ultralytics 8.2.0__py3-none-any.whl → 8.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.0"
3
+ __version__ = "8.2.2"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
@@ -66,13 +66,13 @@ CLI_HELP_MSG = f"""
66
66
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
67
67
 
68
68
  1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
69
- yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
69
+ yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
70
70
 
71
71
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
72
72
  yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
73
73
 
74
74
  3. Val a pretrained detection model at batch-size 1 and image size 640:
75
- yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
75
+ yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
76
76
 
77
77
  4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
78
78
  yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
@@ -6,7 +6,7 @@ mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmar
6
6
 
7
7
  # Train settings -------------------------------------------------------------------------------------------------------
8
8
  model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
9
- data: # (str, optional) path to data file, i.e. coco128.yaml
9
+ data: # (str, optional) path to data file, i.e. coco8.yaml
10
10
  epochs: 100 # (int) number of epochs to train for
11
11
  time: # (float, optional) number of hours to train for, overrides epochs if supplied
12
12
  patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
@@ -50,6 +50,7 @@ TensorFlow.js:
50
50
  $ npm start
51
51
  """
52
52
 
53
+ import gc
53
54
  import json
54
55
  import os
55
56
  import shutil
@@ -713,6 +714,7 @@ class Exporter:
713
714
 
714
715
  # Free CUDA memory
715
716
  del self.model
717
+ gc.collect()
716
718
  torch.cuda.empty_cache()
717
719
 
718
720
  # Write file
@@ -3,9 +3,10 @@
3
3
  Train a model on a dataset.
4
4
 
5
5
  Usage:
6
- $ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
6
+ $ yolo mode=train model=yolov8n.pt data=coco8.yaml imgsz=640 epochs=100 batch=16
7
7
  """
8
8
 
9
+ import gc
9
10
  import math
10
11
  import os
11
12
  import subprocess
@@ -437,6 +438,7 @@ class BaseTrainer:
437
438
  self.scheduler.last_epoch = self.epoch # do not move
438
439
  self.stop |= epoch >= self.epochs # stop if exceeded epochs
439
440
  self.run_callbacks("on_fit_epoch_end")
441
+ gc.collect()
440
442
  torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors
441
443
 
442
444
  # Early Stopping
@@ -458,6 +460,7 @@ class BaseTrainer:
458
460
  if self.args.plots:
459
461
  self.plot_metrics()
460
462
  self.run_callbacks("on_train_end")
463
+ gc.collect()
461
464
  torch.cuda.empty_cache()
462
465
  self.run_callbacks("teardown")
463
466
 
@@ -3,7 +3,7 @@
3
3
  Check a model's accuracy on a test or val split of a dataset.
4
4
 
5
5
  Usage:
6
- $ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640
6
+ $ yolo mode=val model=yolov8n.pt data=coco8.yaml imgsz=640
7
7
 
8
8
  Usage - formats:
9
9
  $ yolo mode=val model=yolov8n.pt # PyTorch
@@ -56,8 +56,8 @@ class ClassificationValidator(BaseValidator):
56
56
  def update_metrics(self, preds, batch):
57
57
  """Updates running metrics with model predictions and batch targets."""
58
58
  n5 = min(len(self.names), 5)
59
- self.pred.append(preds.argsort(1, descending=True)[:, :n5])
60
- self.targets.append(batch["cls"])
59
+ self.pred.append(preds.argsort(1, descending=True)[:, :n5].type(torch.int32).cpu())
60
+ self.targets.append(batch["cls"].type(torch.int32).cpu())
61
61
 
62
62
  def finalize_metrics(self, *args, **kwargs):
63
63
  """Finalizes metrics of the model such as confusion_matrix and speed."""
@@ -234,8 +234,11 @@ class AutoBackend(nn.Module):
234
234
  logger = trt.Logger(trt.Logger.INFO)
235
235
  # Read file
236
236
  with open(w, "rb") as f, trt.Runtime(logger) as runtime:
237
- meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
238
- metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
237
+ try:
238
+ meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
239
+ metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
240
+ except UnicodeDecodeError:
241
+ f.seek(0) # engine file may lack embedded Ultralytics metadata
239
242
  model = runtime.deserialize_cuda_engine(f.read()) # read engine
240
243
 
