ultralytics 8.2.103__py3-none-any.whl → 8.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/__init__.py +2 -2
- tests/conftest.py +1 -1
- tests/test_cuda.py +1 -1
- tests/test_engine.py +5 -5
- tests/test_explorer.py +3 -3
- tests/test_exports.py +1 -2
- tests/test_integrations.py +9 -9
- tests/test_python.py +11 -11
- tests/test_solutions.py +3 -3
- ultralytics/__init__.py +1 -2
- ultralytics/cfg/__init__.py +20 -20
- ultralytics/cfg/datasets/hand-keypoints.yaml +2 -2
- ultralytics/cfg/default.yaml +1 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +30 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +47 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +48 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +47 -0
- ultralytics/cfg/models/11/yolo11.yaml +47 -0
- ultralytics/data/augment.py +101 -80
- ultralytics/engine/trainer.py +8 -1
- ultralytics/nn/modules/__init__.py +7 -1
- ultralytics/nn/modules/block.py +198 -37
- ultralytics/nn/modules/conv.py +2 -1
- ultralytics/nn/modules/head.py +9 -2
- ultralytics/nn/tasks.py +25 -2
- ultralytics/utils/checks.py +8 -8
- ultralytics/utils/downloads.py +3 -2
- ultralytics/utils/loss.py +3 -0
- ultralytics/utils/torch_utils.py +1 -1
- {ultralytics-8.2.103.dist-info → ultralytics-8.3.1.dist-info}/METADATA +48 -62
- {ultralytics-8.2.103.dist-info → ultralytics-8.3.1.dist-info}/RECORD +35 -30
- {ultralytics-8.2.103.dist-info → ultralytics-8.3.1.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.103.dist-info → ultralytics-8.3.1.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.103.dist-info → ultralytics-8.3.1.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.103.dist-info → ultralytics-8.3.1.dist-info}/top_level.txt +0 -0
ultralytics/nn/tasks.py
CHANGED
|
@@ -13,6 +13,7 @@ from ultralytics.nn.modules import (
|
|
|
13
13
|
AIFI,
|
|
14
14
|
C1,
|
|
15
15
|
C2,
|
|
16
|
+
C2PSA,
|
|
16
17
|
C3,
|
|
17
18
|
C3TR,
|
|
18
19
|
ELAN1,
|
|
@@ -28,7 +29,9 @@ from ultralytics.nn.modules import (
|
|
|
28
29
|
C2f,
|
|
29
30
|
C2fAttn,
|
|
30
31
|
C2fCIB,
|
|
32
|
+
C2fPSA,
|
|
31
33
|
C3Ghost,
|
|
34
|
+
C3k2,
|
|
32
35
|
C3x,
|
|
33
36
|
CBFuse,
|
|
34
37
|
CBLinear,
|
|
@@ -968,12 +971,15 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
|
|
|
968
971
|
GhostBottleneck,
|
|
969
972
|
SPP,
|
|
970
973
|
SPPF,
|
|
974
|
+
C2fPSA,
|
|
975
|
+
C2PSA,
|
|
971
976
|
DWConv,
|
|
972
977
|
Focus,
|
|
973
978
|
BottleneckCSP,
|
|
974
979
|
C1,
|
|
975
980
|
C2,
|
|
976
981
|
C2f,
|
|
982
|
+
C3k2,
|
|
977
983
|
RepNCSPELAN4,
|
|
978
984
|
ELAN1,
|
|
979
985
|
ADown,
|
|
@@ -1001,9 +1007,26 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
|
|
|
1001
1007
|
) # num heads
|
|
1002
1008
|
|
|
1003
1009
|
args = [c1, c2, *args[1:]]
|
|
1004
|
-
if m in {
|
|
1010
|
+
if m in {
|
|
1011
|
+
BottleneckCSP,
|
|
1012
|
+
C1,
|
|
1013
|
+
C2,
|
|
1014
|
+
C2f,
|
|
1015
|
+
C3k2,
|
|
1016
|
+
C2fAttn,
|
|
1017
|
+
C3,
|
|
1018
|
+
C3TR,
|
|
1019
|
+
C3Ghost,
|
|
1020
|
+
C3x,
|
|
1021
|
+
RepC3,
|
|
1022
|
+
C2fPSA,
|
|
1023
|
+
C2fCIB,
|
|
1024
|
+
C2PSA,
|
|
1025
|
+
}:
|
|
1005
1026
|
args.insert(2, n) # number of repeats
|
|
1006
1027
|
n = 1
|
|
1028
|
+
if m is C3k2 and scale in "mlx": # for M/L/X sizes
|
|
1029
|
+
args[3] = True
|
|
1007
1030
|
elif m is AIFI:
|
|
1008
1031
|
args = [ch[f], *args]
|
|
1009
1032
|
elif m in {HGStem, HGBlock}:
|
|
@@ -1080,7 +1103,7 @@ def guess_model_scale(model_path):
|
|
|
1080
1103
|
with contextlib.suppress(AttributeError):
