ultralytics 8.1.1__py3-none-any.whl → 8.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (105) hide show
  1. ultralytics/__init__.py +1 -1
  2. ultralytics/cfg/__init__.py +1 -1
  3. ultralytics/cfg/datasets/Argoverse.yaml +5 -7
  4. ultralytics/cfg/datasets/DOTAv1.5.yaml +4 -4
  5. ultralytics/cfg/datasets/DOTAv1.yaml +4 -4
  6. ultralytics/cfg/datasets/GlobalWheat2020.yaml +2 -4
  7. ultralytics/cfg/datasets/ImageNet.yaml +4 -6
  8. ultralytics/cfg/datasets/Objects365.yaml +3 -5
  9. ultralytics/cfg/datasets/SKU-110K.yaml +4 -6
  10. ultralytics/cfg/datasets/VOC.yaml +0 -2
  11. ultralytics/cfg/datasets/VisDrone.yaml +4 -6
  12. ultralytics/cfg/datasets/coco-pose.yaml +6 -7
  13. ultralytics/cfg/datasets/coco.yaml +5 -7
  14. ultralytics/cfg/datasets/coco128-seg.yaml +4 -6
  15. ultralytics/cfg/datasets/coco128.yaml +4 -6
  16. ultralytics/cfg/datasets/coco8-pose.yaml +5 -6
  17. ultralytics/cfg/datasets/coco8-seg.yaml +4 -6
  18. ultralytics/cfg/datasets/coco8.yaml +4 -6
  19. ultralytics/cfg/datasets/dota8.yaml +3 -3
  20. ultralytics/cfg/datasets/open-images-v7.yaml +4 -6
  21. ultralytics/cfg/datasets/tiger-pose.yaml +4 -5
  22. ultralytics/cfg/datasets/xView.yaml +3 -5
  23. ultralytics/cfg/default.yaml +103 -103
  24. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +27 -27
  25. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +23 -23
  26. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +23 -23
  27. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +27 -27
  28. ultralytics/cfg/models/v3/yolov3-spp.yaml +32 -34
  29. ultralytics/cfg/models/v3/yolov3-tiny.yaml +24 -26
  30. ultralytics/cfg/models/v3/yolov3.yaml +32 -34
  31. ultralytics/cfg/models/v5/yolov5-p6.yaml +41 -43
  32. ultralytics/cfg/models/v5/yolov5.yaml +26 -28
  33. ultralytics/cfg/models/v6/yolov6.yaml +17 -17
  34. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +25 -0
  35. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +25 -0
  36. ultralytics/cfg/models/v8/yolov8-cls.yaml +7 -7
  37. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +26 -26
  38. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +27 -27
  39. ultralytics/cfg/models/v8/yolov8-ghost.yaml +23 -23
  40. ultralytics/cfg/models/v8/yolov8-obb.yaml +23 -23
  41. ultralytics/cfg/models/v8/yolov8-p2.yaml +23 -23
  42. ultralytics/cfg/models/v8/yolov8-p6.yaml +24 -24
  43. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +25 -25
  44. ultralytics/cfg/models/v8/yolov8-pose.yaml +19 -19
  45. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +23 -23
  46. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +24 -24
  47. ultralytics/cfg/models/v8/yolov8-seg.yaml +18 -18
  48. ultralytics/cfg/models/v8/yolov8.yaml +23 -23
  49. ultralytics/cfg/trackers/botsort.yaml +7 -7
  50. ultralytics/cfg/trackers/bytetrack.yaml +6 -6
  51. ultralytics/data/annotator.py +1 -1
  52. ultralytics/data/augment.py +1 -2
  53. ultralytics/data/base.py +0 -1
  54. ultralytics/data/build.py +1 -2
  55. ultralytics/data/dataset.py +0 -1
