ultralytics 8.2.13__py3-none-any.whl → 8.2.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/data/utils.py +3 -2
- ultralytics/engine/results.py +3 -3
- ultralytics/hub/__init__.py +7 -3
- ultralytics/utils/plotting.py +19 -18
- {ultralytics-8.2.13.dist-info → ultralytics-8.2.14.dist-info}/METADATA +1 -1
- {ultralytics-8.2.13.dist-info → ultralytics-8.2.14.dist-info}/RECORD +11 -11
- {ultralytics-8.2.13.dist-info → ultralytics-8.2.14.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.13.dist-info → ultralytics-8.2.14.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.13.dist-info → ultralytics-8.2.14.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.13.dist-info → ultralytics-8.2.14.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py
CHANGED
ultralytics/data/utils.py
CHANGED
|
@@ -441,6 +441,7 @@ class HUBDatasetStats:
|
|
|
441
441
|
stats = HUBDatasetStats('path/to/coco8.zip', task='detect') # detect dataset
|
|
442
442
|
stats = HUBDatasetStats('path/to/coco8-seg.zip', task='segment') # segment dataset
|
|
443
443
|
stats = HUBDatasetStats('path/to/coco8-pose.zip', task='pose') # pose dataset
|
|
444
|
+
stats = HUBDatasetStats('path/to/dota8.zip', task='obb') # OBB dataset
|
|
444
445
|
stats = HUBDatasetStats('path/to/imagenet10.zip', task='classify') # classification dataset
|
|
445
446
|
|
|
446
447
|
stats.get_json(save=True)
|
|
@@ -497,13 +498,13 @@ class HUBDatasetStats:
|
|
|
497
498
|
"""Update labels to integer class and 4 decimal place floats."""
|
|
498
499
|
if self.task == "detect":
|
|
499
500
|
coordinates = labels["bboxes"]
|
|
500
|
-
elif self.task
|
|
501
|
+
elif self.task in {"segment", "obb"}: # Segment and OBB use segments. OBB segments are normalized xyxyxyxy
|
|
501
502
|
coordinates = [x.flatten() for x in labels["segments"]]
|
|
502
503
|
elif self.task == "pose":
|
|
503
504
|
n, nk, nd = labels["keypoints"].shape
|
|
504
505
|
coordinates = np.concatenate((labels["bboxes"], labels["keypoints"].reshape(n, nk * nd)), 1)
|
|
505
506
|
else:
|
|
506
|
-
raise ValueError("Undefined dataset task.")
|
|
507
|
+
raise ValueError(f"Undefined dataset task={self.task}.")
|
|
507
508
|
zipped = zip(labels["cls"], coordinates)
|
|
508
509
|
return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped]
|
|
509
510
|
|
ultralytics/engine/results.py
CHANGED
|
@@ -407,9 +407,9 @@ class Results(SimpleClass):
|
|
|
407
407
|
class_id, conf = int(row.cls), round(row.conf.item(), decimals)
|
|
408
408
|
box = (row.xyxyxyxy if is_obb else row.xyxy).squeeze().reshape(-1, 2).tolist()
|
|
409
409
|
xy = {}
|
|
410
|
-
for
|
|
411
|
-
xy[f"x{
|
|
412
|
-
xy[f"y{
|
|
410
|
+
for j, b in enumerate(box):
|
|
411
|
+
xy[f"x{j + 1}"] = round(b[0] / w, decimals)
|
|
412
|
+
xy[f"y{j + 1}"] = round(b[1] / h, decimals)
|
|
413
413
|
result = {"name": self.names[class_id], "class": class_id, "confidence": conf, "box": xy}
|
|
414
414
|
if data.is_track:
|
|
415
415
|
result["track_id"] = int(row.id.item()) # track ID
|
ultralytics/hub/__init__.py
CHANGED
|
@@ -106,22 +106,26 @@ def get_export(model_id="", format="torchscript"):
|
|
|
106
106
|
return r.json()
|
|
107
107
|
|
|
108
108
|
|
|
109
|
-
def check_dataset(path
|
|
109
|
+
def check_dataset(path: str, task: str) -> None:
|
|
110
110
|
"""
|
|
111
111
|
Function for error-checking HUB dataset Zip file before upload. It checks a dataset for errors before it is uploaded
|
|
112
112
|
to the HUB. Usage examples are given below.
|
|
113
113
|
|
|
114
114
|
Args:
|
|
115
|
-
path (str
|
|
116
|
-
task (str
|
|
115
|
+
path (str): Path to data.zip (with data.yaml inside data.zip).