|
|
1081
1104
|
import re
|
|
1082
1105
|
|
|
1083
|
-
return re.search(r"
|
|
1106
|
+
return re.search(r"yolo[v]?\d+([nslmx])", Path(model_path).stem).group(1) # n, s, m, l, or x
|
|
1084
1107
|
return ""
|
|
1085
1108
|
|
|
1086
1109
|
|
ultralytics/utils/checks.py
CHANGED
|
@@ -629,24 +629,24 @@ def collect_system_info():
|
|
|
629
629
|
|
|
630
630
|
def check_amp(model):
|
|
631
631
|
"""
|
|
632
|
-
Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a
|
|
632
|
+
Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLO11 model. If the checks fail, it means
|
|
633
633
|
there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will be disabled
|
|
634
634
|
during training.
|
|
635
635
|
|
|
636
636
|
Args:
|
|
637
|
-
model (nn.Module): A
|
|
637
|
+
model (nn.Module): A YOLO11 model instance.
|
|
638
638
|
|
|
639
639
|
Example:
|
|
640
640
|
```python
|
|
641
641
|
from ultralytics import YOLO
|
|
642
642
|
from ultralytics.utils.checks import check_amp
|
|
643
643
|
|
|
644
|
-
model = YOLO("
|
|
644
|
+
model = YOLO("yolo11n.pt").model.cuda()
|
|
645
645
|
check_amp(model)
|
|
646
646
|
```
|
|
647
647
|
|
|
648
648
|
Returns:
|
|
649
|
-
(bool): Returns True if the AMP functionality works correctly with
|
|
649
|
+
(bool): Returns True if the AMP functionality works correctly with YOLO11 model, else False.
|
|
650
650
|
"""
|
|
651
651
|
from ultralytics.utils.torch_utils import autocast
|
|
652
652
|
|
|
@@ -665,19 +665,19 @@ def check_amp(model):
|
|
|
665
665
|
|
|
666
666
|
im = ASSETS / "bus.jpg" # image to check
|
|
667
667
|
prefix = colorstr("AMP: ")
|
|
668
|
-
LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with
|
|
668
|
+
LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with YOLO11n...")
|
|
669
669
|
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
|
|
670
670
|
try:
|
|
671
671
|
from ultralytics import YOLO
|
|
672
672
|
|
|
673
|
-
assert amp_allclose(YOLO("
|
|
673
|
+
assert amp_allclose(YOLO("yolo11n.pt"), im)
|
|
674
674
|
LOGGER.info(f"{prefix}checks passed ✅")
|
|
675
675
|
except ConnectionError:
|
|
676
|
-
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download
|
|
676
|
+
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLO11n. {warning_msg}")
|
|
677
677
|
except (AttributeError, ModuleNotFoundError):
|
|
678
678
|
LOGGER.warning(
|
|
679
679
|
f"{prefix}checks skipped ⚠️. "
|
|
680
|
-
f"Unable to load
|
|
680
|
+
f"Unable to load YOLO11n due to possible Ultralytics package modifications. {warning_msg}"
|
|
681
681
|
)
|
|
682
682
|
except AssertionError:
|
|
683
683
|
LOGGER.warning(
|
ultralytics/utils/downloads.py
CHANGED
|
@@ -18,6 +18,7 @@ from ultralytics.utils import LOGGER, TQDM, checks, clean_url, emojis, is_online
|
|
|
18
18
|
GITHUB_ASSETS_REPO = "ultralytics/assets"
|
|
19
19
|
GITHUB_ASSETS_NAMES = (
|
|
20
20
|
[f"yolov8{k}{suffix}.pt" for k in "nsmlx" for suffix in ("", "-cls", "-seg", "-pose", "-obb", "-oiv7")]
|
|
21
|
+
+ [f"yolo11{k}{suffix}.pt" for k in "nsmlx" for suffix in ("", "-cls", "-seg", "-pose", "-obb")]
|
|
21
22
|
+ [f"yolov5{k}{resolution}u.pt" for k in "nsmlx" for resolution in ("", "6")]
|
|
22
23
|
+ [f"yolov3{k}u.pt" for k in ("", "-spp", "-tiny")]
|
|
23
24
|
+ [f"yolov8{k}-world.pt" for k in "smlx"]
|
|
@@ -408,7 +409,7 @@ def get_github_assets(repo="ultralytics/assets", version="latest", retry=False):
|
|
|
408
409
|
return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolov8n.pt', 'yolov8s.pt', ...]
