ultralytics 8.1.43__py3-none-any.whl → 8.1.44__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (46) hide show
  1. ultralytics/__init__.py +3 -2
  2. ultralytics/cfg/models/v9/yolov9c-seg.yaml +1 -1
  3. ultralytics/cfg/models/v9/yolov9c.yaml +1 -1
  4. ultralytics/cfg/models/v9/yolov9e-seg.yaml +2 -3
  5. ultralytics/cfg/models/v9/yolov9e.yaml +2 -3
  6. ultralytics/data/__init__.py +3 -8
  7. ultralytics/data/augment.py +2 -2
  8. ultralytics/data/base.py +1 -1
  9. ultralytics/data/build.py +1 -1
  10. ultralytics/data/converter.py +4 -3
  11. ultralytics/data/dataset.py +2 -2
  12. ultralytics/data/explorer/explorer.py +6 -5
  13. ultralytics/data/loaders.py +3 -3
  14. ultralytics/data/utils.py +1 -1
  15. ultralytics/engine/model.py +2 -1
  16. ultralytics/engine/trainer.py +1 -0
  17. ultralytics/hub/auth.py +3 -3
  18. ultralytics/hub/session.py +3 -3
  19. ultralytics/hub/utils.py +6 -6
  20. ultralytics/models/rtdetr/val.py +1 -1
  21. ultralytics/models/sam/modules/tiny_encoder.py +2 -2
  22. ultralytics/models/sam/modules/transformer.py +1 -1
  23. ultralytics/models/sam/predict.py +12 -12
  24. ultralytics/models/yolo/detect/val.py +1 -1
  25. ultralytics/models/yolo/model.py +1 -1
  26. ultralytics/models/yolo/obb/val.py +1 -1
  27. ultralytics/models/yolo/world/train_world.py +2 -2
  28. ultralytics/nn/modules/__init__.py +8 -8
  29. ultralytics/nn/modules/head.py +1 -1
  30. ultralytics/nn/tasks.py +7 -7
  31. ultralytics/solutions/object_counter.py +1 -0
  32. ultralytics/trackers/byte_tracker.py +1 -1
  33. ultralytics/trackers/utils/kalman_filter.py +4 -4
  34. ultralytics/trackers/utils/matching.py +1 -1
  35. ultralytics/utils/__init__.py +53 -41
  36. ultralytics/utils/callbacks/hub.py +1 -4
  37. ultralytics/utils/callbacks/mlflow.py +1 -1
  38. ultralytics/utils/callbacks/tensorboard.py +1 -0
  39. ultralytics/utils/checks.py +12 -12
  40. ultralytics/utils/torch_utils.py +1 -1
  41. {ultralytics-8.1.43.dist-info → ultralytics-8.1.44.dist-info}/METADATA +1 -1
  42. {ultralytics-8.1.43.dist-info → ultralytics-8.1.44.dist-info}/RECORD +46 -46
  43. {ultralytics-8.1.43.dist-info → ultralytics-8.1.44.dist-info}/LICENSE +0 -0
  44. {ultralytics-8.1.43.dist-info → ultralytics-8.1.44.dist-info}/WHEEL +0 -0
  45. {ultralytics-8.1.43.dist-info → ultralytics-8.1.44.dist-info}/entry_points.txt +0 -0
  46. {ultralytics-8.1.43.dist-info → ultralytics-8.1.44.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py CHANGED
@@ -1,15 +1,16 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.1.43"
3
+ __version__ = "8.1.44"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
7
7
  from ultralytics.models.fastsam import FastSAM
8
8
  from ultralytics.models.nas import NAS
9
- from ultralytics.utils import ASSETS, SETTINGS as settings
9
+ from ultralytics.utils import ASSETS, SETTINGS
10
10
  from ultralytics.utils.checks import check_yolo as checks
11
11
  from ultralytics.utils.downloads import download
12
12
 
13
+ settings = SETTINGS
13
14
  __all__ = (
14
15
  "__version__",
15
16
  "ASSETS",
@@ -35,4 +35,4 @@ head:
35
35
  - [[-1, 9], 1, Concat, [1]] # cat head P5
36
36
  - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
37
37
 
38
- - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
38
+ - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
@@ -35,4 +35,4 @@ head:
35
35
  - [[-1, 9], 1, Concat, [1]] # cat head P5
36
36
  - [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
37
37
 
38
- - [[15, 18, 21], 1, Detect, [nc]] # DDetect(P3, P4, P5)
38
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -17,13 +17,13 @@ backbone:
17
17
  - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
18
18
  - [-1, 1, ADown, [1024]] # 8-P5/32
19
19
  - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
20
-
20
+
21
21
  - [1, 1, CBLinear, [[64]]] # 10
22
22
  - [3, 1, CBLinear, [[64, 128]]] # 11
23
23
  - [5, 1, CBLinear, [[64, 128, 256]]] # 12
24
24
  - [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
25
25
  - [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
26
-
26
+
27
27
  - [0, 1, Conv, [64, 3, 2]] # 15-P1/2
28
28
  - [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
29
29
  - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
@@ -58,5 +58,4 @@ head:
58
58
  - [[-1, 29], 1, Concat, [1]] # cat head P5
59
59
  - [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
60
60
 
61
- # segment
62
61
  - [[35, 38, 41], 1, Segment, [nc, 32, 256]] # Segment (P3, P4, P5)
@@ -17,13 +17,13 @@ backbone:
17
17
  - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
18
18
  - [-1, 1, ADown, [1024]] # 8-P5/32
19
19
  - [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
20
-
20
+
21
21
  - [1, 1, CBLinear, [[64]]] # 10
22
22
  - [3, 1, CBLinear, [[64, 128]]] # 11
23
23
  - [5, 1, CBLinear, [[64, 128, 256]]] # 12
24
24
  - [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
25
25
  - [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
26
-
26
+
27
27
  - [0, 1, Conv, [64, 3, 2]] # 15-P1/2
28
28
  - [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
29
29
  - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
@@ -58,5 +58,4 @@ head:
58
58
  - [[-1, 29], 1, Concat, [1]] # cat head P5
59
59
  - [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
60
60
 
61
- # detect
62
61
  - [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -1,19 +1,14 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
3
  from .base import BaseDataset
4
- from .build import (
5
- build_dataloader,
6
- build_yolo_dataset,
7
- build_grounding,
8
- load_inference_source,
9
- )
4
+ from .build import build_dataloader, build_grounding, build_yolo_dataset, load_inference_source
10
5
  from .dataset import (
11
6
  ClassificationDataset,
7
+ GroundingDataset,
12
8
  SemanticDataset,
9
+ YOLOConcatDataset,
13
10
  YOLODataset,
14
11
  YOLOMultiModalDataset,
15
- GroundingDataset,
16
- YOLOConcatDataset,
17
12
  )
18
13
 
19
14
  __all__ = (
@@ -20,7 +20,7 @@ from .utils import polygons2masks, polygons2masks_overlap
20
20
 
21
21
  DEFAULT_MEAN = (0.0, 0.0, 0.0)
22
22
  DEFAULT_STD = (1.0, 1.0, 1.0)
23
- DEFAULT_CROP_FTACTION = 1.0
23
+ DEFAULT_CROP_FRACTION = 1.0
24
24
 
25
25
 
26
26
  # TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
@@ -1134,7 +1134,7 @@ def classify_transforms(
1134
1134
  mean=DEFAULT_MEAN,
1135
1135
  std=DEFAULT_STD,
1136
1136
  interpolation=Image.BILINEAR,
1137
- crop_fraction: float = DEFAULT_CROP_FTACTION,
1137
+ crop_fraction: float = DEFAULT_CROP_FRACTION,
1138
1138
  ):
1139
1139
  """
1140
1140
  Classification transforms for evaluation/inference. Inspired by timm/data/transforms_factory.py.
ultralytics/data/base.py CHANGED
@@ -15,7 +15,7 @@ import psutil
15
15
  from torch.utils.data import Dataset
16
16
 
17
17
  from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
18
- from .utils import HELP_URL, FORMATS_HELP_MSG, IMG_FORMATS
18
+ from .utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS
19
19
 
20
20
 
21
21
  class BaseDataset(Dataset):
ultralytics/data/build.py CHANGED
@@ -22,7 +22,7 @@ from ultralytics.data.loaders import (
22
22
  from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
23
23
  from ultralytics.utils import RANK, colorstr
24
24
  from ultralytics.utils.checks import check_file
25
- from .dataset import YOLODataset, YOLOMultiModalDataset, GroundingDataset
25
+ from .dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
26
26
  from .utils import PIN_MEMORY
27
27
 