  56. ultralytics/data/explorer/explorer.py +11 -12
  57. ultralytics/data/explorer/utils.py +3 -3
  58. ultralytics/data/split_dota.py +15 -23
  59. ultralytics/engine/model.py +12 -11
  60. ultralytics/engine/predictor.py +1 -1
  61. ultralytics/engine/trainer.py +1 -4
  62. ultralytics/hub/__init__.py +5 -3
  63. ultralytics/hub/auth.py +1 -2
  64. ultralytics/hub/session.py +14 -6
  65. ultralytics/hub/utils.py +4 -0
  66. ultralytics/models/fastsam/model.py +0 -1
  67. ultralytics/models/nas/model.py +0 -1
  68. ultralytics/models/rtdetr/train.py +0 -1
  69. ultralytics/models/rtdetr/val.py +1 -2
  70. ultralytics/models/sam/build.py +0 -1
  71. ultralytics/models/sam/model.py +0 -1
  72. ultralytics/models/sam/modules/encoders.py +1 -6
  73. ultralytics/models/sam/predict.py +0 -1
  74. ultralytics/models/utils/loss.py +0 -1
  75. ultralytics/models/yolo/detect/val.py +1 -2
  76. ultralytics/models/yolo/obb/val.py +14 -39
  77. ultralytics/nn/modules/head.py +5 -6
  78. ultralytics/nn/modules/utils.py +1 -1
  79. ultralytics/nn/tasks.py +1 -1
  80. ultralytics/solutions/ai_gym.py +9 -1
  81. ultralytics/solutions/distance_calculation.py +4 -8
  82. ultralytics/solutions/heatmap.py +16 -21
  83. ultralytics/solutions/object_counter.py +30 -29
  84. ultralytics/solutions/speed_estimation.py +19 -24
  85. ultralytics/trackers/track.py +0 -1
  86. ultralytics/trackers/utils/gmc.py +1 -1
  87. ultralytics/trackers/utils/matching.py +1 -3
  88. ultralytics/utils/benchmarks.py +2 -7
  89. ultralytics/utils/callbacks/base.py +1 -0
  90. ultralytics/utils/callbacks/comet.py +4 -22
  91. ultralytics/utils/callbacks/hub.py +1 -3
  92. ultralytics/utils/callbacks/neptune.py +1 -3
  93. ultralytics/utils/callbacks/tensorboard.py +2 -1
  94. ultralytics/utils/checks.py +2 -2
  95. ultralytics/utils/loss.py +3 -6
  96. ultralytics/utils/ops.py +8 -9
  97. ultralytics/utils/plotting.py +13 -15
  98. ultralytics/utils/tal.py +1 -2
  99. {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/METADATA +15 -15
  100. ultralytics-8.1.3.dist-info/RECORD +190 -0
  101. ultralytics-8.1.1.dist-info/RECORD +0 -188
  102. {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/LICENSE +0 -0
  103. {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/WHEEL +0 -0
  104. {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/entry_points.txt +0 -0
  105. {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/top_level.txt +0 -0
@@ -214,9 +214,9 @@ def check_version(
214
214
  try:
215
215
  name = current # assigned package name to 'name' arg
216
216
  current = metadata.version(current) # get version string from package name
217
- except metadata.PackageNotFoundError:
217
+ except metadata.PackageNotFoundError as e:
218
218
  if hard:
219
- raise ModuleNotFoundError(emojis(f"WARNING ⚠️ {current} package is required but not installed"))
219
+ raise ModuleNotFoundError(emojis(f"WARNING ⚠️ {current} package is required but not installed")) from e
220
220
  else:
221
221
  return False
222
222
 