|
|
409
410
|
|
|
410
411
|
|
|
411
|
-
def attempt_download_asset(file, repo="ultralytics/assets", release="v8.
|
|
412
|
+
def attempt_download_asset(file, repo="ultralytics/assets", release="v8.3.0", **kwargs):
|
|
412
413
|
"""
|
|
413
414
|
Attempt to download a file from GitHub release assets if it is not found locally. The function checks for the file
|
|
414
415
|
locally first, then tries to download it from the specified GitHub repository release.
|
|
@@ -416,7 +417,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.2.0", **
|
|
|
416
417
|
Args:
|
|
417
418
|
file (str | Path): The filename or file path to be downloaded.
|
|
418
419
|
repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
|
|
419
|
-
release (str, optional): The specific release version to be downloaded. Defaults to 'v8.
|
|
420
|
+
release (str, optional): The specific release version to be downloaded. Defaults to 'v8.3.0'.
|
|
420
421
|
**kwargs (any): Additional keyword arguments for the download process.
|
|
421
422
|
|
|
422
423
|
Returns:
|
ultralytics/utils/loss.py
CHANGED
|
@@ -228,8 +228,11 @@ class v8DetectionLoss:
|
|
|
228
228
|
|
|
229
229
|
# Pboxes
|
|
230
230
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
|
231
|
+
# dfl_conf = pred_distri.view(batch_size, -1, 4, self.reg_max).detach().softmax(-1)
|
|
232
|
+
# dfl_conf = (dfl_conf.amax(-1).mean(-1) + dfl_conf.amax(-1).amin(-1)) / 2
|
|
231
233
|
|
|
232
234
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
|
235
|
+
# pred_scores.detach().sigmoid() * 0.8 + dfl_conf.unsqueeze(-1) * 0.2,
|
|
233
236
|
pred_scores.detach().sigmoid(),
|
|
234
237
|
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
|
235
238
|
anchor_points * stride_tensor,
|
ultralytics/utils/torch_utils.py
CHANGED
|
@@ -159,7 +159,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
|
|
|
159
159
|
if isinstance(device, torch.device):
|
|
160
160
|
return device
|
|
161
161
|
|
|
162
|
-
s = f"Ultralytics
|
|
162
|
+
s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{torch.__version__} "
|
|
163
163
|
device = str(device).lower()
|
|
164
164
|
for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ":
|
|
165
165
|
device = device.replace(remove, "") # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.
|
|
3
|
+
Version: 8.3.1
|
|
4
4
|
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Ayush Chaurasia
|
|
6
6
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
@@ -11,7 +11,7 @@ Project-URL: Source, https://github.com/ultralytics/ultralytics
|
|
|
11
11
|
Project-URL: Documentation, https://docs.ultralytics.com
|
|
12
12
|
Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
|
|
13
13
|
Project-URL: Changelog, https://github.com/ultralytics/ultralytics/releases
|
|
14
|
-
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,HUB,Ultralytics
|
|
14
|
+
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,YOLO11,HUB,Ultralytics
|
|
15
15
|
Classifier: Development Status :: 4 - Beta
|
|
16
16
|
Classifier: Intended Audience :: Developers
|
|
17
17
|
Classifier: Intended Audience :: Education
|
|
@@ -96,7 +96,7 @@ Requires-Dist: dvclive>=2.12.0; extra == "logging"
|
|
|
96
96
|
|
|
97
97
|
<div>
|
|
98
98
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
|
|
99
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics
|
|
99
|
+
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
100
100
|
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
|
|
101
101
|
<a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
102
102
|
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
@@ -108,13 +108,13 @@ Requires-Dist: dvclive>=2.12.0; extra == "logging"
|
|
|
108
108
|
</div>
|
|
109
109
|
<br>
|
|
110
110
|
|
|
111
|
-
[Ultralytics](https://www.ultralytics.com/) [
|
|
111
|
+
[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
|
|
112
112
|
|
|
113
|
-
We hope that the resources here will help you get the most out of
|
|
113
|
+
We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://ultralytics.com/discord">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com">Forums</a>!