28
28
 
@@ -519,11 +519,12 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
519
519
  ├─ ..
520
520
  └─ NNN.txt
521
521
  """
522
+ from tqdm import tqdm
523
+
524
+ from ultralytics import SAM
522
525
  from ultralytics.data import YOLODataset
523
- from ultralytics.utils.ops import xywh2xyxy
524
526
  from ultralytics.utils import LOGGER
525
- from ultralytics import SAM
526
- from tqdm import tqdm
527
+ from ultralytics.utils.ops import xywh2xyxy
527
528
 
528
529
  # NOTE: add placeholder to pass class index check
529
530
  dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
@@ -30,10 +30,10 @@ from .utils import (
30
30
  LOGGER,
31
31
  get_hash,
32
32
  img2label_paths,
33
- verify_image,
34
- verify_image_label,
35
33
  load_dataset_cache_file,
36
34
  save_dataset_cache_file,
35
+ verify_image,
36
+ verify_image_label,
37
37
  )
38
38
 
39
39
  # Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8
@@ -15,7 +15,7 @@ from ultralytics.data.augment import Format
15
15
  from ultralytics.data.dataset import YOLODataset
16
16
  from ultralytics.data.utils import check_det_dataset
17
17
  from ultralytics.models.yolo.model import YOLO
18
- from ultralytics.utils import LOGGER, IterableSimpleNamespace, checks, USER_CONFIG_DIR
18
+ from ultralytics.utils import LOGGER, USER_CONFIG_DIR, IterableSimpleNamespace, checks
19
19
  from .utils import get_sim_index_schema, get_table_schema, plot_query_result, prompt_sql_query, sanitize_batch
20
20
 
21
21
 
@@ -203,7 +203,8 @@ class Explorer:
203
203
  table = self.table.to_arrow() # noqa NOTE: Don't comment this. This line is used by DuckDB
204
204
  if not query.startswith("SELECT") and not query.startswith("WHERE"):
205
205
  raise ValueError(
206
- f"Query must start with SELECT or WHERE. You can either pass the entire query or just the WHERE clause. found {query}"
206
+ f"Query must start with SELECT or WHERE. You can either pass the entire query or just the WHERE "
207
+ f"clause. found {query}"
207
208
  )
208
209
  if query.startswith("WHERE"):
209
210
  query = f"SELECT * FROM 'table' {query}"
@@ -318,13 +319,13 @@ class Explorer:
318
319
 
319
320
  Args:
320
321
  max_dist (float): maximum L2 distance between the embeddings to consider. Defaults to 0.2.
321
- top_k (float): Percentage of the closest data points to consider when counting. Used to apply limit when running
322
+ top_k (float): Percentage of the closest data points to consider when counting. Used to apply limit.
322
323
  vector search. Defaults: None.
323
324
  force (bool): Whether to overwrite the existing similarity index or not. Defaults to True.
324
325
 
325
326
  Returns:
326
- (pandas.DataFrame): A dataframe containing the similarity index. Each row corresponds to an image, and columns
327
- include indices of similar images and their respective distances.
327
+ (pandas.DataFrame): A dataframe containing the similarity index. Each row corresponds to an image,
328
+ and columns include indices of similar images and their respective distances.
328
329
 