ultralytics/utils/loss.py CHANGED
@@ -7,7 +7,6 @@ import torch.nn.functional as F
7
7
  from ultralytics.utils.metrics import OKS_SIGMA
8
8
  from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
9
9
  from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
10
-
11
10
  from .metrics import bbox_iou, probiou
12
11
  from .tal import bbox2dist
13
12
 
@@ -39,9 +38,7 @@ class VarifocalLoss(nn.Module):
39
38
  class FocalLoss(nn.Module):
40
39
  """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
41
40
 
42
- def __init__(
43
- self,
44
- ):
41
+ def __init__(self):
45
42
  """Initializer for FocalLoss class with no parameters."""
46
43
  super().__init__()
47
44
 
@@ -650,8 +647,8 @@ class v8OBBLoss(v8DetectionLoss):
650
647
  raise TypeError(
651
648
  "ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
652
649
  "This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
653
- "i.e. 'yolo train model=yolov8n-obb.pt data=coco8.yaml'.\nVerify your dataset is a "
654
- "correctly formatted 'OBB' dataset using 'data=coco8-obb.yaml' "
650
+ "i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
651
+ "correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
655
652
  "as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
656
653
  ) from e
657
654
 
ultralytics/utils/ops.py CHANGED
@@ -40,7 +40,7 @@ class Profile(contextlib.ContextDecorator):
40
40
  """
41
41
  self.t = t
42
42
  self.device = device
43
- self.cuda = True if (device and str(device)[:4] == "cuda") else False
43
+ self.cuda = bool(device and str(device).startswith("cuda"))
44
44
 
45
45
  def __enter__(self):
46
46
  """Start timing."""
@@ -534,30 +534,29 @@ def xyxyxyxy2xywhr(corners):
534
534
  # especially some objects are cut off by augmentations in dataloader.
535
535
  (x, y), (w, h), angle = cv2.minAreaRect(pts)
536
536
  rboxes.append([x, y, w, h, angle / 180 * np.pi])
537
- rboxes = (
537
+ return (
538
538
  torch.tensor(rboxes, device=corners.device, dtype=corners.dtype)
539
539
  if is_torch
540
540
  else np.asarray(rboxes, dtype=points.dtype)
541
- )
542
- return rboxes
541
+ ) # rboxes
543
542
 
544
543
 
545
- def xywhr2xyxyxyxy(center):
544
+ def xywhr2xyxyxyxy(rboxes):
546
545
  """
547
546
  Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4]. Rotation values should
548
547
  be in degrees from 0 to 90.
549
548
 
550
549
  Args:
551
- center (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
550
+ rboxes (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
552
551
 
553
552
  Returns:
554
553
  (numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 4, 2) or (b, n, 4, 2).
555
554
  """
556
- is_numpy = isinstance(center, np.ndarray)
555
+ is_numpy = isinstance(rboxes, np.ndarray)
557
556
  cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)
558
557
 
559
- ctr = center[..., :2]
560
- w, h, angle = (center[..., i : i + 1] for i in range(2, 5))
558
+ ctr = rboxes[..., :2]
559
+ w, h, angle = (rboxes[..., i : i + 1] for i in range(2, 5))
561
560
  cos_value, sin_value = cos(angle), sin(angle)
562
561
  vec1 = [w / 2 * cos_value, w / 2 * sin_value]
563
562
  vec2 = [-h / 2 * sin_value, h / 2 * cos_value]
@@ -13,7 +13,6 @@ from PIL import Image, ImageDraw, ImageFont
13
13
  from PIL import __version__ as pil_version
14
14
 
15
15
  from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
16
-
17
16
  from .checks import check_font, check_version, is_ascii
18
17
  from .files import increment_path
19
18
 
@@ -257,7 +256,7 @@ class Annotator:
257
256
  # Convert to numpy first
258
257
  self.im = np.asarray(self.im).copy()
259
258
  nkpt, ndim = kpts.shape
260
- is_pose = nkpt == 17 and ndim == 3
259
+ is_pose = nkpt == 17 and ndim in {2, 3}
261
260
  kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
262
261
  for i, k in enumerate(kpts):
263
262
  color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
@@ -433,7 +432,7 @@ class Annotator:
433
432
  center_kpt (int): centroid pose index for workout monitoring
434
433
  line_thickness (int): thickness for text display
435
434
  """
436
- angle_text, count_text, stage_text = (f" {angle_text:.2f}", "Steps : " + f"{count_text}", f" {stage_text}")
435
+ angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
437
436
  font_scale = 0.6 + (line_thickness / 10.0)
438
437
 
