number of classes
7
7
 
8
8
  # gelan backbone
9
9
  backbone:
10
10
  - [-1, 1, Silence, []]
11
- - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
12
- - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
13
- - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
14
- - [-1, 1, ADown, [256]] # 4-P3/8
15
- - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
16
- - [-1, 1, ADown, [512]] # 6-P4/16
17
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
18
- - [-1, 1, ADown, [1024]] # 8-P5/32
19
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
11
+ - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
12
+ - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
13
+ - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
14
+ - [-1, 1, ADown, [256]] # 4-P3/8
15
+ - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
16
+ - [-1, 1, ADown, [512]] # 6-P4/16
17
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
18
+ - [-1, 1, ADown, [1024]] # 8-P5/32
19
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
20
20
 
21
21
  - [1, 1, CBLinear, [[64]]] # 10
22
22
  - [3, 1, CBLinear, [[64, 128]]] # 11
@@ -24,38 +24,38 @@ backbone:
24
24
  - [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
25
25
  - [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
26
26
 
27
- - [0, 1, Conv, [64, 3, 2]] # 15-P1/2
27
+ - [0, 1, Conv, [64, 3, 2]] # 15-P1/2
28
28
  - [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
29
- - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
30
- - [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
31
- - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
32
- - [-1, 1, ADown, [256]] # 20-P3/8
33
- - [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
34
- - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
35
- - [-1, 1, ADown, [512]] # 23-P4/16
36
- - [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
37
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
38
- - [-1, 1, ADown, [1024]] # 26-P5/32
29
+ - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
30
+ - [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
31
+ - [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
32
+ - [-1, 1, ADown, [256]] # 20-P3/8
33
+ - [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
34
+ - [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
35
+ - [-1, 1, ADown, [512]] # 23-P4/16
36
+ - [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
37
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
38
+ - [-1, 1, ADown, [1024]] # 26-P5/32
39
39
  - [[14, -1], 1, CBFuse, [[4]]] # 27
40
- - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
41
- - [-1, 1, SPPELAN, [512, 256]] # 29
40
+ - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
41
+ - [-1, 1, SPPELAN, [512, 256]] # 29
42
42
 
43
43
  # gelan head
44
44
  head:
45
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
46
- - [[-1, 25], 1, Concat, [1]] # cat backbone P4
47
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
45
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
46
+ - [[-1, 25], 1, Concat, [1]] # cat backbone P4
47
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
48
48
 
49
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
50
- - [[-1, 22], 1, Concat, [1]] # cat backbone P3
51
- - [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
49
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
50
+ - [[-1, 22], 1, Concat, [1]] # cat backbone P3
51
+ - [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
52
52
 
53
53
  - [-1, 1, ADown, [256]]
54
- - [[-1, 32], 1, Concat, [1]] # cat head P4
55
- - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
54
+ - [[-1, 32], 1, Concat, [1]] # cat head P4
55
+ - [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
56
56
 
57
57
  - [-1, 1, ADown, [512]]
58
- - [[-1, 29], 1, Concat, [1]] # cat head P5
59
- - [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
58
+ - [[-1, 29], 1, Concat, [1]] # cat head P5
59
+ - [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
60
60
 