|
|
114
114
|
|
|
115
115
|
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
|
|
116
116
|
|
|
117
|
-
<img width="100%" src="https://
|
|
117
|
+
<img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
|
|
118
118
|
|
|
119
119
|
<div align="center">
|
|
120
120
|
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
|
|
@@ -135,7 +135,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
|
135
135
|
|
|
136
136
|
## <div align="center">Documentation</div>
|
|
137
137
|
|
|
138
|
-
See below for a quickstart
|
|
138
|
+
See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
|
139
139
|
|
|
140
140
|
<details open>
|
|
141
141
|
<summary>Install</summary>
|
|
@@ -159,23 +159,23 @@ For alternative installation methods including [Conda](https://anaconda.org/cond
|
|
|
159
159
|
|
|
160
160
|
### CLI
|
|
161
161
|
|
|
162
|
-
|
|
162
|
+
YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
|
163
163
|
|
|
164
164
|
```bash
|
|
165
|
-
yolo predict model=
|
|
165
|
+
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
166
166
|
```
|
|
167
167
|
|
|
168
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the
|
|
168
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
|
169
169
|
|
|
170
170
|
### Python
|
|
171
171
|
|
|
172
|
-
|
|
172
|
+
YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
|
173
173
|
|
|
174
174
|
```python
|
|
175
175
|
from ultralytics import YOLO
|
|
176
176
|
|
|
177
177
|
# Load a model
|
|
178
|
-
model = YOLO("
|
|
178
|
+
model = YOLO("yolo11n.pt")
|
|
179
179
|
|
|
180
180
|
# Train the model
|
|
181
181
|
train_results = model.train(
|
|
@@ -196,26 +196,13 @@ results[0].show()
|
|
|
196
196
|
path = model.export(format="onnx") # return path to exported model
|
|
197
197
|
```
|
|
198
198
|
|
|
199
|
-
See
|
|
199
|
+
See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
200
200
|
|
|
201
201
|
</details>
|
|
202
202
|
|
|
203
|
-
### Notebooks
|
|
204
|
-
|
|
205
|
-
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://www.youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
|
|
206
|
-
|
|
207
|
-
| Docs | Notebook | YouTube |
|
|
208
|
-
| ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
209
|
-
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
210
|
-
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
211
|
-
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
212
|
-
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
213
|
-
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
214
|
-
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
215
|
-
|
|
216
203
|
## <div align="center">Models</div>
|
|
217
204
|
|
|
218
|
-
|
|
205
|
+
YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
|
219
206
|
|
|
220
207
|
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
|
|
221
208
|
|
|
@@ -225,13 +212,13 @@ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cf
|
|
|
225
212
|
|
|
226
213
|
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
|
|
227
214
|
|
|
228
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
215
|
+
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
229
216
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
230
|
-
| [
|
|
231
|
-
| [
|
|
232
|
-
| [
|
|
233
|
-
| [
|
|
234
|
-
| [
|
|
217
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
|
|
218
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
|
|
219
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
|
|
220
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
|
|
221
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
|
|
235
222
|
|
|
236
223
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
237
224