329
330
  Example:
330
331
  ```python
@@ -15,8 +15,8 @@ import requests
15
15
  import torch
16
16
  from PIL import Image
17
17
 
18
- from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS, FORMATS_HELP_MSG
19
- from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops
18
+ from ultralytics.data.utils import FORMATS_HELP_MSG, IMG_FORMATS, VID_FORMATS
19
+ from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, ops
20
20
  from ultralytics.utils.checks import check_requirements
21
21
 
22
22
 
@@ -87,7 +87,7 @@ class LoadStreams:
87
87
  # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
88
88
  s = get_best_youtube_url(s)
89
89
  s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
90
- if s == 0 and (is_colab() or is_kaggle()):
90
+ if s == 0 and (IS_COLAB or IS_KAGGLE):
91
91
  raise NotImplementedError(
92
92
  "'source=0' webcam not supported in Colab and Kaggle notebooks. "
93
93
  "Try running 'source=0' in a local environment."
ultralytics/data/utils.py CHANGED
@@ -27,9 +27,9 @@ from ultralytics.utils import (
27
27
  clean_url,
28
28
  colorstr,
29
29
  emojis,
30
+ is_dir_writeable,
30
31
  yaml_load,
31
32
  yaml_save,
32
- is_dir_writeable,
33
33
  )
34
34
  from ultralytics.utils.checks import check_file, check_font, is_ascii
35
35
  from ultralytics.utils.downloads import download, safe_download, unzip_file
@@ -321,9 +321,10 @@ class Model(nn.Module):
321
321
  AssertionError: If the model is not a PyTorch model.
322
322
  """
323
323
  self._check_is_pytorch_model()
324
- from ultralytics import __version__
325
324
  from datetime import datetime
326
325
 
326
+ from ultralytics import __version__
327
+
327
328
  updates = {
328
329
  "date": datetime.now().isoformat(),
329
330
  "version": __version__,
@@ -464,6 +464,7 @@ class BaseTrainer:
464
464
  def save_model(self):
465
465
  """Save model training checkpoints with additional metadata."""
466
466
  import io
467
+
467
468
  import pandas as pd # scope for faster 'import ultralytics'
468
469
 
469
470
  # Serialize ckpt to a byte buffer once (faster than repeated torch.save() calls)
ultralytics/hub/auth.py CHANGED
@@ -3,7 +3,7 @@
3
3
  import requests
4
4
 
5
5
  from ultralytics.hub.utils import HUB_API_ROOT, HUB_WEB_ROOT, PREFIX, request_with_credentials
6
- from ultralytics.utils import LOGGER, SETTINGS, emojis, is_colab
6
+ from ultralytics.utils import IS_COLAB, LOGGER, SETTINGS, emojis
7
7
 
8
8
  API_KEY_URL = f"{HUB_WEB_ROOT}/settings?tab=api+keys"
9
9
 
@@ -50,7 +50,7 @@ class Auth:
50
50
  # Attempt to authenticate with the provided API key
51
51
  success = self.authenticate()
52
52
  # If the API key is not provided and the environment is a Google Colab notebook
53
- elif is_colab():
53
+ elif IS_COLAB:
54
54
  # Attempt to authenticate using browser cookies
55
55
  success = self.auth_with_cookies()
56
56
  else:
@@ -109,7 +109,7 @@ class Auth:
109
109
  Returns:
110
110
  (bool): True if authentication is successful, False otherwise.
111
111
  """
112
- if not is_colab():
112
+ if not IS_COLAB:
113
113
  return False # Currently only works with Colab
114
114
  try:
115
115
  authn = request_with_credentials(f"{HUB_API_ROOT}/v1/auth/auto")
@@ -7,11 +7,11 @@ from pathlib import Path
7
7
 
8
8
  import requests
9
9
 
10
- from ultralytics.hub.utils import HUB_WEB_ROOT, HELP_MSG, PREFIX, TQDM
11
- from ultralytics.utils import LOGGER, SETTINGS, __version__, checks, emojis, is_colab
10
+ from ultralytics.hub.utils import HELP_MSG, HUB_WEB_ROOT, PREFIX, TQDM
11
+ from ultralytics.utils import IS_COLAB, LOGGER, SETTINGS, __version__, checks, emojis
12
12
  from ultralytics.utils.errors import HUBModelError
13
13
 
14
- AGENT_NAME = f"python-{__version__}-colab" if is_colab() else f"python-{__version__}-local"
14
+ AGENT_NAME = f"python-{__version__}-colab" if IS_COLAB else f"python-{__version__}-local"
15
15
 
16
16
 
17
17
  class HUBTrainingSession:
ultralytics/hub/utils.py CHANGED
@@ -12,6 +12,9 @@ import requests
12
12
  from ultralytics.utils import (
13
13
  ARGV,
14
14
  ENVIRONMENT,
15
+ IS_COLAB,
16
+ IS_GIT_DIR,
17
+ IS_PIP_PACKAGE,
15
18
  LOGGER,
16
19
  ONLINE,
17
20
  RANK,
@@ -22,9 +25,6 @@ from ultralytics.utils import (
22
25
  __version__,
23
26
  colorstr,
24
27
  get_git_origin_url,
25
- is_colab,
26
- is_git_dir,
27
- is_pip_package,
28
28
  )
29
29
  from ultralytics.utils.downloads import GITHUB_ASSETS_NAMES
30
30
 
@@ -48,7 +48,7 @@ def request_with_credentials(url: str) -> any:
48
48
  Raises:
49
49
  OSError: If the function is not run in a Google Colab environment.
50
50
  """
51
- if not is_colab():
51
+ if not IS_COLAB:
52
52
  raise OSError("request_with_credentials() must run in a Colab environment")
53
53
  from google.colab import output # noqa
54
54
  from IPython import display # noqa
@@ -189,7 +189,7 @@ class Events:
189
189
  self.t = 0.0 # rate limit timer (seconds)
190
190
  self.metadata = {
191
191
  "cli": Path(ARGV[0]).name == "yolo",
192
- "install": "git" if is_git_dir() else "pip" if is_pip_package() else "other",
192
+ "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
193
193
  "python": ".".join(platform.python_version_tuple()[:2]), # i.e. 3.10
194
194
  "version": __version__,
195
195
  "env": ENVIRONMENT,
@@ -201,7 +201,7 @@ class Events:
201
201
  and RANK in {-1, 0}
202
202
  and not TESTS_RUNNING
203
203
  and ONLINE
204
- and (is_pip_package() or get_git_origin_url() == "https://github.com/ultralytics/ultralytics.git")
204
+ and (IS_PIP_PACKAGE or get_git_origin_url() == "https://github.com/ultralytics/ultralytics.git")
205
205
  )
206
206
 
207
207
  def __call__(self, cfg):
@@ -125,7 +125,7 @@ class RTDETRValidator(DetectionValidator):
125
125
  bbox = ops.xywh2xyxy(bbox) # target boxes
126
126
  bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
127
127
  bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
128
- return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
128
+ return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
129
129
 
130
130
  def _prepare_pred(self, pred, pbatch):
131
131
  """Prepares and returns a batch with transformed bounding boxes and class labels."""
@@ -584,9 +584,9 @@ class TinyViT(nn.Module):
584
584
  img_size (int, optional): The input image size. Defaults to 224.
585
585
  in_chans (int, optional): Number of input channels. Defaults to 3.
586
586
  num_classes (int, optional): Number of classification classes. Defaults to 1000.
587
- embed_dims (List[int], optional): List of embedding dimensions for each layer. Defaults to [96, 192, 384, 768].
587
+ embed_dims (List[int], optional): List of embedding dimensions per layer. Defaults to [96, 192, 384, 768].
588
588
  depths (List[int], optional): List of depths for each layer. Defaults to [2, 2, 6, 2].
589
- num_heads (List[int], optional): List of number of attention heads for each layer. Defaults to [3, 6, 12, 24].
589
+ num_heads (List[int], optional): List of number of attention heads per layer. Defaults to [3, 6, 12, 24].
590
590
  window_sizes (List[int], optional): List of window sizes for each layer. Defaults to [7, 7, 14, 7].
591
591
  mlp_ratio (float, optional): Ratio of MLP hidden dimension to embedding dimension. Defaults to 4.
592
592
  drop_rate (float, optional): Dropout rate. Defaults to 0.
@@ -222,7 +222,7 @@ class Attention(nn.Module):
222
222
  downsample_rate (int, optional): The factor by which the internal dimensions are downsampled. Defaults to 1.
223
223
 
224
224
  Raises:
225
- AssertionError: If 'num_heads' does not evenly divide the internal dimension (embedding_dim / downsample_rate).
225