241
244
  # Model context
@@ -61,7 +61,7 @@ HELP_MSG = """
61
61
  model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
62
62
 
63
63
  # Use the model
64
- results = model.train(data="coco128.yaml", epochs=3) # train the model
64
+ results = model.train(data="coco8.yaml", epochs=3) # train the model
65
65
  results = model.val() # evaluate model performance on the validation set
66
66
  results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
67
67
  success = model.export(format='onnx') # export the model to ONNX format
@@ -78,13 +78,13 @@ HELP_MSG = """
78
78
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
79
79
 
80
80
  - Train a detection model for 10 epochs with an initial learning_rate of 0.01
81
- yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
81
+ yolo detect train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
82
82
 
83
83
  - Predict a YouTube video using a pretrained segmentation model at image size 320:
84
84
  yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
85
85
 
86
86
  - Val a pretrained detection model at batch-size 1 and image size 640:
87
- yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
87
+ yolo detect val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
88
88
 
89
89
  - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
90
90
  yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
@@ -402,7 +402,7 @@ def get_github_assets(repo="ultralytics/assets", version="latest", retry=False):
402
402
  return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolov8n.pt', 'yolov8s.pt', ...]
403
403
 
404
404
 
405
- def attempt_download_asset(file, repo="ultralytics/assets", release="v8.1.0", **kwargs):
405
+ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.2.0", **kwargs):
406
406
  """
407
407
  Attempt to download a file from GitHub release assets if it is not found locally. The function checks for the file
408
408
  locally first, then tries to download it from the specified GitHub repository release.
@@ -410,7 +410,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.1.0", **
410
410
  Args:
411
411
  file (str | Path): The filename or file path to be downloaded.
412
412
  repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
413
- release (str, optional): The specific release version to be downloaded. Defaults to 'v8.1.0'.
413
+ release (str, optional): The specific release version to be downloaded. Defaults to 'v8.2.0'.
414
414
  **kwargs (any): Additional keyword arguments for the download process.
415
415
 
416
416
  Returns:
@@ -440,12 +440,9 @@ class Annotator:
440
440
  text_x = self.im.shape[1] - int(self.im.shape[1] * 0.025 + max_text_width)
441
441
  text_y = int(self.im.shape[0] * 0.025)
442
442
 
443
- # Calculate dynamic gap between each count value based on the width of the image
444
- dynamic_gap = max(1, self.im.shape[1] // 100) * tf
445
-
446
443
  for i, count in enumerate(counts):
447
444
  text_x_pos = text_x
448
- text_y_pos = text_y + i * dynamic_gap # Adjust vertical position with dynamic gap
445
+ text_y_pos = text_y + i * (max_text_height + 25 * tf)
449
446
 
450
447
  # Draw the border
451
448
  cv2.rectangle(
@@ -468,8 +465,6 @@ class Annotator:
468
465
  lineType=cv2.LINE_AA,
469
466
  )
470
467
 
471
- text_y_pos += tf * max_text_height
472
-
473
468
  @staticmethod
474
469
  def estimate_pose_angle(a, b, c):
475
470
  """
@@ -1,5 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
+ import gc
3
4
  import math
4
5
  import os
5
6
  import random
@@ -581,6 +582,7 @@ def profile(input, ops, n=10, device=None):
581
582
  except Exception as e:
582
583
  LOGGER.info(e)
583
584
  results.append(None)
585
+ gc.collect() # attempt to free unused memory
584
586
  torch.cuda.empty_cache()
585
587
  return results
586
588
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.0
3
+ Version: 8.2.2
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -80,8 +80,8 @@ Requires-Dist: dvclive >=2.12.0 ; extra == 'logging'
80
80
 
81
81
  <div align="center">
82
82
  <p>
83
- <a href="https://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
84
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png" alt="YOLO Vision banner"></a>
83
+ <a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
84
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
85
85
  </p>
86
86
 
87
87
  [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
@@ -168,7 +168,7 @@ model = YOLO("yolov8n.yaml") # build a new model from scratch
168
168
  model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
169
169
 