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -242,13 +229,13 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
242
229
|
|
|
243
230
|
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
|
244
231
|
|
|
245
|
-
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
232
|
+
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
246
233
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
247
|
-
| [
|
|
248
|
-
| [
|
|
249
|
-
| [
|
|
250
|
-
| [
|
|
251
|
-
| [
|
|
234
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
|
|
235
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
|
|
236
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
|
|
237
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
|
|
238
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
|
|
252
239
|
|
|
253
240
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
254
241
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
@@ -259,14 +246,13 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
259
246
|
|
|
260
247
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
261
248
|
|
|
262
|
-
| Model
|
|
263
|
-
|
|
|
264
|
-
| [
|
|
265
|
-
| [
|
|
266
|
-
| [
|
|
267
|
-
| [
|
|
268
|
-
| [
|
|
269
|
-
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
|
249
|
+
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
250
|
+
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
251
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
|
|
252
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
|
|
253
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
|
|
254
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
|
|
255
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
|
|
270
256
|
|
|
271
257
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
272
258
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -277,13 +263,13 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
|
|
|
277
263
|
|
|
278
264
|
See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
|
|
279
265
|
|
|
280
|
-
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
266
|
+
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
281
267
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
282
|
-
| [
|
|
283
|
-
| [
|
|
284
|
-
| [
|
|
285
|
-
| [
|
|
286
|
-
| [
|
|
268
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
|
|
269
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
|
|
270
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
|
|
271
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
|
|
272
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
|
|
287
273
|
|
|
288
274
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
289
275
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -294,13 +280,13 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
294
280
|
|
|
295
281
|
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
296
282
|
|
|
297
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
283
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
298
284
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
299
|
-
| [
|
|
300
|
-
| [
|
|
301
|
-
| [
|
|
302
|
-
| [
|
|
303
|
-
| [
|
|
285
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
286
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
287
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
288
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
289
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
304
290
|
|
|
305
291
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
306
292
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -333,18 +319,18 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
333
319
|
|
|
334
320
|
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
|
335
321
|