|
|
116
|
+
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify', 'obb'.
|
|
117
117
|
|
|
118
118
|
Example:
|
|
119
|
+
Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets
|
|
120
|
+
i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
|
|
119
121
|
```python
|
|
120
122
|
from ultralytics.hub import check_dataset
|
|
121
123
|
|
|
122
124
|
check_dataset('path/to/coco8.zip', task='detect') # detect dataset
|
|
123
125
|
check_dataset('path/to/coco8-seg.zip', task='segment') # segment dataset
|
|
124
126
|
check_dataset('path/to/coco8-pose.zip', task='pose') # pose dataset
|
|
127
|
+
check_dataset('path/to/dota8.zip', task='obb') # OBB dataset
|
|
128
|
+
check_dataset('path/to/imagenet10.zip', task='classify') # classification dataset
|
|
125
129
|
```
|
|
126
130
|
"""
|
|
127
131
|
HUBDatasetStats(path=path, task=task).get_json()
|
ultralytics/utils/plotting.py
CHANGED
|
@@ -1105,23 +1105,24 @@ def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detec
|
|
|
1105
1105
|
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
|
|
1106
1106
|
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
|
|
1107
1107
|
"""
|
|
1108
|
-
for m in
|
|
1108
|
+
for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}: # all model heads
|
|
1109
1109
|
if m in module_type:
|
|
1110
1110
|
return
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1119
|
-
|
|
1120
|
-
|
|
1121
|
-
|
|
1122
|
-
|
|
1123
|
-
|
|
1124
|
-
|
|
1125
|
-
|
|
1126
|
-
|
|
1127
|
-
|
|
1111
|
+
if isinstance(x, torch.Tensor):
|
|
1112
|
+
_, channels, height, width = x.shape # batch, channels, height, width
|
|
1113
|
+
if height > 1 and width > 1:
|
|
1114
|
+
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
|
1115
|
+
|
|
1116
|
+
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
|
1117
|
+
n = min(n, channels) # number of plots
|
|
1118
|
+
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
|
1119
|
+
ax = ax.ravel()
|
|
1120
|
+
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
|
1121
|
+
for i in range(n):
|
|
1122
|
+
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
|
1123
|
+
ax[i].axis("off")
|
|
1124
|
+
|
|
1125
|
+
LOGGER.info(f"Saving {f}... ({n}/{channels})")
|
|
1126
|
+
plt.savefig(f, dpi=300, bbox_inches="tight")
|
|
1127
|
+
plt.close()
|
|
1128
|
+
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
3
|
+
Version: 8.2.14
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
ultralytics/__init__.py,sha256=
|
|
1
|
+
ultralytics/__init__.py,sha256=8EzNpeOWBuxDV22YG7ft8mxB2hmiXrnzG1V2wyP5yic,633
|
|
2
2
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
3
3
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
4
4
|
ultralytics/cfg/__init__.py,sha256=lR6jykSO_0cigsjrqSyFj_8JG_LvYi796viasyWhcfs,21358
|
|
@@ -71,7 +71,7 @@ ultralytics/data/converter.py,sha256=NLDiV67RshbKQnMJUiQQF11boVzEqgi2Hz39nKVAI4U
|
|
|
71
71
|
ultralytics/data/dataset.py,sha256=NFaXyHRn64TyTEbtSkr7SkqWXK8bEJl6lZ6M1JwO3MY,22201
|
|
72
72
|
ultralytics/data/loaders.py,sha256=UxNLLV6rwUDog9MSOkHpDn52TO-X2g2P4a5ZwvB7Ii8,23142
|
|
73
73
|
ultralytics/data/split_dota.py,sha256=PQdkwwlFtLKhWIrbToshSekXGdgbrbYMN6hM4ujfa7o,10010
|
|
74
|
-
ultralytics/data/utils.py,sha256=
|
|
74
|
+
ultralytics/data/utils.py,sha256=MaZSd6kBL9scQF7a0PQX6UMiKJ_8vjGlUjggzZ_9aJg,31051