170
170
  # Use the model
171
- model.train(data="coco128.yaml", epochs=3) # train the model
171
+ model.train(data="coco8.yaml", epochs=3) # train the model
172
172
  metrics = model.val() # evaluate model performance on the validation set
173
173
  results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
174
174
  path = model.export(format="onnx") # export the model to ONNX format
@@ -205,11 +205,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
205
205
 
206
206
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
207
207
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
208
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
209
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
210
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
211
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
212
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
208
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
209
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
210
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
211
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
212
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
213
213
 
214
214
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
215
215
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -222,11 +222,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
222
222
 
223
223
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
224
224
  | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
225
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
226
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
227
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
228
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
229
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
225
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
226
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
227
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
228
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
229
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
230
230
 
231
231
  - **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
232
232
  - **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
@@ -239,11 +239,11 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
239
239
 
240
240
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
241
241
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
242
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
243
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
244
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
245
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
246
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
242
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
243
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
244
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
245
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
246
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
247
247
 
248
248
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
249
249
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -256,12 +256,12 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
256
256
 
257
257
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
258
258
  | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
259
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
260
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
261
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
262
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
263
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
264
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
259
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
260
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
261
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
262
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
263
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
264
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
265
265
 
266
266
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
267
267
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -274,11 +274,11 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
274
274
 
275
275
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
276
276
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
277
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
278
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
279
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
280
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
281
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
277
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
278
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
279
+ | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
280
+ | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
281
+ | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
282
282
 
283
283
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
284
284
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -291,11 +291,11 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
291
291
 
292
292
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
293
293
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
294
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
295
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
296
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
297
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
298
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
294
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
295
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
296
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
297
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
298
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
299
299
 