| :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
|
336
|
-
| Label and export your custom datasets directly to
|
|
322
|
+
| Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
|
337
323
|
|
|
338
324
|
## <div align="center">Ultralytics HUB</div>
|
|
339
325
|
|
|
340
|
-
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization,
|
|
326
|
+
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
|
|
341
327
|
|
|
342
328
|
<a href="https://ultralytics.com/hub" target="_blank">
|
|
343
329
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
344
330
|
|
|
345
331
|
## <div align="center">Contribute</div>
|
|
346
332
|
|
|
347
|
-
We love your input!
|
|
333
|
+
We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
348
334
|
|
|
349
335
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
|
350
336
|
|
|
@@ -1,18 +1,18 @@
|
|
|
1
|
-
tests/__init__.py,sha256=
|
|
2
|
-
tests/conftest.py,sha256=
|
|
1
|
+
tests/__init__.py,sha256=iVH5nXrACTDv0_ZIVRPi-9f6oYBl6g-tCkeR2Hb8MFM,666
|
|
2
|
+
tests/conftest.py,sha256=9PFAiwAy6eeORGspr5dOKxVuFDVKqYg8Nn_RxSJ27UI,2919
|
|
3
3
|
tests/test_cli.py,sha256=E4lMt49TGo12Lb5CgQfpk1bwyFUZuFxF0V9j_ykV7xM,4821
|
|
4
|
-
tests/test_cuda.py,sha256=
|
|
5
|
-
tests/test_engine.py,sha256=
|
|
6
|
-
tests/test_explorer.py,sha256=
|
|
7
|
-
tests/test_exports.py,sha256=
|
|
8
|
-
tests/test_integrations.py,sha256=
|
|
9
|
-
tests/test_python.py,sha256=
|
|
10
|
-
tests/test_solutions.py,sha256=
|
|
11
|
-
ultralytics/__init__.py,sha256=
|
|
4
|
+
tests/test_cuda.py,sha256=NT2AqAh3uAtVI44usSdt1PRlvaECwB2MQxDFxofCptA,5133
|
|
5
|
+
tests/test_engine.py,sha256=dcEcJsMQh61rDSNv7l4TIAgybLpzjVwerv9JZC_KCM8,4934
|
|
6
|
+
tests/test_explorer.py,sha256=9EeMtt4-K3-MeGnAc7NemTg3uTo-Xr6AYJlTJZJJeF8,2572
|
|
7
|
+
tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
|
|
8
|
+
tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
|
|
9
|
+
tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
|
|
10
|
+
tests/test_solutions.py,sha256=eAaLf1wM7IJ6DjT7NEw6sRaeDuTX0ZgsTjrI33XFCXE,3300
|
|
11
|
+
ultralytics/__init__.py,sha256=v5M2b4dAONrER9wuum2weuqz6i71ntKRaMrCBiaLCmg,693
|
|
12
12
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
13
13
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
14
|
-
ultralytics/cfg/__init__.py,sha256=
|
|
15
|
-
ultralytics/cfg/default.yaml,sha256=
|
|
14
|
+
ultralytics/cfg/__init__.py,sha256=62PSSAa0W4-gAEcRNKoKbcxUWBeFNs0ss2O4XJQhOPY,33145
|
|
15
|
+
ultralytics/cfg/default.yaml,sha256=tkBn3c6duKGFyENuULkWessAqaaxo9atuOxXq3XbItM,8314
|
|
16
16
|
ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
|
|
17
17
|
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
|
|
18
18
|
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=sxe2P7nY-cCPufH3G1pymnQVtNoGH1y0ETG5CyWfK9g,1165
|
|
@@ -34,13 +34,18 @@ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=sFMRTJa2ARpqAtr-50SS_RkB4KoczmAam
|
|
|
34
34
|
ultralytics/cfg/datasets/coco8.yaml,sha256=3_lNlMo40Rf52oxOnAIyaf7ZOdV0-z-Gcv-uMWmAE0s,1872
|
|
35
35
|
ultralytics/cfg/datasets/crack-seg.yaml,sha256=rJ2nbxclHjrEMZPwUCdHO2yjfuAZBoekuH40oP5HfNA,823
|
|
36
36
|
ultralytics/cfg/datasets/dota8.yaml,sha256=d65FTGCJzZPIVetfeS-_feshKjoYDsd1XqbWoC3u6tI,1044
|
|
37
|
-
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=
|
|
37
|
+
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=ux5UM32rh_QkjG_KpjY39Sud7KGoMGXJ0dmwTDaJZto,960
|
|
38
38
|
ultralytics/cfg/datasets/lvis.yaml,sha256=ryswcm32vDAZ3-8rWx0YWzUv4kdOEPYg2OhRt-UswpE,29691
|
|
39
39
|
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
|
|
40
40
|
ultralytics/cfg/datasets/package-seg.yaml,sha256=6iPpZOP0xgrTcO8DAZNPGFlJwrYn5bDgx-FpEnv2Ut8,833
|
|
41
41
|