+ AssertionError: If 'num_heads' does not evenly divide the internal dim (embedding_dim / downsample_rate).
226
226
  """
227
227
  super().__init__()
228
228
  self.embedding_dim = embedding_dim
@@ -127,10 +127,10 @@ class Predictor(BasePredictor):
127
127
  Args:
128
128
  im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
129
129
  bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
130
- points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixel coordinates.
131
- labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 for foreground and 0 for background.
132
- masks (np.ndarray, optional): Low-resolution masks from previous predictions. Shape should be (N, H, W). For SAM, H=W=256.
133
- multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
130
+ points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
131
+ labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
132
+ masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.
133
+ multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts.
134
134
 
135
135
  Returns:
136
136
  (tuple): Contains the following three elements.
@@ -156,10 +156,10 @@ class Predictor(BasePredictor):
156
156
  Args:
157
157
  im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
158
158
  bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
159
- points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixel coordinates.
160
- labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 for foreground and 0 for background.
161
- masks (np.ndarray, optional): Low-resolution masks from previous predictions. Shape should be (N, H, W). For SAM, H=W=256.
162
- multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
159
+ points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
160
+ labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
161
+ masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.
162
+ multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts.
163
163
 
164
164
  Returns:
165
165
  (tuple): Contains the following three elements.
@@ -230,7 +230,7 @@ class Predictor(BasePredictor):
230
230
  im (torch.Tensor): Input tensor representing the preprocessed image with dimensions (N, C, H, W).
231
231
  crop_n_layers (int): Specifies the number of layers for additional mask predictions on image crops.
232
232
  Each layer produces 2**i_layer number of image crops.
233
- crop_overlap_ratio (float): Determines the extent of overlap between crops. Scaled down in subsequent layers.
233
+ crop_overlap_ratio (float): Determines the overlap between crops. Scaled down in subsequent layers.
234
234
  crop_downscale_factor (int): Scaling factor for the number of sampled points-per-side in each layer.
235
235
  point_grids (list[np.ndarray], optional): Custom grids for point sampling normalized to [0,1].
236
236
  Used in the nth crop layer.
@@ -240,7 +240,7 @@ class Predictor(BasePredictor):
240
240
  conf_thres (float): Confidence threshold [0,1] for filtering based on the model's mask quality prediction.
241
241
  stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on mask stability.
242
242
  stability_score_offset (float): Offset value for calculating stability score.
243
- crop_nms_thresh (float): IoU cutoff for Non-Maximum Suppression (NMS) to remove duplicate masks between crops.
243
+ crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.
244
244
 
245
245
  Returns:
246
246
  (tuple): A tuple containing segmented masks, confidence scores, and bounding boxes.
@@ -351,8 +351,8 @@ class Predictor(BasePredictor):
351
351
  """
352
352
  Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
353
353
 
354
- The method scales masks and boxes to the original image size and applies a threshold to the mask predictions. The
355
- SAM model uses advanced architecture and promptable segmentation tasks to achieve real-time performance.
354
+ The method scales masks and boxes to the original image size and applies a threshold to the mask predictions.
355
+ The SAM model uses advanced architecture and promptable segmentation tasks to achieve real-time performance.
356
356
 
357
357
  Args:
358
358
  preds (tuple): The output from SAM model inference, containing masks, scores, and optional bounding boxes.
@@ -106,7 +106,7 @@ class DetectionValidator(BaseValidator):
106
106
  if len(cls):
107
107
  bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
108
108
  ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
109
- return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
109
+ return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
110
110
 
111
111
  def _prepare_pred(self, pred, pbatch):
112
112
  """Prepares a batch of images and annotations for validation."""
@@ -5,7 +5,7 @@ from pathlib import Path
5
5
  from ultralytics.engine.model import Model
6
6
  from ultralytics.models import yolo
7
7
  from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
8
- from ultralytics.utils import yaml_load, ROOT
8
+ from ultralytics.utils import ROOT, yaml_load
9
9
 
10
10
 
11
11
  class YOLO(Model):
@@ -78,7 +78,7 @@ class OBBValidator(DetectionValidator):
78
78
  if len(cls):
79
79
  bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
80
80
  ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
81
- return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
81
+ return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
82
82
 
83
83
  def _prepare_pred(self, pred, pbatch):
84
84
  """Prepares and returns a batch for OBB validation with scaled and padded bounding boxes."""
@@ -1,8 +1,8 @@
1
- from ultralytics.data import build_yolo_dataset, build_grounding, YOLOConcatDataset
1
+ from ultralytics.data import YOLOConcatDataset, build_grounding, build_yolo_dataset
2
2
  from ultralytics.data.utils import check_det_dataset
3
3
  from ultralytics.models.yolo.world import WorldTrainer
4
- from ultralytics.utils.torch_utils import de_parallel
5
4
  from ultralytics.utils import DEFAULT_CFG
5
+ from ultralytics.utils.torch_utils import de_parallel
6
6
 
7
7
 
8
8
  class WorldTrainerFromScratch(WorldTrainer):
@@ -24,27 +24,27 @@ from .block import (
24
24
  C3TR,
25
25
  DFL,
26
26
  SPP,
27
+ SPPELAN,
27
28
  SPPF,
29
+ ADown,
30
+ BNContrastiveHead,
28
31
  Bottleneck,
29
32
  BottleneckCSP,
30
33
  C2f,
31
34
  C2fAttn,
32
- ImagePoolingAttn,
33
35
  C3Ghost,
34
36
  C3x,
37
+ CBFuse,
38
+ CBLinear,
39
+ ContrastiveHead,
35
40
  GhostBottleneck,
36
41
  HGBlock,
37
42
  HGStem,
43
+ ImagePoolingAttn,
38
44
  Proto,
39
45
  RepC3,
40
- ResNetLayer,
41
- ContrastiveHead,
42
- BNContrastiveHead,
43
46
  RepNCSPELAN4,
44
- ADown,
45
- SPPELAN,
46
- CBFuse,
47
- CBLinear,
47
+ ResNetLayer,
48
48
  Silence,
49
49
  )
50
50
  from .conv import (
@@ -8,7 +8,7 @@ import torch.nn as nn
8
8
  from torch.nn.init import constant_, xavier_uniform_
9
9
 
10
10
  from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
11
- from .block import DFL, Proto, ContrastiveHead, BNContrastiveHead
11
+ from .block import DFL, BNContrastiveHead, ContrastiveHead, Proto
12
12
  from .conv import Conv
13
13
  from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
14
14
  from .utils import bias_init_with_prob, linear_init
ultralytics/nn/tasks.py CHANGED
@@ -15,14 +15,17 @@ from ultralytics.nn.modules import (
15
15
  C3TR,
16
16
  OBB,
17
17
  SPP,
18
+ SPPELAN,
18
19
  SPPF,
20
+ ADown,
19
21
  Bottleneck,
20
22
  BottleneckCSP,
21
23
  C2f,
22
24
  C2fAttn,
23
- ImagePoolingAttn,
24
25
  C3Ghost,
25
26
  C3x,
27
+ CBFuse,
28
+ CBLinear,
26
29
  Classify,
27
30
  Concat,
28
31
  Conv,
@@ -36,19 +39,16 @@ from ultralytics.nn.modules import (
36
39
  GhostConv,
37
40