439
438
  # Draw angle
@@ -707,16 +706,16 @@ def plot_images(
707
706
  if len(bboxes):
708
707
  boxes = bboxes[idx]
709
708
  conf = confs[idx] if confs is not None else None # check for confidence presence (label vs pred)
709
+ is_obb = boxes.shape[-1] == 5 # xywhr
710
+ boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
710
711
  if len(boxes):
711
712
  if boxes[:, :4].max() <= 1.1: # if normalized with tolerance 0.1
712
- boxes[:, [0, 2]] *= w # scale to pixels
713
- boxes[:, [1, 3]] *= h
713
+ boxes[..., 0::2] *= w # scale to pixels
714
+ boxes[..., 1::2] *= h
714
715
  elif scale < 1: # absolute coords need scale if image scales
715
- boxes[:, :4] *= scale
716
- boxes[:, 0] += x
717
- boxes[:, 1] += y
718
- is_obb = boxes.shape[-1] == 5 # xywhr
719
- boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
716
+ boxes[..., :4] *= scale
717
+ boxes[..., 0::2] += x
718
+ boxes[..., 1::2] += y
720
719
  for j, box in enumerate(boxes.astype(np.int64).tolist()):
721
720
  c = classes[j]
722
721
  color = colors(c)
@@ -773,12 +772,11 @@ def plot_images(
773
772
  im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
774
773
  )
775
774
  annotator.fromarray(im)
776
- if save:
777
- annotator.im.save(fname) # save
778
- if on_plot:
779
- on_plot(fname)
780
- else:
775
+ if not save:
781
776
  return np.asarray(annotator.im)
777
+ annotator.im.save(fname) # save
778
+ if on_plot:
779
+ on_plot(fname)
782
780
 
783
781
 
784
782
  @plt_settings()
ultralytics/utils/tal.py CHANGED
@@ -288,8 +288,7 @@ class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
288
288
  norm_ad = (ad * ad).sum(dim=-1)
289
289
  ap_dot_ab = (ap * ab).sum(dim=-1)
290
290
  ap_dot_ad = (ap * ad).sum(dim=-1)
291
- is_in_box = (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad)
292
- return is_in_box
291
+ return (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad) # is_in_box
293
292
 
294
293
 
295
294
  def make_anchors(feats, strides, grid_cell_offset=0.5):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.1.1
3
+ Version: 8.1.3
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -44,7 +44,6 @@ Requires-Dist: py-cpuinfo
44
44
  Requires-Dist: thop >=0.1.1
45
45
  Requires-Dist: pandas >=1.1.4
46
46
  Requires-Dist: seaborn >=0.11.0
47
- Requires-Dist: hub-sdk >=0.0.2
48
47
  Provides-Extra: dev
49
48
  Requires-Dist: ipython ; extra == 'dev'
50
49
  Requires-Dist: check-manifest ; extra == 'dev'
@@ -68,6 +67,7 @@ Requires-Dist: tensorflow <=2.13.1 ; extra == 'export'
68
67
  Requires-Dist: tensorflowjs >=3.9.0 ; extra == 'export'
69
68
  Requires-Dist: coremltools >=7.0 ; (platform_system != "Windows") and extra == 'export'
70
69
  Provides-Extra: extra
70
+ Requires-Dist: hub-sdk >=0.0.2 ; extra == 'extra'
71
71
  Requires-Dist: ipython ; extra == 'extra'
72
72
  Requires-Dist: albumentations >=1.0.3 ; extra == 'extra'
73
73
  Requires-Dist: pycocotools >=2.0.6 ; extra == 'extra'
@@ -180,14 +180,14 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
180
180
 