61
- - [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)
61
+ - [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)
ultralytics/data/build.py CHANGED
@@ -128,7 +128,7 @@ def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
128
128
  """Return an InfiniteDataLoader or DataLoader for training or validation set."""
129
129
  batch = min(batch, len(dataset))
130
130
  nd = torch.cuda.device_count() # number of CUDA devices
131
- nw = min([os.cpu_count() // max(nd, 1), workers]) # number of workers
131
+ nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
132
132
  sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
133
133
  generator = torch.Generator()
134
134
  generator.manual_seed(6148914691236517205 + RANK)
@@ -195,6 +195,9 @@ class Exporter:
195
195
  if not hasattr(model, "names"):
196
196
  model.names = default_class_names()
197
197
  model.names = check_class_names(model.names)
198
+ if self.args.half and self.args.int8:
199
+ LOGGER.warning("WARNING ⚠️ half=True and int8=True are mutually exclusive, setting half=False.")
200
+ self.args.half = False
198
201
  if self.args.half and onnx and self.device.type == "cpu":
199
202
  LOGGER.warning("WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0")
200
203
  self.args.half = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.18
3
+ Version: 8.2.19
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -1,4 +1,4 @@
1
- ultralytics/__init__.py,sha256=UvIkLkGIahFV3Ubeoke_5aRikBkOXwN5EWZEYJ8uR3M,633
1
+ ultralytics/__init__.py,sha256=NObQc9-CGvcpMj8hOJ6v61xO8ImAy6eciiFIiIqfVVA,633
2
2
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
3
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
4
  ultralytics/cfg/__init__.py,sha256=lR6jykSO_0cigsjrqSyFj_8JG_LvYi796viasyWhcfs,21358
@@ -27,6 +27,7 @@ ultralytics/cfg/datasets/dota8.yaml,sha256=HlwU4tpnUCCn7DQBXYRBGbfARNcALfCCRJnqy
27
27
  ultralytics/cfg/datasets/lvis.yaml,sha256=-pMOD5-00zrvArVTErHrrKA9X8sA9vkRnw-A_Ub762M,29705
28
28
  ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
29
29
  ultralytics/cfg/datasets/package-seg.yaml,sha256=t6iu8MwulLxLVT2QdeOXz2fcCRcqufGpKOXUjTg2gMA,801
30
+ ultralytics/cfg/datasets/signature.yaml,sha256=lHAS4HsFIhUbIhoBvCQd7T3ADmCfc5QG_wrEvOmq2NA,728
30
31
  ultralytics/cfg/datasets/tiger-pose.yaml,sha256=v2pOOrijTqdFA82nd2Jt-ZOWKNQl_qYgEqSgl4d0xWs,864
31
32
  ultralytics/cfg/datasets/xView.yaml,sha256=rjQPRNk--jlYN9wcVTu1KbopgZIkWXhr_s1UkSdcERs,5217
32
33
  ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW6tWeAsdN8ynryuU,1934
@@ -56,17 +57,17 @@ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=fN85m_aDMCH4oTJ3z-ft98Pdh6dk0pZ
56
57
  ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=RXTp_tgix8dbnVHprapxiK2aax7M2qIfmuR-aAve4sU,2019
57
58
  ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=fvGVUxvlBOjN6LUiiaiGsnjK5ZKjwYGWxgkJ49hGmMg,1956
58
59
  ultralytics/cfg/models/v8/yolov8.yaml,sha256=VjSe_V2Gn9ZpJrwTtz0A6_6IMp6UuugNiR7aEShR5rc,1889
59
- ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=N4gKdqTF-oHAOAQnaB03sNbf39mzPmlWAxdqxz73OsU,1271
60
- ultralytics/cfg/models/v9/yolov9c.yaml,sha256=YIEWXY_jN9oieF0AyiNMXsawW4Qb8OoSvaLSX0uZCc4,1256
61
- ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=ewM-vKHlv3FyF8AVsTHki-nop56DpRDeozq5v5xtuzw,2212
62
- ultralytics/cfg/models/v9/yolov9e.yaml,sha256=oK9Qj3kdEiug43J2k4YGL-fkxvGwgixB87W3FjBQwfo,2196
60
+ ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=526Rv4rjzHT-Vkm1JIhe3E7FEQ5FOCVkKesVd1bsc6k,1251
61
+ ultralytics/cfg/models/v9/yolov9c.yaml,sha256=eya4Dv8YUHcdFpQcqOPLA9f1tdvoNW12erOb5BqqQFY,1236
62
+ ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=XOXSAY1Mt7R4qi8TwzrJEYnJ1lSCHjyk5yOIDjYv_a8,2178
63
+ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=BBy8Ghz51gghMDbc0bTbAmYmVuATaFFY2QEpoPCmmZo,2162
63
64
  ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
64
65
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
65
66
  ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
66
67
  ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
67
68
  ultralytics/data/augment.py,sha256=OyGg5Ltmhi6sH8ImEiolr6KaiJPPB7bPqqcd3OHo_fQ,57665
68
69
  ultralytics/data/base.py,sha256=C3teLnw97ZTbpJHT9P7yYWosAKocMzgJjRe1rxgfpls,13524
69
- ultralytics/data/build.py,sha256=D9ov-H1p5Ui72lqWMyLmeD4kN0hIL3LX9t4DoT8tHGY,7270
70
+ ultralytics/data/build.py,sha256=nFdshVSDqU-tY9luH1T-cYnWHEdh9PtxRkwrs2UahMo,7268
70
71
  ultralytics/data/converter.py,sha256=NLDiV67RshbKQnMJUiQQF11boVzEqgi2Hz39nKVAI4U,17528
71
72
  ultralytics/data/dataset.py,sha256=NFaXyHRn64TyTEbtSkr7SkqWXK8bEJl6lZ6M1JwO3MY,22201
72
73
  ultralytics/data/loaders.py,sha256=UxNLLV6rwUDog9MSOkHpDn52TO-X2g2P4a5ZwvB7Ii8,23142
@@ -78,7 +79,7 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
78
79
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
79
80
  ultralytics/data/explorer/gui/dash.py,sha256=2oAbNroR2lfS45v53M1sRqZklLXbbj6qXqNxvplulC0,10087
80
81
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
81
- ultralytics/engine/exporter.py,sha256=2troO7ah3gAhHyQ2VCjFvaK9NBc6uleIVft5IRBjeFM,58122
82
+ ultralytics/engine/exporter.py,sha256=n2_2oTirHfdPDoeSD1feRNvWAXZHugo92JB6W0GWeiw,58316
82
83
  ultralytics/engine/model.py,sha256=IE6HE9VIzqO3DscxSLexub0LUR673eiPFrCPCt6ozEE,40103
83
84
  ultralytics/engine/predictor.py,sha256=wQRKdWGDTP5A6CS0gTC6U3RPDMhP3QkEzWSPm6eqCkU,17022
84
85
  ultralytics/engine/results.py,sha256=1ZY6eXb5uHmDShAXPmXZ-117ZlqeffEZLd2LqFgg8Ik,30975
@@ -199,9 +200,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
199
200
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
200
201
  ultralytics/utils/callbacks/tensorboard.py,sha256=Z1veCVcn9THPhdplWuIzwlsW2yF7y-On9IZIk3khM0Y,4135
201
202
  ultralytics/utils/callbacks/wb.py,sha256=DViD0KeXH_i3eVT_CLR4bZFs1TMMUZBVBBYIS3aUfp0,6745
202
- ultralytics-8.2.18.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
203
- ultralytics-8.2.18.dist-info/METADATA,sha256=bs7_wNBjYCpAoRHxVVuUYHc20zfgcr-O5_DDLLVKpBw,40694
204
- ultralytics-8.2.18.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
205
- ultralytics-8.2.18.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
206
- ultralytics-8.2.18.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
207
- ultralytics-8.2.18.dist-info/RECORD,,
203
+ ultralytics-8.2.19.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
204
+ ultralytics-8.2.19.dist-info/METADATA,sha256=rclTaqVO3NUEG2sUMvgs2nXlYADCmdzjQqFiqTofyN4,40694
205
+ ultralytics-8.2.19.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
206
+ ultralytics-8.2.19.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
207
+ ultralytics-8.2.19.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
208
+ ultralytics-8.2.19.dist-info/RECORD,,