  HGBlock,
38
41
  HGStem,
42
+ ImagePoolingAttn,
39
43
  Pose,
40
44
  RepC3,
41
45
  RepConv,
46
+ RepNCSPELAN4,
42
47
  ResNetLayer,
43
48
  RTDETRDecoder,
44
49
  Segment,
45
- WorldDetect,
46
- RepNCSPELAN4,
47
- ADown,
48
- SPPELAN,
49
- CBFuse,
50
- CBLinear,
51
50
  Silence,
51
+ WorldDetect,
52
52
  )
53
53
  from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
54
54
  from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
@@ -1,6 +1,7 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
3
  from collections import defaultdict
4
+
4
5
  import cv2
5
6
 
6
7
  from ultralytics.utils.checks import check_imshow, check_requirements
@@ -5,8 +5,8 @@ import numpy as np
5
5
  from .basetrack import BaseTrack, TrackState
6
6
  from .utils import matching
7
7
  from .utils.kalman_filter import KalmanFilterXYAH
8
- from ..utils.ops import xywh2ltwh
9
8
  from ..utils import LOGGER
9
+ from ..utils.ops import xywh2ltwh
10
10
 
11
11
 
12
12
  class STrack(BaseTrack):
@@ -39,8 +39,8 @@ class KalmanFilterXYAH:
39
39
  and height h.
40
40
 
41
41
  Returns:
42
- (tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
43
- the new track. Unobserved velocities are initialized to 0 mean.
42
+ (tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional)
43
+ of the new track. Unobserved velocities are initialized to 0 mean.
44
44
  """
45
45
  mean_pos = measurement
46
46
  mean_vel = np.zeros_like(mean_pos)
@@ -235,8 +235,8 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
235
235
  measurement (ndarray): Bounding box coordinates (x, y, w, h) with center position (x, y), width, and height.
236
236
 
237
237
  Returns:
238
- (tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
239
- the new track. Unobserved velocities are initialized to 0 mean.
238
+ (tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional)
239
+ of the new track. Unobserved velocities are initialized to 0 mean.
240
240
  """
241
241
  mean_pos = measurement
242
242
  mean_vel = np.zeros_like(mean_pos)
@@ -4,7 +4,7 @@ import numpy as np
4
4
  import scipy
5
5
  from scipy.spatial.distance import cdist
6
6
 
7
- from ultralytics.utils.metrics import bbox_ioa, batch_probiou
7
+ from ultralytics.utils.metrics import batch_probiou, bbox_ioa
8
8
 
9
9
  try:
10
10
  import lap # for linear_assignment
@@ -460,12 +460,23 @@ def is_docker() -> bool:
460
460
  Returns:
461
461
  (bool): True if the script is running inside a Docker container, False otherwise.
462
462
  """
463
- file = Path("/proc/self/cgroup")
464
- if file.exists():
465
- with open(file) as f:
463
+ with contextlib.suppress(Exception):
464
+ with open("/proc/self/cgroup") as f:
466
465
  return "docker" in f.read()
467
- else:
468
- return False
466
+ return False
467
+
468
+
469
+ def is_raspberrypi() -> bool:
470
+ """
471
+ Determines if the Python environment is running on a Raspberry Pi by checking the device model information.
472
+
473
+ Returns:
474
+ (bool): True if running on a Raspberry Pi, False otherwise.
475
+ """
476
+ with contextlib.suppress(Exception):
477
+ with open("/proc/device-tree/model") as f:
478
+ return "Raspberry Pi" in f.read()
479
+ return False
469
480
 
470
481
 
471
482
  def is_online() -> bool:
@@ -475,23 +486,15 @@ def is_online() -> bool:
475
486
  Returns:
476
487
  (bool): True if connection is successful, False otherwise.
477
488
  """
478
- import socket
489
+ with contextlib.suppress(Exception):
490
+ assert str(os.getenv("YOLO_OFFLINE", "")).lower() != "true" # check if ENV var YOLO_OFFLINE="True"
491
+ import socket
479
492
 
480
- for host in "1.1.1.1", "8.8.8.8", "223.5.5.5": # Cloudflare, Google, AliDNS:
481
- try:
482
- test_connection = socket.create_connection(address=(host, 80), timeout=2)
483
- except (socket.timeout, socket.gaierror, OSError):
484
- continue
485
- else:
486
- # If the connection was successful, close it to avoid a ResourceWarning
487
- test_connection.close()
488
- return True
493
+ socket.create_connection(address=("1.1.1.1", 80), timeout=1.0).close() # check Cloudflare DNS
494
+ return True
489
495
  return False
490
496
 
491
497
 
492
- ONLINE = is_online()
493
-
494
-
495
498
  def is_pip_package(filepath: str = __name__) -> bool:
496
499
  """
497
500
  Determines if the file at the given filepath is part of a pip package.
@@ -544,17 +547,6 @@ def is_github_action_running() -> bool:
544
547
  return "GITHUB_ACTIONS" in os.environ and "GITHUB_WORKFLOW" in os.environ and "RUNNER_OS" in os.environ
545
548
 
546
549
 
547
- def is_git_dir():
548
- """
549
- Determines whether the current file is part of a git repository. If the current file is not part of a git
550
- repository, returns None.
551
-
552
- Returns:
553
- (bool): True if current file is part of a git repository.
554
- """
555
- return get_git_dir() is not None
556
-
557
-
558
550
  def get_git_dir():
559
551
  """
560
552
  Determines whether the current file is part of a git repository and if so, returns the repository root directory. If
@@ -568,6 +560,17 @@ def get_git_dir():
568
560
  return d
569
561
 
570
562
 
563
+ def is_git_dir():
564
+ """
565
+ Determines whether the current file is part of a git repository. If the current file is not part of a git
566
+ repository, returns None.
567
+
568
+ Returns:
569
+ (bool): True if current file is part of a git repository.
570
+ """
571
+ return GIT_DIR is not None
572
+
573
+
571
574
  def get_git_origin_url():
572
575
  """
573
576
  Retrieves the origin URL of a git repository.
@@ -575,7 +578,7 @@ def get_git_origin_url():
575
578
  Returns:
576
579
  (str | None): The origin URL of the git repository or None if not git directory.
577
580
  """
578
- if is_git_dir():
581
+ if IS_GIT_DIR:
579
582
  with contextlib.suppress(subprocess.CalledProcessError):
580
583
  origin = subprocess.check_output(["git", "config", "--get", "remote.origin.url"])
581
584
  return origin.decode().strip()
@@ -588,7 +591,7 @@ def get_git_branch():
588
591
  Returns:
589
592
  (str | None): The current git branch name or None if not a git directory.
590
593
  """
591
- if is_git_dir():
594
+ if IS_GIT_DIR:
592
595
  with contextlib.suppress(subprocess.CalledProcessError):
593
596
  origin = subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"])
594
597
  return origin.decode().strip()
@@ -654,6 +657,16 @@ def get_user_config_dir(sub_dir="Ultralytics"):
654
657
  return path
655
658
 
656
659
 
660
+ # Define constants (required below)
661
+ ONLINE = is_online()
662
+ IS_COLAB = is_colab()
663
+ IS_DOCKER = is_docker()
664
+ IS_JUPYTER = is_jupyter()
665
+ IS_KAGGLE = is_kaggle()
666
+ IS_PIP_PACKAGE = is_pip_package()
667
+ IS_RASPBERRYPI = is_raspberrypi()
668
+ GIT_DIR = get_git_dir()
669
+ IS_GIT_DIR = is_git_dir()
657
670
  USER_CONFIG_DIR = Path(os.getenv("YOLO_CONFIG_DIR") or get_user_config_dir()) # Ultralytics settings dir
658
671
  SETTINGS_YAML = USER_CONFIG_DIR / "settings.yaml"
659
672
 
@@ -880,7 +893,7 @@ def set_sentry():
880
893
  event["tags"] = {
881
894
  "sys_argv": ARGV[0],
882
895
  "sys_argv_name": Path(ARGV[0]).name,
883
- "install": "git" if is_git_dir() else "pip" if is_pip_package() else "other",
896
+ "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
884
897
  "os": ENVIRONMENT,
885
898
  }
886
899
  return event
@@ -891,8 +904,8 @@ def set_sentry():
891
904
  and Path(ARGV[0]).name == "yolo"
892
905
  and not TESTS_RUNNING
893
906
  and ONLINE
894
- and is_pip_package()
895
- and not is_git_dir()
907
+ and IS_PIP_PACKAGE
908
+ and not IS_GIT_DIR
896
909
  ):
897
910
  # If sentry_sdk package is not installed then return and do not use Sentry
898