181
181
  Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics) tutorial, making it easy to learn and implement advanced YOLOv8 features.
182
182
 
183
- | Docs | Notebook | YouTube |
184
- | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
185
- | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
186
- | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
187
- | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
188
- | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
189
- | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
190
- | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
183
+ | Docs | Notebook | YouTube |
184
+ | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
185
+ | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
186
+ | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
187
+ | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
188
+ | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
189
+ | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
190
+ | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
191
191
 
192
192
  ## <div align="center">Models</div>
193
193
 
@@ -209,7 +209,7 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
209
209
  | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
210
210
  | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
211
211
 
212
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
212
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
213
213
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
214
214
 
215
215
  </details>
@@ -243,7 +243,7 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
243
243
  | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
244
244
  | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
245
245
 
246
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
246
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
247
247
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
248
248
 
249
249
  </details>
@@ -261,7 +261,7 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
261
261
  | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
262
262
  | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
263
263
 
264
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
264
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
265
265
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
266
266
 
267
267
  </details>
@@ -272,8 +272,8 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
272
272
 
273
273
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
274
274
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
275
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
276
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
275
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
276
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
277
277
  | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
278
278
  | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
279
279
  | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
@@ -0,0 +1,190 @@
1
+ ultralytics/__init__.py,sha256=x7I92zyeefIyrA7Wn7xv-PcKvT4PVthtgtnPInTLxRU,529
2
+ ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
+ ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
+ ultralytics/cfg/__init__.py,sha256=7VOr93XpIpRcVfCtwJYcCsIszbBooBAHJ9y8Msio_jw,20713
5
+ ultralytics/cfg/default.yaml,sha256=Ihuy6Dziu-qm9dZ1qRSu7lrJB8sF3U8yTXPiZ9aKXlM,8091
6
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=0RN8DdsgyPrWDwsi-pyApDYYq8EXfzJktwOfB5ZVXS0,2924
7
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=YDsyFPI6F6-OQXLBM3hOXo3vADYREwZzmMQfJNdpWyM,1193
8
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=dxLUliHvJOW4q4vJRu5qIYVvNfjvXWB7GVh_Fhk--dM,1163
9
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=crk8fSL1XSLXe9zlTV9UQx94wjQ4933CKQS6bBHRSJw,2058
10
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=P5t0rwMNZX2iu7ooBkd5xSi75m66ccBzO0XiBABGGhU,42507
11
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=kiiV4KLMH2mcPPRrg6cQGygnbiTrHxwtAgA0ht6wcW4,9324
12
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=geRkccBRl2eKgfNYTOPYwD9mTfqktTBGiMJoE3PZEnA,2493
13
+ ultralytics/cfg/datasets/VOC.yaml,sha256=3-CDpjIq_s5pkbsJ9TjrYIeV24rYGuJGu4Qg6uktEZE,3655
14
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=NfrbjVnE48E7TPbxtF7rtQHvVBO0DchFJFEuGrG1VRU,3073
15
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=w7H-J2e87GIV_PZdRDgqEFa75ObScpBK_l85U4ZMsMo,1603
16
+ ultralytics/cfg/datasets/coco.yaml,sha256=xbim-GcWpvF_uwlStjbPjxXFhVfL0U_WNQI99b5gjdY,2584
17
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=6wRjT1C6eXblXzzSvCjXfVSYF12pjZl7DKVDkFbdUQ0,1925
18
+ ultralytics/cfg/datasets/coco128.yaml,sha256=vPraVMUKvhJY2dnhPbsCzwAPEOw1J8P6WyqkEUVysQY,1908
19
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=MErskGM63ED7bJUNPd6Rv5nTPHR77GaqB3pgSzJ3heA,961
20
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=hH0sEb_ZdtjziVg9PNNjdZADuYIbvYLD9-B2J7s7rlc,1865
21
+ ultralytics/cfg/datasets/coco8.yaml,sha256=yGDMRSehDIsT1h36JA-FTWZrtJRertD3tfoBLsS2Ydc,1840
22
+ ultralytics/cfg/datasets/dota8.yaml,sha256=HlwU4tpnUCCn7DQBXYRBGbfARNcALfCCRJnqycmHprg,1042
23
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
24
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=v2pOOrijTqdFA82nd2Jt-ZOWKNQl_qYgEqSgl4d0xWs,864
25
+ ultralytics/cfg/datasets/xView.yaml,sha256=rjQPRNk--jlYN9wcVTu1KbopgZIkWXhr_s1UkSdcERs,5217
26
+ ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW6tWeAsdN8ynryuU,1934
27
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=o0nWoKciT-vypC2eS5qIEWNSac0L6vwLtbK9ucQluG4,1512
28
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=rb64WQK-3a_PebUcy6CbpskvlC74H9M3tMIr3R5vHDU,1510
29
+ ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=E5utqNL7oNztyPKySGPoVET8RIUeqAqchdaslu5Zb5g,2141
30
+ ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=NfKJeBpDgDSwXo7fSN8myQUQ68YLB9xRtqdBgGlVPHs,1525
31
+ ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=5mnGGCN-mNDvqvOz2AzGhfwEg01exzeHNPS3NA3poiY,1229
32
+ ultralytics/cfg/models/v3/yolov3.yaml,sha256=-94p4tePdDtdpnz79u7O1sChV69kTi01lFxcVGoJ8MY,1512
33
+ ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=2smCKuGT8Q263i0ImJJNU8Or-XXmuLMf9JanBm4TjiE,1894
34
+ ultralytics/cfg/models/v5/yolov5.yaml,sha256=sROQV8tgv6lLRgxwBDIo9Maz7NUJgYZR_I4MbM9O1BQ,1526
35
+ ultralytics/cfg/models/v6/yolov6.yaml,sha256=Sb0nmmtdqqHCFuExyT-Hip10ZL4m53bhYlKge0kFGCY,1718