ultralytics/cfg/datasets/signature.yaml,sha256=qTOULZf0J9hS7ZXVd_sPJ8uoNVmbKnqZ6Kgm_EjmXpY,760
|
|
42
42
|
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=tU88xdKAoN2DFXDk2NMHV7y9bC2HGJCF0LvTVvCaCNE,896
|
|
43
43
|
ultralytics/cfg/datasets/xView.yaml,sha256=rjQPRNk--jlYN9wcVTu1KbopgZIkWXhr_s1UkSdcERs,5217
|
|
44
|
+
ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=2oBmesYUBsnatpvEhmIWJ1Ari96few1U9NkV6ZsP0Cs,1329
|
|
45
|
+
ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=N5ozTYay-L_F4ryRDFjX-v6mMZ9onCE1uHDEDWOZVLc,1936
|
|
46
|
+
ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=h5fsUXoxNqSfBMhtHyMDE0DqFZ5-DuRr-6SXhS2dEV4,2015
|
|
47
|
+
ultralytics/cfg/models/11/yolo11-seg.yaml,sha256=EyFXA-ZG8h3_PrFZtCH6xmV5A7QL2ZgfbjWDsdKRwH8,1932
|
|
48
|
+
ultralytics/cfg/models/11/yolo11.yaml,sha256=lM9OuaxVrsI1E7RHYmptY3MA90YiROQT5Z6ktoiFxKU,1918
|
|
44
49
|
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW6tWeAsdN8ynryuU,1934
|
|
45
50
|
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=o0nWoKciT-vypC2eS5qIEWNSac0L6vwLtbK9ucQluG4,1512
|
|
46
51
|
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=rb64WQK-3a_PebUcy6CbpskvlC74H9M3tMIr3R5vHDU,1510
|
|
@@ -85,7 +90,7 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=8B0xNbnG_E-9DCUpap72PWkUgBb1AjuApEn
|
|
|
85
90
|
ultralytics/cfg/trackers/bytetrack.yaml,sha256=8vpTZ2x9mhRXJymoJvs1G8kTXo_HxbSwHup2FQALT3A,721
|
|
86
91
|
ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
|
|
87
92
|
ultralytics/data/annotator.py,sha256=PniOxH2MScWKp539vuufk69uG1JsltDB5OMCUhxn2QY,2489
|
|
88
|
-
ultralytics/data/augment.py,sha256=
|
|
93
|
+
ultralytics/data/augment.py,sha256=YCLrwx1mRGeidggo_7GeINay8KdxACqREHJofZeaTHA,120430
|
|
89
94
|
ultralytics/data/base.py,sha256=zi_1nnJb29gBqY3jrvbMCwh6RPpXhr08DQ2BQ2_dhTo,13835
|
|
90
95
|
ultralytics/data/build.py,sha256=AfMmz0sHIYmwry_90tEJFRk_kz0S3SolScVXqYHiT08,7261
|
|
91
96
|
ultralytics/data/converter.py,sha256=DjJ0atku2aKW0iS1PZPNX8V6WTrZ-CHZT6hopE1HSjI,21385
|
|
@@ -103,7 +108,7 @@ ultralytics/engine/exporter.py,sha256=BFYvv763kbEm5q0-AYIh979vL0ccU4RNvON2w8qtm1
|
|
|
103
108
|
ultralytics/engine/model.py,sha256=RDxuxKMTkO2_zTwZDxd474dhNeRSo-7WvvqO_Ahjz5c,51583
|
|
104
109
|
ultralytics/engine/predictor.py,sha256=MgMWHUJdRcVCaVmOyvdy2Gjk_EyRHv-ar0SSGxQe8F4,17471
|
|
105
110
|
ultralytics/engine/results.py,sha256=8RJlN8J-_9w-mrDZm9wC-DZJTPBS7v1c_r_R173QyRM,75043
|
|
106
|
-
ultralytics/engine/trainer.py,sha256=
|
|
111
|
+
ultralytics/engine/trainer.py,sha256=lBMKJDpu8owE0eeNkAsYszbAROk-WOB3vlhoGB1Vicc,36971
|
|
107
112
|
ultralytics/engine/tuner.py,sha256=gPqDTHH7vRB2O3YyH26m1BjVKbXxuA2XAlPRzTKFZsc,11838
|
|
108
113
|
ultralytics/engine/validator.py,sha256=483Ad87Irk7IBlJNLu2SQAJsb7YriALTX9GIgriCmRg,14650
|
|
109
114
|
ultralytics/hub/__init__.py,sha256=3SKvZ5aRina3h94xMPQIB3D4maF62qFcyIqPPHRHNAc,5644
|
|
@@ -170,12 +175,12 @@ ultralytics/models/yolo/world/train.py,sha256=gaDrAmLJpg9qDtmL5evA5HsV2yb4RTRSfk
|
|
|
170
175
|
ultralytics/models/yolo/world/train_world.py,sha256=IsnCEVt6DcM9lUskCKmIN-M8MM79xLpwTRqRoAHUnZ4,4857
|
|
171
176
|
ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
|
|
172
177
|
ultralytics/nn/autobackend.py,sha256=95FVDv_l5fax5f8gmhYAIIS2e_8u6HYxNd4Saxh7E10,31573
|
|
173
|
-
ultralytics/nn/tasks.py,sha256=
|
|
174
|
-
ultralytics/nn/modules/__init__.py,sha256=
|
|
178
|
+
ultralytics/nn/tasks.py,sha256=mJmuJncAK2iQm-lCFjIrFrtgsT5t3DoOetRRpfLREPk,48342
|
|
179
|
+
ultralytics/nn/modules/__init__.py,sha256=xhW2BennT9U_VaMXVpRu-bdLgp1BXt9L8mkIUBE3idU,2625
|
|
175
180
|
ultralytics/nn/modules/activation.py,sha256=chhn469wnRHEs5BMGNBYXwPYZc_7-urspTT8fnBd-xA,895
|
|
176
|
-
ultralytics/nn/modules/block.py,sha256=
|
|
177
|
-
ultralytics/nn/modules/conv.py,sha256=