911
  try:
@@ -931,9 +944,8 @@ class SettingsManager(dict):
931
944
  from ultralytics.utils.checks import check_version
932
945
  from ultralytics.utils.torch_utils import torch_distributed_zero_first
933
946
 
934
- git_dir = get_git_dir()
935
- root = git_dir or Path()
936
- datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve()
947
+ root = GIT_DIR or Path()
948
+ datasets_root = (root.parent if GIT_DIR and is_dir_writeable(root.parent) else root).resolve()
937
949
 
938
950
  self.file = Path(file)
939
951
  self.version = version
@@ -1037,13 +1049,13 @@ WEIGHTS_DIR = Path(SETTINGS["weights_dir"]) # global weights directory
1037
1049
  RUNS_DIR = Path(SETTINGS["runs_dir"]) # global runs directory
1038
1050
  ENVIRONMENT = (
1039
1051
  "Colab"
1040
- if is_colab()
1052
+ if IS_COLAB
1041
1053
  else "Kaggle"
1042
- if is_kaggle()
1054
+ if IS_KAGGLE
1043
1055
  else "Jupyter"
1044
- if is_jupyter()
1056
+ if IS_JUPYTER
1045
1057
  else "Docker"
1046
- if is_docker()
1058
+ if IS_DOCKER
1047
1059
  else platform.system()
1048
1060
  )
1049
1061
  TESTS_RUNNING = is_pytest_running() or is_github_action_running()
@@ -12,10 +12,7 @@ def on_pretrain_routine_end(trainer):
12
12
  session = getattr(trainer, "hub_session", None)
13
13
  if session:
14
14
  # Start timer for upload rate limit
15
- session.timers = {
16
- "metrics": time(),
17
- "ckpt": time(),
18
- } # start timer on session.rate_limit
15
+ session.timers = {"metrics": time(), "ckpt": time()} # start timer on session.rate_limit
19
16
 
20
17
 
21
18
  def on_fit_epoch_end(trainer):
@@ -58,7 +58,7 @@ def on_pretrain_routine_end(trainer):
58
58
  MLFLOW_TRACKING_URI: The URI for MLflow tracking. If not set, defaults to 'runs/mlflow'.
59
59
  MLFLOW_EXPERIMENT_NAME: The name of the MLflow experiment. If not set, defaults to trainer.args.project.
60
60
  MLFLOW_RUN: The name of the MLflow run. If not set, defaults to trainer.args.name.
61
- MLFLOW_KEEP_RUN_ACTIVE: Boolean indicating whether to keep the MLflow run active after the end of the training phase.
61
+ MLFLOW_KEEP_RUN_ACTIVE: Boolean indicating whether to keep the MLflow run active after the end of training.
62
62
  """
63
63
  global mlflow
64
64
 
@@ -15,6 +15,7 @@ try:
15
15
  # Imports below only required if TensorBoard enabled
16
16
  import warnings
17
17
  from copy import deepcopy
18
+
18
19
  from ultralytics.utils.torch_utils import de_parallel, torch
19
20
 
20
21
  except (ImportError, AssertionError, TypeError, AttributeError):
@@ -22,10 +22,15 @@ import torch
22
22
  from ultralytics.utils import (
23
23
  ASSETS,
24
24
  AUTOINSTALL,
25
+ IS_COLAB,
26
+ IS_DOCKER,
27
+ IS_JUPYTER,
28
+ IS_KAGGLE,
29
+ IS_PIP_PACKAGE,
25
30
  LINUX,
26
31
  LOGGER,
27
- PYTHON_VERSION,
28
32
  ONLINE,
33
+ PYTHON_VERSION,
29
34
  ROOT,
30
35
  TORCHVISION_VERSION,
31
36
  USER_CONFIG_DIR,
@@ -37,12 +42,7 @@ from ultralytics.utils import (
37
42
  colorstr,
38
43
  downloads,
39
44
  emojis,
40
- is_colab,
41
- is_docker,
42
45
  is_github_action_running,
43
- is_jupyter,
44
- is_kaggle,
45
- is_pip_package,
46
46
  url2file,
47
47
  )
48
48
 
@@ -277,7 +277,7 @@ def check_pip_update_available():
277
277
  Returns:
278
278
  (bool): True if an update is available, False otherwise.
279
279
  """
280
- if ONLINE and is_pip_package():
280
+ if ONLINE and IS_PIP_PACKAGE:
281
281
  with contextlib.suppress(Exception):
282
282
  from ultralytics import __version__
283
283
 
@@ -528,7 +528,7 @@ def check_imshow(warn=False):
528
528
  """Check if environment supports image displays."""
529
529
  try:
530
530
  if LINUX:
531
- assert "DISPLAY" in os.environ and not is_docker() and not is_colab() and not is_kaggle()
531
+ assert "DISPLAY" in os.environ and not IS_DOCKER and not IS_COLAB and not IS_KAGGLE
532
532
  cv2.imshow("test", np.zeros((8, 8, 3), dtype=np.uint8)) # show a small 8-pixel image
533
533
  cv2.waitKey(1)
534
534
  cv2.destroyAllWindows()
@@ -546,10 +546,10 @@ def check_yolo(verbose=True, device=""):
546
546
 
547
547
  from ultralytics.utils.torch_utils import select_device
548
548
 
549
- if is_jupyter():
549
+ if IS_JUPYTER:
550
550
  if check_requirements("wandb", install=False):
551
551
  os.system("pip uninstall -y wandb") # uninstall wandb: unwanted account creation prompt with infinite hang
552
- if is_colab():
552
+ if IS_COLAB:
553
553
  shutil.rmtree("sample_data", ignore_errors=True) # remove colab /sample_data directory
554
554
 
555
555
  if verbose:
@@ -574,7 +574,7 @@ def collect_system_info():
574
574
 
575
575
  import psutil
576
576
 
577
- from ultralytics.utils import ENVIRONMENT, is_git_dir
577
+ from ultralytics.utils import ENVIRONMENT, IS_GIT_DIR
578
578
  from ultralytics.utils.torch_utils import get_cpu_info
579
579
 
580
580
  ram_info = psutil.virtual_memory().total / (1024**3) # Convert bytes to GB
@@ -583,7 +583,7 @@ def collect_system_info():
583
583
  f"\n{'OS':<20}{platform.platform()}\n"
584
584
  f"{'Environment':<20}{ENVIRONMENT}\n"
585
585
  f"{'Python':<20}{PYTHON_VERSION}\n"
586
- f"{'Install':<20}{'git' if is_git_dir() else 'pip' if is_pip_package() else 'other'}\n"
586
+ f"{'Install':<20}{'git' if IS_GIT_DIR else 'pip' if IS_PIP_PACKAGE else 'other'}\n"
587
587
  f"{'RAM':<20}{ram_info:.2f} GB\n"
588
588
  f"{'CPU':<20}{get_cpu_info()}\n"
589
589
  f"{'CUDA':<20}{torch.version.cuda if torch and torch.cuda.is_available() else None}\n"
@@ -21,8 +21,8 @@ from ultralytics.utils import (
21
21
  LOGGER,
22
22
  PYTHON_VERSION,
23
23
  TORCHVISION_VERSION,
24
- colorstr,
25
24
  __version__,
25
+ colorstr,
26
26
  )
27
27
  from ultralytics.utils.checks import check_version
28
28
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.1.43
3
+ Version: 8.1.44
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -1,4 +1,4 @@
1
- ultralytics/__init__.py,sha256=FBbnfpAzM9BX-E4VHPNi41TwzSDIIB8hLVnS2DWnkHk,625
1
+ ultralytics/__init__.py,sha256=LHzrvkkUDbXdGni1kVX7sq9Jkvf0hV_0MvcA_yn0Ijc,633
2
2
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
3
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
4
  ultralytics/cfg/__init__.py,sha256=ugSQqHCg31bAE9rwhVrnLMNzKLShr9JxDFcN6kBTbUk,21316
@@ -56,39 +56,39 @@ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=fN85m_aDMCH4oTJ3z-ft98Pdh6dk0pZ
56
56
  ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=RXTp_tgix8dbnVHprapxiK2aax7M2qIfmuR-aAve4sU,2019
57
57
  ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=fvGVUxvlBOjN6LUiiaiGsnjK5ZKjwYGWxgkJ49hGmMg,1956
58
58
  ultralytics/cfg/models/v8/yolov8.yaml,sha256=VjSe_V2Gn9ZpJrwTtz0A6_6IMp6UuugNiR7aEShR5rc,1889
59
- ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=Q0FnO3-ff-JepwP9gY51dhXiN8CMiyJLWjeEIWNhiuQ,1270
60
- ultralytics/cfg/models/v9/yolov9c.yaml,sha256=04C3zUJK56X727s3mKDtZCw4b4hM6Tcq8Qq_2w0pIBg,1257
61
- ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=J137yzM0OWtF0CV39IG7RaIWrlT44MT7KwfdnPKkBcU,2230
62
- ultralytics/cfg/models/v9/yolov9e.yaml,sha256=glFAVjWU1iz440LjRTXLfoeq9O4mPfT0U6U67HN-KYU,2213
59
+ ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=N4gKdqTF-oHAOAQnaB03sNbf39mzPmlWAxdqxz73OsU,1271
60
+ ultralytics/cfg/models/v9/yolov9c.yaml,sha256=YIEWXY_jN9oieF0AyiNMXsawW4Qb8OoSvaLSX0uZCc4,1256
61
+ ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=ewM-vKHlv3FyF8AVsTHki-nop56DpRDeozq5v5xtuzw,2212
62
+ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=oK9Qj3kdEiug43J2k4YGL-fkxvGwgixB87W3FjBQwfo,2196
63
63
  ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
64
64
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
65
- ultralytics/data/__init__.py,sha256=bGJ8oEBheIj8tQ2q3d7JqiVJUT4Ft9lXkDXOvBUj6Q0,637