36
+ ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=uC6kl0Lvvlb8boIOR7BdAqYTS8YucH_91ZG3pOWIS7Q,883
37
+ ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=FgkNmcgLjAQU34ukH4LMI6zc1paO8j7jyqrx-3qji9A,882
38
+ ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=-uN4IaCHFBmyJ1ZZ09h2d8z3ceVoSWXD44dbFRsBeaA,913
39
+ ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=bn5DHwwZ3mAxUvaywq76_4JNgWabMFMCnCNoTpLSDKk,2288
40
+ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=kqgbEKNua7XwH95zteW6IzXaAjjaWA0ljzmCAI7b8E8,2356
41
+ ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=WUHOI18aA11kgANDCWbDDy3jswNlP_nIkpWX09BfBuI,2096
42
+ ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=Tv5JDZTLOrfyBj3ggqse9ShjDpM-nIFIxhiseQKwJEA,1899
43
+ ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=tfHkkVAC0fkCc7AbisTzGpXW3Ffk2-K5-wjReSbm7Gw,1731
44
+ ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=9xVJo6qVuxRRDJfGNmTIPqjAvoJmxcdQOgewuNVOHHg,1835
45
+ ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=yzxI20bMBdo6f5kd53VfuEHm_QqE_V3uwAvFJE0Tbr0,1927
46
+ ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=DHoJd7q7Hw89JBX5im-M3NWG8mge3VdPVNb4K4jTzIQ,1563
47
+ ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=ofujf77LW3stXS6-leVM_ExROWifJ84D5WqRhujyVJI,1896
48
+ ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=OfMLMHBOY6dt4_YsNuPANGPwM3BPBf7i_V3tQPyExYE,1845
49
+ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=fN85m_aDMCH4oTJ3z-ft98Pdh6dk0pZh4oB1LInoJrA,1474
50
+ ultralytics/cfg/models/v8/yolov8.yaml,sha256=VjSe_V2Gn9ZpJrwTtz0A6_6IMp6UuugNiR7aEShR5rc,1889
51
+ ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
52
+ ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
53
+ ultralytics/data/__init__.py,sha256=A3i0n-2MnNzSdYqhM8xynBO2HJNKGSXWhPvRyO0_u1I,409
54
+ ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
55
+ ultralytics/data/augment.py,sha256=ORotqUN-qulkHxzoW5hFF_CZDlBhuaqGgAsiPUVIf4I,52000
56
+ ultralytics/data/base.py,sha256=XcgBVEr-9wl58Ka-5gJUMg43LXsBQ6PiCKdHWZTdvEI,13216
57
+ ultralytics/data/build.py,sha256=dVP0PKuaiWk5ndpHca-xAOdRx5EIcmULKyRgqO5E_tQ,6440
58
+ ultralytics/data/converter.py,sha256=sju4NdjyKAtdKHMgYDD7yBKmP0gd3Q96PI4UInyi2Q0,13840
59
+ ultralytics/data/dataset.py,sha256=waqG4WiQ8hSVo5IMydq1NvMNQ5IM2du_m0bCv1q140U,16504
60
+ ultralytics/data/loaders.py,sha256=loSxGXzfzxrxuL3pPqTcCXoqhI3BP5RrvjIjBnaK7Dk,22300
61
+ ultralytics/data/split_dota.py,sha256=1q2FZC0SE4deRpXUSbKTbUAjX9VeejUIFM2DBLF8Cco,9961
62
+ ultralytics/data/utils.py,sha256=DHP14WwUF7uFPOpdUkH-gEC8Dgzl1E0Z_DXiLHx-gPE,29509
63
+ ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
64
+ ultralytics/data/explorer/explorer.py,sha256=VObECm8IUBaClQoQS_W9ctN1xKGKQVSNR0yhWiAnFeY,18642
65
+ ultralytics/data/explorer/utils.py,sha256=a6ugY8rKpFM8dIRcUwRyjRkRJ-zXEwe-NiJr6CLVlus,7041
66
+ ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
67
+ ultralytics/data/explorer/gui/dash.py,sha256=O6TGD3y0DWZuwaRUkSKpB5mXf-tSw7p-O_KE8kiZP2k,8903
68
+ ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
69
+ ultralytics/engine/exporter.py,sha256=tT3Egg-56KwmvgokQUNIXVpgkXj1uxuEaw6w_wpuUu8,52004
70