|
|
178
|
-
ultralytics/nn/modules/head.py,sha256=
|
|
181
|
+
ultralytics/nn/modules/block.py,sha256=thcIPcnGRRxDDDswywJsfzbewr9XfTrzl_UvSl-bJ3c,41832
|
|
182
|
+
ultralytics/nn/modules/conv.py,sha256=vOeHZ6Z4sc6-9PrDmRGT1hFkxSBbbWkQm2jRbGGjpqQ,12705
|
|
183
|
+
ultralytics/nn/modules/head.py,sha256=x0Y8lTKFqYC4oAN1JTJ-yQ43sIXEIp35dmC14vdtQnk,26627
|
|
179
184
|
ultralytics/nn/modules/transformer.py,sha256=tGiK8NmPfswwW1rbF21r5ILUkkZQ6Nk4s8j16vFBmps,18069
|
|
180
185
|
ultralytics/nn/modules/utils.py,sha256=a88cKl2wz1nMVSEBiajtvaCbDBQIkESWOKTZ_WAJy90,3195
|
|
181
186
|
ultralytics/solutions/__init__.py,sha256=6RDeXWO1QSaMgCq8YrWXaj2xvPw2sJwJL_a0dgjCvz0,648
|
|
@@ -200,19 +205,19 @@ ultralytics/trackers/utils/matching.py,sha256=3Ie1WNNRZ4_q3365F03XD7Nr9juZB_08mw
|
|
|
200
205
|
ultralytics/utils/__init__.py,sha256=Vl0nNyniKdFJYkQfwHnQ3CFS8GwqajZk5iY2m7l1irA,48238
|
|
201
206
|
ultralytics/utils/autobatch.py,sha256=AXboYfNSnTGsYj5FmgGYPQd0crfkeleyms6QXQfZGQ4,4194
|
|
202
207
|
ultralytics/utils/benchmarks.py,sha256=IN6ZqU-1DVHnwRsdgS_vcBhng8DUMRIEjEEgdrl1mdY,25101
|
|
203
|
-
ultralytics/utils/checks.py,sha256=
|
|
208
|
+
ultralytics/utils/checks.py,sha256=PgvIYpYw8gmwifDShoUuSil396FPf9KmZWh4FaWtSWA,28910
|
|
204
209
|
ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
|
|
205
|
-
ultralytics/utils/downloads.py,sha256=
|
|
210
|
+
ultralytics/utils/downloads.py,sha256=97JitihZqvIMS6_TX5rJAG7BI8eYHlu5g8YXlI0RkR4,21998
|
|
206
211
|
ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
|
|
207
212
|
ultralytics/utils/files.py,sha256=zxKNaH6YJvGKrD4DVPk0kkoo44Q7Xi-n_1Fy48TzTxw,8240
|
|
208
213
|
ultralytics/utils/instance.py,sha256=QSms7mPHZ5e8JGuJYLohLWltzI0aBE8dob2rOUK4RtM,16249
|
|
209
|
-
ultralytics/utils/loss.py,sha256=
|
|
214
|
+
ultralytics/utils/loss.py,sha256=SW3FVFFp8Ki_LCT8wIdFbm6KmyPcQn3RmKNcvVAhMQI,34174
|
|
210
215
|
ultralytics/utils/metrics.py,sha256=UgLGudWp57uXDMlMUJy4gsz6cfVjcq7tYmHeto3TqvM,53927
|
|
211
216
|
ultralytics/utils/ops.py,sha256=dsXNdyrYx_p6io6zezig9p84dxS7U-10vceHNVu2IL0,32888
|
|
212
217
|
ultralytics/utils/patches.py,sha256=Oo3DkP7MbXnNGvPfoFSocAkVvaPh9kwMT_9RQUfjVhI,3594
|
|
213
218
|
ultralytics/utils/plotting.py,sha256=lCx9i3USQK2KGsgD-l2cbdbv33c396gIwMFsZ9iOa1w,61629
|
|
214
219
|
ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
|
|
215
|
-
ultralytics/utils/torch_utils.py,sha256=
|
|
220
|
+
ultralytics/utils/torch_utils.py,sha256=eDVUZEam4Tjerx_oZc6F71lXYQoTVRLgSBirDvr_Bi4,29689
|
|
216
221
|
ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
|
|
217
222
|
ultralytics/utils/tuner.py,sha256=AtEtK6pOt9xVTyx864OpNRVxNdAxz5aKHzveiXwkD1A,6250
|
|
218
223
|
ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
|
|
@@ -226,9 +231,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
|
|
|
226
231
|
ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
|
|
227
232
|
ultralytics/utils/callbacks/tensorboard.py,sha256=0kn4IR10no99UCIheojWRujgybmUHSx5fPI6Vsq6l_g,4135
|
|
228
233
|
ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
|
|
229
|
-
ultralytics-8.
|
|
230
|
-
ultralytics-8.
|
|
231
|
-
ultralytics-8.
|
|
232
|
-
ultralytics-8.
|
|
233
|
-
ultralytics-8.
|
|
234
|
-
ultralytics-8.
|
|
234
|
+
ultralytics-8.3.1.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
235
|
+
ultralytics-8.3.1.dist-info/METADATA,sha256=nizZPXWp3kanv5QhQYO2nHQ3cBN0T3oN6wmJuHJwRsc,34574
|
|
236
|
+
ultralytics-8.3.1.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
237
|
+
ultralytics-8.3.1.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
238
|
+
ultralytics-8.3.1.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
239
|
+
ultralytics-8.3.1.dist-info/RECORD,,
|
|
File without changes
|