65
+ ultralytics/data/__init__.py,sha256=VGe-ATG7j35F4A4r8Jmzffjlhve4JAJPgRa5ahKTU18,616
66
66
  ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
67
- ultralytics/data/augment.py,sha256=o2hmQS0Y8lustycENbA2lTJcokTDYPM_HIs_4yfbW5M,57476
68
- ultralytics/data/base.py,sha256=8DwF1_H0GIdTbF6iSm-763TK3ez3El9aZVix0h-X-c0,13470
69
- ultralytics/data/build.py,sha256=CgUq3g3s5Kc6UXDjCkx-rfmK2biRqhGHZWY21tnJOk0,7265
70
- ultralytics/data/converter.py,sha256=Y0V4xuCqge55gXbXHhWZij52zx27BFAKCspyxrg_MFs,17527
71
- ultralytics/data/dataset.py,sha256=ttwKxpk6La4t4WoiXEojzYHiRJVCOLUdDB6uND3IsYc,22199
72
- ultralytics/data/loaders.py,sha256=2GOYHELK9nh7RlIcqUqg3kuRgWUvXT43mI2P_XOtxCA,23146
67
+ ultralytics/data/augment.py,sha256=M9ixb4z2N0acBH8euunz6pgHg14gwznxRHO6HZhbghs,57476
68
+ ultralytics/data/base.py,sha256=lHdOJerjGI7Myh3sxXNtaATUAfUj4jcWlCvZVjYnxn8,13470
69
+ ultralytics/data/build.py,sha256=Bq6hh3GgmvBx9LSMYUEj0t6COu3Xmc45zmF9QZbTkpM,7265
70
+ ultralytics/data/converter.py,sha256=NLDiV67RshbKQnMJUiQQF11boVzEqgi2Hz39nKVAI4U,17528
71
+ ultralytics/data/dataset.py,sha256=XdhYb8IYgM9uQbS3Iy3gSnGmKe5qJeX7y7IaDkkFOXI,22199
72
+ ultralytics/data/loaders.py,sha256=UxNLLV6rwUDog9MSOkHpDn52TO-X2g2P4a5ZwvB7Ii8,23142
73
73
  ultralytics/data/split_dota.py,sha256=PQdkwwlFtLKhWIrbToshSekXGdgbrbYMN6hM4ujfa7o,10010
74
- ultralytics/data/utils.py,sha256=7zaL2N9Hp3ki1EI31NuthMVJS9uEcakDjoN-2t7Amw4,30869
74
+ ultralytics/data/utils.py,sha256=2wqf4mi2r78yH1oJS29ZILHCuBtm1nzpagRLoo0sEDw,30869
75
75
  ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
76
- ultralytics/data/explorer/explorer.py,sha256=71_XkMopa03Lxakc3JdUaeZWQ6HMbLvvPnQoZL1HjV0,18718
76
+ ultralytics/data/explorer/explorer.py,sha256=oSXQ0NPSfwvlcVS7emZ9jB4QcWRLAqeZg-49_hB0prg,18710
77
77
  ultralytics/data/explorer/utils.py,sha256=EvvukQiQUTBrsZznmMnyEX2EqTuwZo_Geyc8yfi8NIA,7085
78
78
  ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
79
79
  ultralytics/data/explorer/gui/dash.py,sha256=2oAbNroR2lfS45v53M1sRqZklLXbbj6qXqNxvplulC0,10087
80
80
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
81
81
  ultralytics/engine/exporter.py,sha256=NeJEldYo37wMlhMQGQxn8qRhYN1ZYOmuEnbFwCk_LNM,53835
82
- ultralytics/engine/model.py,sha256=tCU9z_cQhdJTwUUce3a7rSeCWkUgJO4RfHNT29pB41E,39829
82
+ ultralytics/engine/model.py,sha256=QkNRSxYkmr3wM9iFgsfszmenHMdu2KTuT_yrSL-BA7o,39830
83
83
  ultralytics/engine/predictor.py,sha256=wQRKdWGDTP5A6CS0gTC6U3RPDMhP3QkEzWSPm6eqCkU,17022
84
84
  ultralytics/engine/results.py,sha256=MvrOBrBlRF7kbL-QwysMf9mIDy_lwQBTTYvy1x1FMME,30667
85
- ultralytics/engine/trainer.py,sha256=CBcFxiNo4opu6RSY_-zYwZiI79TY-l2BZsO5jtuTokw,34932
85
+ ultralytics/engine/trainer.py,sha256=Vm41LwIkM7SECJEXEToH7NNc9AS1vKrTu1gLkZKdPEo,34933
86
86
  ultralytics/engine/tuner.py,sha256=zttHrQkvXuUVTB7jmM4Z85GgIsQ2hjpW9YrMccrQ4wo,11829
87
87
  ultralytics/engine/validator.py,sha256=p0irfLSZa3-0TtcuGheI8kNbzPUqs_UM3TMK4VRUGK4,14645
88
88
  ultralytics/hub/__init__.py,sha256=U4j-2QPdwSDlxw6RgFYnnJXOoIzLtwke4TkY2A8q4ws,5068
89
- ultralytics/hub/auth.py,sha256=hc97pJ01OfI8oQ7uw3ubKbiVCDSGxSGJHoo9W6hrrNw,5403
90
- ultralytics/hub/session.py,sha256=kFwufDIY7TeV79DdEQBKYrU5883WxgCrpJoTr1S5QuE,14649
91
- ultralytics/hub/utils.py,sha256=U0Bd-cwc1DvHwmM1CWB7Fr4MwfPi9SkF1tPUnHyy3qc,9729
89
+ ultralytics/hub/auth.py,sha256=FID58NE6fh7Op_B45QOpWBw1qoBN0ponL16uvyb2dZ8,5399
90
+ ultralytics/hub/session.py,sha256=FCO7Svn7Ffqxzbx4D3rvCU7D2c9HVMKnEVvIHne6G74,14647
91
+ ultralytics/hub/utils.py,sha256=RpFDFp9biUK70Mswzz2o3uEu4xwQxRaStPS19U2gu0g,9721
92
92
  ultralytics/models/__init__.py,sha256=xrzn2dcLBG6Ujxll8LtlTIblPar2gjNhAwjAQg7u8sk,197
93
93
  ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
94
94
  ultralytics/models/fastsam/model.py,sha256=yOf-byvFxafXYTEoc9j1dYnE2XFNErRYSnroyGxkW7I,1054
@@ -104,23 +104,23 @@ ultralytics/models/rtdetr/__init__.py,sha256=AZga1C3qlGTtgpAupDW4doijq5aZlQeF8e5
104
104
  ultralytics/models/rtdetr/model.py,sha256=2VkppF1_581XmQ0UI7lo8fX7MqhAJPXVMr2jyMHXtbk,1988
105
105
  ultralytics/models/rtdetr/predict.py,sha256=-NFBAv_4VIUcXycO7wA8IH6EHXrVyOir-5PZkd46qyo,3584
106
106
  ultralytics/models/rtdetr/train.py,sha256=HdSC2x22Rks6qKNI7EGa6nWMZPhi_7VdQrbcayxk0ec,3684
107
- ultralytics/models/rtdetr/val.py,sha256=6bNhHl_6JbpjuW4nlaojjDgmhbUNJy0J5Qz8FXZI9Gg,5555
107
+ ultralytics/models/rtdetr/val.py,sha256=4QQArdaGEY8rJsJuvyJ032f8GGVGdV2jURHK2EdMxyk,5566
108
108
  ultralytics/models/sam/__init__.py,sha256=9A1iyfPN_ncqq3TMExe_-uPoARjEX3psoHEI1xMG2VE,144
109
109
  ultralytics/models/sam/amg.py,sha256=MsKSRS2SieZK_n-m2ICk1QpcYogl5mofcsVa-4FXYvo,7935
110
110
  ultralytics/models/sam/build.py,sha256=jJvloRbPwHvSnVWwM3pEdzpM5MdIcEHbRaqQk_S9lG8,4943
111
111
  ultralytics/models/sam/model.py,sha256=H87wexHJ84wbtfKVrZe6I-VuLlhI8h6XeNpxe0D-Sgc,4706
112
- ultralytics/models/sam/predict.py,sha256=iUvpv7v2bDnWWqqJU0_Up_1bdU2054PV0h72-PmMitk,23751
112
+ ultralytics/models/sam/predict.py,sha256=moCqdExdpftqSefmpRK7yNNXFuRb5Z_Zbb0U-JkSH8o,23613
113
113
  ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
114
114
  ultralytics/models/sam/modules/decoders.py,sha256=7NWnBNupxGYvH0S1N0R6NBHxdVFRUrrnL9EqAw09J4E,7816
115
115
  ultralytics/models/sam/modules/encoders.py,sha256=pRNZHzt2J2xD_D0Btu8pk4DcItfr6dRr9rcRfxoZZhU,24746
116
116
  ultralytics/models/sam/modules/sam.py,sha256=zC4l4kcrIQD_ekczjl2l6dgaABqqjROZxQ-FDb-itt0,2783
117
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=kxEh4nZn5lwRYTSuauEQNg7uzibuKiLDzzwx5MD5WMY,29135
118
- ultralytics/models/sam/modules/transformer.py,sha256=-wboK4gNKOJMP8J8ACN2JoK-xze40NZG696HsxdYObs,11170
117
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=ypXIMBXpsNUBrskbdJjo2pErI_mtNJlHMdmo9Erqgp0,29125
118
+ ultralytics/models/sam/modules/transformer.py,sha256=VINZMb4xkx4IHAbJdhCq2XLDvaFBMup7RGC16DLS7OY,11164
119
119
  ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
120
120
  ultralytics/models/utils/loss.py,sha256=IMzcnDwwkgO9F6GDKVxrDdVdhUX_7d9uY4tX-AgtT0g,15134
121
121
  ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4GM4,13244
122
122
  ultralytics/models/yolo/__init__.py,sha256=e1cZr9pbSbf3Ya2OvkTjGRwD_E2YZpe610xskBM8gEk,247
123
- ultralytics/models/yolo/model.py,sha256=PJwBkdDkgyPuQBuIcAx5uDb78JwYg56nFeYMyzBY_nY,3991
123
+ ultralytics/models/yolo/model.py,sha256=EwjRD9QrLP7qxqqjj-Q1II4RdjTZTyssn_n1iwO68VE,3991
124
124
  ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
125
125
  ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
126
126
  ultralytics/models/yolo/classify/train.py,sha256=9CRqtLkePo4ZkAzMTxDY4ztrNaWE34qnytYymfCEBzs,6888
@@ -128,11 +128,11 @@ ultralytics/models/yolo/classify/val.py,sha256=EP_hjRExXgdI4xojTKvj_YeNdaz_i2CoU
128
128
  ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
129
129
  ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
130
130
  ultralytics/models/yolo/detect/train.py,sha256=8Ulq1SPNLrkOqXj0Yt5zNR1c_Xl_QnOjllCdqBHUMds,6353
131
- ultralytics/models/yolo/detect/val.py,sha256=KznQpsllz3_4YAv2kSub2y75q5XQXz0UHay3zta2P30,14416
131
+ ultralytics/models/yolo/detect/val.py,sha256=2XFFH66HGN7ujLhtfIw9929Oq3y8rMdsN6bUNN-bcaM,14427
132
132
  ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
133
133
  ultralytics/models/yolo/obb/predict.py,sha256=prfDzhwuVHKF6CRwnFVBA-YFI5q7U7NEQwITGHmB2Ow,2037
134
134
  ultralytics/models/yolo/obb/train.py,sha256=tWpFtcasMwWq1A_9VdbEg5pIVHwuWwmeLOyj-S4_1sY,1473
135
- ultralytics/models/yolo/obb/val.py,sha256=Wml-loYT5Uy4Mx6UmxNOrmURT13DIOBk_rFSs55NTNg,8500
135
+ ultralytics/models/yolo/obb/val.py,sha256=tHoUDh-Pv95GEnQ73yzCAAxnTMNayv4yZg33hmGuNww,8511
136
136
  ultralytics/models/yolo/pose/__init__.py,sha256=OGvxN3LqJot2h8GX1csJ1KErsHnDKsm33Ce6ZBU9Lr4,199