300
300
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
301
301
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -1,8 +1,8 @@
1
- ultralytics/__init__.py,sha256=uCXsQMRPXbzHpek0WRp4kOTo9F7yWokJZQfg8SxZFDw,632
1
+ ultralytics/__init__.py,sha256=cL4PVaHbKje8it1MXrZE9VsBIJTpuATEUI5p2I7YuEo,632
2
2
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
3
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
- ultralytics/cfg/__init__.py,sha256=ugSQqHCg31bAE9rwhVrnLMNzKLShr9JxDFcN6kBTbUk,21316
5
- ultralytics/cfg/default.yaml,sha256=2DFD7eZJiKdnUB3eQPIxo8nV6TG4SiZzdaBJnD5Aw2k,8213
4
+ ultralytics/cfg/__init__.py,sha256=4ZnvY2ULMGofFhjaRIzKQlGC5YVkvWkEAYAhnsKC1Po,21312
5
+ ultralytics/cfg/default.yaml,sha256=KoXq5DHQK-Voge9DbkySd2rRpDizG6Oq-A4Byqz5Exc,8211
6
6
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
7
7
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=YDsyFPI6F6-OQXLBM3hOXo3vADYREwZzmMQfJNdpWyM,1193
8
8
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=dxLUliHvJOW4q4vJRu5qIYVvNfjvXWB7GVh_Fhk--dM,1163
@@ -78,13 +78,13 @@ ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yf
78
78
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
79
79
  ultralytics/data/explorer/gui/dash.py,sha256=2oAbNroR2lfS45v53M1sRqZklLXbbj6qXqNxvplulC0,10087
80
80
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
81
- ultralytics/engine/exporter.py,sha256=0B1npPXNYZxgDlupUf6EWP65AKzeRHnwRPf3czTIzuQ,54476
81
+ ultralytics/engine/exporter.py,sha256=KW3PwxgzlNBj44oiYAKT4PVS4uexLZT5H8Qevc2Q8qg,54507
82
82
  ultralytics/engine/model.py,sha256=4zSVSBP8Ex49bJjnOXm7g3Qr_NgbplHPCjdnVfZwfxM,40019
83
83
  ultralytics/engine/predictor.py,sha256=wQRKdWGDTP5A6CS0gTC6U3RPDMhP3QkEzWSPm6eqCkU,17022
84
84
  ultralytics/engine/results.py,sha256=MvrOBrBlRF7kbL-QwysMf9mIDy_lwQBTTYvy1x1FMME,30667
85
- ultralytics/engine/trainer.py,sha256=Vm41LwIkM7SECJEXEToH7NNc9AS1vKrTu1gLkZKdPEo,34933
85
+ ultralytics/engine/trainer.py,sha256=FK2PkQyUThIU5RYr8Qa38JZDRB3iOl85Sdbi4HrlQ5U,34987
86
86
  ultralytics/engine/tuner.py,sha256=iZrgMmXSDpfuDu4bdFRflmAsscys2-8W8qAGxSyOVJE,11844
87
- ultralytics/engine/validator.py,sha256=p0irfLSZa3-0TtcuGheI8kNbzPUqs_UM3TMK4VRUGK4,14645
87
+ ultralytics/engine/validator.py,sha256=Y21Uo8_Zto4qjk_YqQk6k7tyfpq_Qk9cfjeXeyDRxs8,14643
88
88
  ultralytics/hub/__init__.py,sha256=U4j-2QPdwSDlxw6RgFYnnJXOoIzLtwke4TkY2A8q4ws,5068
89
89
  ultralytics/hub/auth.py,sha256=FID58NE6fh7Op_B45QOpWBw1qoBN0ponL16uvyb2dZ8,5399
90
90
  ultralytics/hub/session.py,sha256=Oly3bKjLkW08iOm3QoSr6Yy57aLZ4AmAmF6Pp9Y_q5g,15197
@@ -124,7 +124,7 @@ ultralytics/models/yolo/model.py,sha256=EwjRD9QrLP7qxqqjj-Q1II4RdjTZTyssn_n1iwO6
124
124
  ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
125
125
  ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
126
126
  ultralytics/models/yolo/classify/train.py,sha256=9CRqtLkePo4ZkAzMTxDY4ztrNaWE34qnytYymfCEBzs,6888
127
- ultralytics/models/yolo/classify/val.py,sha256=EP_hjRExXgdI4xojTKvj_YeNdaz_i2CoUzorl55r0OA,4861
127
+ ultralytics/models/yolo/classify/val.py,sha256=MXdtWrBYVpfFuPfFPOTLKa_wBdTIA4dBZguT-EtldZ4,4909
128
128
  ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
129
129
  ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
130
130
  ultralytics/models/yolo/detect/train.py,sha256=8Ulq1SPNLrkOqXj0Yt5zNR1c_Xl_QnOjllCdqBHUMds,6353
@@ -145,7 +145,7 @@ ultralytics/models/yolo/world/__init__.py,sha256=3VTH0q4NOt2EWRom15yCymvmvm0Etp2
145
145
  ultralytics/models/yolo/world/train.py,sha256=acYN2-onL69LrL4av6_hY2r5AY0urC0WViDstn7npfI,3686
146
146
  ultralytics/models/yolo/world/train_world.py,sha256=ICPsYNbuPkq_qf3FHl2YJ-q3g7ik0pI-zhMpLmHa5-4,4805
147
147
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
148
- ultralytics/nn/autobackend.py,sha256=T0vOQf_Wb25MpJavEhWQC0eHXQ_B6izp1I4De7t8iP0,30708
148
+ ultralytics/nn/autobackend.py,sha256=6amaXnbDlvh0kTIbeHV3kIM6X7P1r0T3le1GPxIgkOs,30864