|
|
75
75
|
ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
|
|
76
76
|
ultralytics/data/explorer/explorer.py,sha256=0psbV96Qjbo2l_jGyM8WWnHq2gJREp_qq9YWPoxVxXE,18711
|
|
77
77
|
ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yfi8NIA,7085
|
|
@@ -81,11 +81,11 @@ ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDT
|
|
|
81
81
|
ultralytics/engine/exporter.py,sha256=2troO7ah3gAhHyQ2VCjFvaK9NBc6uleIVft5IRBjeFM,58122
|
|
82
82
|
ultralytics/engine/model.py,sha256=IE6HE9VIzqO3DscxSLexub0LUR673eiPFrCPCt6ozEE,40103
|
|
83
83
|
ultralytics/engine/predictor.py,sha256=wQRKdWGDTP5A6CS0gTC6U3RPDMhP3QkEzWSPm6eqCkU,17022
|
|
84
|
-
ultralytics/engine/results.py,sha256=
|
|
84
|
+
ultralytics/engine/results.py,sha256=tVcViFF2pT1THaNaM6LIDxzhIQQ7SZf2NN-vKjLlN6Y,30919
|
|
85
85
|
ultralytics/engine/trainer.py,sha256=GpseAovVKLRgAoqG4bEVtQqemWdDcxrY7gE3vGRU9gs,35048
|
|
86
86
|
ultralytics/engine/tuner.py,sha256=iZrgMmXSDpfuDu4bdFRflmAsscys2-8W8qAGxSyOVJE,11844
|
|
87
87
|
ultralytics/engine/validator.py,sha256=Y21Uo8_Zto4qjk_YqQk6k7tyfpq_Qk9cfjeXeyDRxs8,14643
|
|
88
|
-
ultralytics/hub/__init__.py,sha256=
|
|
88
|
+
ultralytics/hub/__init__.py,sha256=zXam81eSJ2IkH0CwPy_VhG1XHZem9vs9jR4uG7s-uAY,5383
|
|
89
89
|
ultralytics/hub/auth.py,sha256=FID58NE6fh7Op_B45QOpWBw1qoBN0ponL16uvyb2dZ8,5399
|
|
90
90
|
ultralytics/hub/session.py,sha256=Oly3bKjLkW08iOm3QoSr6Yy57aLZ4AmAmF6Pp9Y_q5g,15197
|
|
91
91
|
ultralytics/hub/utils.py,sha256=RpFDFp9biUK70Mswzz2o3uEu4xwQxRaStPS19U2gu0g,9721
|
|
@@ -183,7 +183,7 @@ ultralytics/utils/loss.py,sha256=ejXnPEIAzNEoNz2UjW0_fcdeUs9Hy-jPzUrJ3FiIIwE,327
|
|
|
183
183
|
ultralytics/utils/metrics.py,sha256=XPD-xP0fchR8KgCuTcihV2-n0EK1cWi3-53BWN_pLuA,53518
|
|
184
184
|
ultralytics/utils/ops.py,sha256=wZCWx7dm5GJNIJHyZaFJRetGcQ7prdv-anplqq9figQ,33309
|
|
185
185
|
ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
|
|
186
|
-
ultralytics/utils/plotting.py,sha256=
|
|
186
|
+
ultralytics/utils/plotting.py,sha256=ihlGqsBjL23p9ngI0rbjV1Mk10y4p6Z62SlxRORzDaU,48466
|
|
187
187
|
ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
|
|
188
188
|
ultralytics/utils/torch_utils.py,sha256=y1qJniyii0sJFg8dpP-yjYh8AMOoFok9NEZcRi669Jo,25916
|
|
189
189
|
ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
|
|
@@ -199,9 +199,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
|
|
|
199
199
|
ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
|
|
200
200
|
ultralytics/utils/callbacks/tensorboard.py,sha256=Z1veCVcn9THPhdplWuIzwlsW2yF7y-On9IZIk3khM0Y,4135
|
|
201
201
|
ultralytics/utils/callbacks/wb.py,sha256=woCQVuZzqtM5KnwxIibcfM3sFBYojeMPnv11jrRaIQA,6674
|
|
202
|
-
ultralytics-8.2.
|
|
203
|
-
ultralytics-8.2.
|
|
204
|
-
ultralytics-8.2.
|
|
205
|
-
ultralytics-8.2.
|
|
206
|
-
ultralytics-8.2.
|
|
207
|
-
ultralytics-8.2.
|
|
202
|
+
ultralytics-8.2.14.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
203
|
+
ultralytics-8.2.14.dist-info/METADATA,sha256=KBP6_nUk1bxKFb07J2lsiPfSH2-znVkSjgEwdWqMIyA,40694
|
|
204
|
+
ultralytics-8.2.14.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
205
|
+
ultralytics-8.2.14.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
206
|
+
ultralytics-8.2.14.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
207
|
+
ultralytics-8.2.14.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|