137
137
  ultralytics/models/yolo/pose/predict.py,sha256=illk4qyZvybc_XMo9TKT54FIkizx91MYviE5c5OwBTQ,2404
138
138
  ultralytics/models/yolo/pose/train.py,sha256=ki8bkT8WfIFjTKf1ofeRDqeIqmk6A8a7AFog7nM-otM,2926
@@ -143,36 +143,36 @@ ultralytics/models/yolo/segment/train.py,sha256=aOQpDIptZfKSl9mFa6B-3W3QccMRlmBI
143
143
  ultralytics/models/yolo/segment/val.py,sha256=njiF6RWddS-HOWxVvlk5PXRw6UOgEt_HEOZVPF7rruQ,11745
144
144
  ultralytics/models/yolo/world/__init__.py,sha256=3VTH0q4NOt2EWRom15yCymvmvm0Etp2bmETJUhsVTBI,103
145
145
  ultralytics/models/yolo/world/train.py,sha256=acYN2-onL69LrL4av6_hY2r5AY0urC0WViDstn7npfI,3686
146
- ultralytics/models/yolo/world/train_world.py,sha256=5IXNJU9otTH0e5_Lo0Fyu-rmVgkPWuSDOrqAL9hFu3s,4805
146
+ ultralytics/models/yolo/world/train_world.py,sha256=ICPsYNbuPkq_qf3FHl2YJ-q3g7ik0pI-zhMpLmHa5-4,4805
147
147
  ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
148
148
  ultralytics/nn/autobackend.py,sha256=QtPDtQfUNnTGiW6yJnWGNWR_aqkYDFIevyx22uC2bdI,28716
149
- ultralytics/nn/tasks.py,sha256=UKPA4T-QX50qUTemlKO2FB_vR9U19E6K5KVAriFs-xY,43623
150
- ultralytics/nn/modules/__init__.py,sha256=Ga3MDpwX6DeI7VSH8joti5uleP4mgkQGolbe8RLZ2T8,2326
149
+ ultralytics/nn/tasks.py,sha256=a3FSkIUErlE7qI506ye5vGggqzMxqXWDkIbbLD4AGyI,43623
150
+ ultralytics/nn/modules/__init__.py,sha256=KzLoyn2ldfReiQL8H8xsMC49Xvtb8Kv9ikE5Q3OBoAs,2326
151
151
  ultralytics/nn/modules/block.py,sha256=smIz3oNTDA7UKrAH5FfSMh08C12-avgWTeIkbgZIv18,25251
152
152
  ultralytics/nn/modules/conv.py,sha256=Ywe87IhuaS22mR2JJ9xjnW8Sb-m7WTjxuqIxV_Dv8lI,12722
153
- ultralytics/nn/modules/head.py,sha256=djW6YGN70mFYGDkMFV1xj1WZJtA9yKsNxmtnPVSxukY,22337
153
+ ultralytics/nn/modules/head.py,sha256=rld0BUC9nzYmdZtyj4CSPwupyJezmKUywRJT4OatcPw,22337
154
154
  ultralytics/nn/modules/transformer.py,sha256=AxD9uURpCl-EqvXe3DiG6JW-pBzB16G-AahLdZ7yayo,17909
155
155
  ultralytics/nn/modules/utils.py,sha256=779QnnKp9v8jv251ESduTXJ0ol8HkIOLbGQWwEGQjhU,3196
156
156
  ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
157
157
  ultralytics/solutions/ai_gym.py,sha256=IZHpvmNyEQT_aqMTrA5sIjCsl3_5Zl2WG31HxGT6KV4,5696
158
158
  ultralytics/solutions/distance_calculation.py,sha256=N1QB5uDG_6sp8jD5uSwp_NTPmyP4UCqJm9G2lNrgpr8,6334
159
159
  ultralytics/solutions/heatmap.py,sha256=IeUkGRYbO8I7Sca0I2kvxh8dILy1gehmbIYolFF-ppc,12276
160
- ultralytics/solutions/object_counter.py,sha256=zi-p3yi3tIH6ydlFF6xuSS_Tw42b7Kc54aGzpXb6iH4,11557
160
+ ultralytics/solutions/object_counter.py,sha256=46eP0iF3WjnpIZc7Umrf3dhyNE30NaN9-T79QSwBJ2I,11558
161
161
  ultralytics/solutions/queue_management.py,sha256=TBQ2dIKYtymBjhdw0Enxa22KHyH3IdXf2C-1Se21siA,6684
162
162
  ultralytics/solutions/speed_estimation.py,sha256=lvaU-F8f3V4KFVKFaNS7isIdYtMSFjh_zF9gl0Mals8,6714
163
163
  ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
164
164
  ultralytics/trackers/basetrack.py,sha256=-vBDD-Q9lsxfTMK2w9kuqWGrYbRMmaBCCEbGGyR53gE,3675
165
165
  ultralytics/trackers/bot_sort.py,sha256=39AvhYVbT7izF3--rX_e6Lhgb5czTA23gw6AgnNcRds,8601
166
- ultralytics/trackers/byte_tracker.py,sha256=OH1AfBZ7TXzjRPyvrsaWnbqI1CqWxdErMrGazKJ5GtM,18871
166
+ ultralytics/trackers/byte_tracker.py,sha256=5uEgklqHgOEG_FNiDcoZdyJRtcGmA13EQMidrB9nOCk,18871
167
167
  ultralytics/trackers/track.py,sha256=Brp7G1le2kLs-8PTOzDllpUBW6ps_Wta2qx2GUPI7TU,3462
168
168
  ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
169
169
  ultralytics/trackers/utils/gmc.py,sha256=vwcPA1n5zjPaBGhCDt8ItN7rq_6Sczsjn4gsXJfRylU,13688
170
- ultralytics/trackers/utils/kalman_filter.py,sha256=JN1sAcfJZy8fTZxc8w3jUJnGQDKtgAL__p4nTR6RM2I,15168
171
- ultralytics/trackers/utils/matching.py,sha256=c_pthBfu9sWeMVYe-dSecdWcQxUey-mQT2yMVsFH3VQ,5404
172
- ultralytics/utils/__init__.py,sha256=xezg5RbMpI85AOtwMt1QoHEHCmygHa1FHpytN6TxdKU,38013
170
+ ultralytics/trackers/utils/kalman_filter.py,sha256=0oqhk59NKEiwcJ2FXnw6_sT4bIFC6Wu5IY2B-TGxJKU,15168
171
+ ultralytics/trackers/utils/matching.py,sha256=UxhSGa5pN6WoYwYSBAkkt-O7xMxUR47VuUB6PfVNkb4,5404
172
+ ultralytics/utils/__init__.py,sha256=ggkaKah5WaPsfC8zD4dPk9syQgpOymClZW9U-8QCAUo,38440
173
173
  ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
174
174
  ultralytics/utils/benchmarks.py,sha256=BNG0sO34_mu3fIEfMn8j-QzQ9Da6K1KujO-CxDkvsOM,18325
175
- ultralytics/utils/checks.py,sha256=R902JZALsOonXxqk4z_6so6YEV7vymTdr0ki7zKFDoY,27987
175
+ ultralytics/utils/checks.py,sha256=UDrcHiTMjSHSyUZflTRGuyYRj0uz9-RQ-xfDq_lsXZo,27971
176
176
  ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
177
177
  ultralytics/utils/downloads.py,sha256=j1S27awWiLTt1qC9l53WqH_BilM13JHLSVmQ2xFqh-4,21496
178
178
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
@@ -184,7 +184,7 @@ ultralytics/utils/ops.py,sha256=wZCWx7dm5GJNIJHyZaFJRetGcQ7prdv-anplqq9figQ,3330
184
184
  ultralytics/utils/patches.py,sha256=SgMqeMsq2K6JoBJP1NplXMl9C6rK0JeJUChjBrJOneo,2750
185
185
  ultralytics/utils/plotting.py,sha256=hifiLd0mz2EM9Z4qPHkWbzBaIvUgI1w0ynMdD5-eYoY,47441
186
186
  ultralytics/utils/tal.py,sha256=xuIyryUjaaYHkHPG9GvBwh1xxN2Hq4y3hXOtuERehwY,16017
187
- ultralytics/utils/torch_utils.py,sha256=LAUu146TOA1x4dW6y3KIJE_5HnAMrJVI9vk6K86z4eM,25848
187
+ ultralytics/utils/torch_utils.py,sha256=-lXdJenpUfKM932ipvGfzup8FjNzX6g16hibwW5wPIU,25848
188
188
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
189
189
  ultralytics/utils/tuner.py,sha256=JhvBp6haKA6eqpNPpGJzzjjCmPxBx5phk9kHmt_jppw,6171
190
190
  ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
@@ -192,15 +192,15 @@ ultralytics/utils/callbacks/base.py,sha256=sOe3JvyBFmRwVZ8_Q03u7JwTeOOm9CI4s9-UE
192
192
  ultralytics/utils/callbacks/clearml.py,sha256=M9Fi1OfdWqcm8uVkauuX3zJIYhNh6Tp7Jo4CfA0u0nw,5923
193
193
  ultralytics/utils/callbacks/comet.py,sha256=QR3-9f0L_W7nZWWg_OEN7t8La2JotapSS-CnNYVjCdk,13744
194
194
  ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
195
- ultralytics/utils/callbacks/hub.py,sha256=2xebyUL92j3OZwMmL80kdvHrMizqaaqXBe5oSXJRKdA,3621
196
- ultralytics/utils/callbacks/mlflow.py,sha256=Wr5Kju9GFdwGJXJKvkPJDCZH6KiPF9EUxKPk08DBttY,5333
195
+ ultralytics/utils/callbacks/hub.py,sha256=IPNnCRlAEFA-Dt18JWTuHhaQpcAy3XGgxBD4JhO0jSs,3586
196
+ ultralytics/utils/callbacks/mlflow.py,sha256=AVuYE4UKA5Eeg8sffbkCOe4tGgtCvBlGG4D9PMLm1Z0,5323
197
197
  ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyzC5q7p4ipQ,3756
198
198
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
199
- ultralytics/utils/callbacks/tensorboard.py,sha256=hRmWjbqdA4RNaLuSZznuDcpOBW-_-_Ga0u-B8UU-7ZI,4134
199
+ ultralytics/utils/callbacks/tensorboard.py,sha256=Z1veCVcn9THPhdplWuIzwlsW2yF7y-On9IZIk3khM0Y,4135
200
200
  ultralytics/utils/callbacks/wb.py,sha256=woCQVuZzqtM5KnwxIibcfM3sFBYojeMPnv11jrRaIQA,6674
201
- ultralytics-8.1.43.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
202
- ultralytics-8.1.43.dist-info/METADATA,sha256=9iXx3cJblunu8OJbUhO90LxptFAalkG7GjfSCbEuWPk,40416
203
- ultralytics-8.1.43.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
204
- ultralytics-8.1.43.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
205
- ultralytics-8.1.43.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
206
- ultralytics-8.1.43.dist-info/RECORD,,
201
+ ultralytics-8.1.44.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
202
+ ultralytics-8.1.44.dist-info/METADATA,sha256=cZq8GuE5cyVMC-j_iWEJ8o6jjPMxARSrliwhi9mQSFo,40416
203
+ ultralytics-8.1.44.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
204
+ ultralytics-8.1.44.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
205
+ ultralytics-8.1.44.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
206
+ ultralytics-8.1.44.dist-info/RECORD,,