149
149
  ultralytics/nn/tasks.py,sha256=a3FSkIUErlE7qI506ye5vGggqzMxqXWDkIbbLD4AGyI,43623
150
150
  ultralytics/nn/modules/__init__.py,sha256=KzLoyn2ldfReiQL8H8xsMC49Xvtb8Kv9ikE5Q3OBoAs,2326
151
151
  ultralytics/nn/modules/block.py,sha256=smIz3oNTDA7UKrAH5FfSMh08C12-avgWTeIkbgZIv18,25251
@@ -169,12 +169,12 @@ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7J
169
169
  ultralytics/trackers/utils/gmc.py,sha256=vwcPA1n5zjPaBGhCDt8ItN7rq_6Sczsjn4gsXJfRylU,13688
170
170
  ultralytics/trackers/utils/kalman_filter.py,sha256=0oqhk59NKEiwcJ2FXnw6_sT4bIFC6Wu5IY2B-TGxJKU,15168
171
171
  ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuUB6PfVNkb4,5404
172
- ultralytics/utils/__init__.py,sha256=mo1Uo5uMBG1mhurWSwi78DEFU79NbcYuximNVKhjiYI,39292
172
+ ultralytics/utils/__init__.py,sha256=BdmRL2UhbmzmWuhaB1iDUTOyQ3fTwOrB0aUijAgpOUg,39286
173
173
  ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
174
174
  ultralytics/utils/benchmarks.py,sha256=dVAQ7GjZmgjvGL9JglKA3d9HAnvGoyX2TaEmZJjk0HA,18539
175
175
  ultralytics/utils/checks.py,sha256=UDrcHiTMjSHSyUZflTRGuyYRj0uz9-RQ-xfDq_lsXZo,27971
176
176
  ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
177
- ultralytics/utils/downloads.py,sha256=j1S27awWiLTt1qC9l53WqH_BilM13JHLSVmQ2xFqh-4,21496
177
+ ultralytics/utils/downloads.py,sha256=Rx32imHkKyVltEDMiCtCT2N5aA9Cud_0PyIUoTh4ru0,21496
178
178
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
179
179
  ultralytics/utils/files.py,sha256=TVfY0Wi5IsUc4YdsDzC0dAg-jAP5exYvwqB3VmXhDLY,6761
180
180
  ultralytics/utils/instance.py,sha256=fPClvPPtTk8VeXWiRv90DrFk1j1lTUKdYJtpZKUDDtA,15575
@@ -182,9 +182,9 @@ ultralytics/utils/loss.py,sha256=ejXnPEIAzNEoNz2UjW0_fcdeUs9Hy-jPzUrJ3FiIIwE,327
182
182
  ultralytics/utils/metrics.py,sha256=XPD-xP0fchR8KgCuTcihV2-n0EK1cWi3-53BWN_pLuA,53518
183
183
  ultralytics/utils/ops.py,sha256=wZCWx7dm5GJNIJHyZaFJRetGcQ7prdv-anplqq9figQ,33309
184
184
  ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
185
- ultralytics/utils/plotting.py,sha256=JS-u6ZSCT7-7P3ySHxT7DZFujpOu3re78FmKkbBeaiw,47558
185
+ ultralytics/utils/plotting.py,sha256=bmuQIlH8wJRp9ASRmVfiXJrr4iDwEPTS_8WniCzyqVc,47332
186
186
  ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
187
- ultralytics/utils/torch_utils.py,sha256=-lXdJenpUfKM932ipvGfzup8FjNzX6g16hibwW5wPIU,25848
187
+ ultralytics/utils/torch_utils.py,sha256=y1qJniyii0sJFg8dpP-yjYh8AMOoFok9NEZcRi669Jo,25916
188
188
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
189
189
  ultralytics/utils/tuner.py,sha256=JhvBp6haKA6eqpNPpGJzzjjCmPxBx5phk9kHmt_jppw,6171
190
190
  ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
@@ -198,9 +198,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
198
198
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
199
199
  ultralytics/utils/callbacks/tensorboard.py,sha256=Z1veCVcn9THPhdplWuIzwlsW2yF7y-On9IZIk3khM0Y,4135
200
200
  ultralytics/utils/callbacks/wb.py,sha256=woCQVuZzqtM5KnwxIibcfM3sFBYojeMPnv11jrRaIQA,6674
201
- ultralytics-8.2.0.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
202
- ultralytics-8.2.0.dist-info/METADATA,sha256=jikHSAfURO1Erg4fy0DBRArCrEXdb-YtnNckZYTLYYY,40500
203
- ultralytics-8.2.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
204
- ultralytics-8.2.0.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
205
- ultralytics-8.2.0.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
206
- ultralytics-8.2.0.dist-info/RECORD,,
201
+ ultralytics-8.2.2.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
202
+ ultralytics-8.2.2.dist-info/METADATA,sha256=CnxRE4dEVOgykApuwfT8TswCppWNigG1efP-1Ut3Ptc,40448
203
+ ultralytics-8.2.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
204
+ ultralytics-8.2.2.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
205
+ ultralytics-8.2.2.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
206
+ ultralytics-8.2.2.dist-info/RECORD,,