+ ultralytics/engine/model.py,sha256=3DswlxSJB7hz4psAGtmaTv_yHJsg1lJgV-P18RjUsvg,21420
71
+ ultralytics/engine/predictor.py,sha256=CbZUppzq2gT6zcas6jtKQ9-IbH_Lh3Az5z9zCcIl5f0,17850
72
+ ultralytics/engine/results.py,sha256=zYLE8yMa_qjIHCvhvSDLU2QSUKH7as1hvabKEwYWkKs,27527
73
+ ultralytics/engine/trainer.py,sha256=xCBpfBT4YUqfW7F1sjPY0bmjOWBEnfmE3LQ1BiXPTrA,34264
74
+ ultralytics/engine/tuner.py,sha256=yJTecrgsZbeE4XC8iJWoUA_DKACUnDSt8N1V_PTeCcc,11758
75
+ ultralytics/engine/validator.py,sha256=znVY4997-pMzx23FP_JpQczIEvWT5jp-sIEovYXI6RQ,14576
76
+ ultralytics/hub/__init__.py,sha256=yH_bbIOUwZsDgoxnrvv_8a96DuPNzaZaK5jejzy8r_4,5020
77
+ ultralytics/hub/auth.py,sha256=92vY72MsvXdubj_CCHwsGI2UVVZxIG_MEDvIBMkxm5o,5366
78
+ ultralytics/hub/session.py,sha256=6ltA1DxoKBMWJWNdyShc_nUndY3EjuBs3OtW9HUP7sQ,14226
79
+ ultralytics/hub/utils.py,sha256=rfUfr1gI_gN2hq6A8AzCejep6DBvsElBIqz-BFzZoRc,9736
80
+ ultralytics/models/__init__.py,sha256=-i1eeXMAglo0zMRGG3phmdoJNO7OJQZgyj8j0t7eiDE,173
81
+ ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
82
+ ultralytics/models/fastsam/model.py,sha256=2b4HEcl798xbPRceXEYTu5YoBe9zJJA4BaVzH1KAM3Q,1054
83
+ ultralytics/models/fastsam/predict.py,sha256=0WHUFrqHUNy1cTNpLKsN0FKqLKCvr7fHU6pp91_QVg0,4121
84
+ ultralytics/models/fastsam/prompt.py,sha256=vVBpYQfJswDYRrHpQpWObMAyYcPD-OurEyTxna7J7K4,16190
85
+ ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
86
+ ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
87
+ ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
88
+ ultralytics/models/nas/model.py,sha256=Nr1YHj0YQkBITp3xVVGliEcbrjpZemtBt0crz1h63qo,2864
89
+ ultralytics/models/nas/predict.py,sha256=O7f92KE6hi5DENTRzXiMsm-qK-ndVoO1Bs3dugp8aLA,2136
90
+ ultralytics/models/nas/val.py,sha256=u35kVTVgGxK_rbHytUvFB4F3_nZn4MPv3PbZLFWSmkQ,1680
91
+ ultralytics/models/rtdetr/__init__.py,sha256=AZga1C3qlGTtgpAupDW4doijq5aZlQeF8e55_DP2Uas,197
92
+ ultralytics/models/rtdetr/model.py,sha256=fVrj6Jgav6M5ZNRR6QQupQuXBmmbDQZgq9KKfEifBL0,2167
93
+ ultralytics/models/rtdetr/predict.py,sha256=pmjUlcUTqxoBNa5tW_EuFjh7ldXSm99Qnk5MEaJF0DQ,3425
94
+ ultralytics/models/rtdetr/train.py,sha256=HdSC2x22Rks6qKNI7EGa6nWMZPhi_7VdQrbcayxk0ec,3684
95
+ ultralytics/models/rtdetr/val.py,sha256=sE99MGrq5rSyIN8dNBpJVTe9b__Ax9NyS8MYccQGDPs,5401
96
+ ultralytics/models/sam/__init__.py,sha256=9A1iyfPN_ncqq3TMExe_-uPoARjEX3psoHEI1xMG2VE,144
97
+ ultralytics/models/sam/amg.py,sha256=w7mLxojmI50t6yPzx034WdQJUipMpEtHyvhXxFBo46A,7915
98
+ ultralytics/models/sam/build.py,sha256=jJvloRbPwHvSnVWwM3pEdzpM5MdIcEHbRaqQk_S9lG8,4943
99
+ ultralytics/models/sam/model.py,sha256=yLIjB00UZ6WDkcRBXtUmwmu8gTIsKyTdKsLAxI1SeoM,4706
100
+ ultralytics/models/sam/predict.py,sha256=C8dErpMefMwQvReJSvxRMaTala6OJbAckrGO3m508kI,23632
101
+ ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
102
+ ultralytics/models/sam/modules/decoders.py,sha256=Axv7aPWJmGCe4APNNUky8ZK8zxPj6TpvuW5qL24Z47Y,7815
103
+ ultralytics/models/sam/modules/encoders.py,sha256=pRNZHzt2J2xD_D0Btu8pk4DcItfr6dRr9rcRfxoZZhU,24746
104
+ ultralytics/models/sam/modules/sam.py,sha256=zC4l4kcrIQD_ekczjl2l6dgaABqqjROZxQ-FDb-itt0,2783
105
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=PRHsOHKMNfi5SLtPkJQeU49s7SDTkhmN3RHh3J2Bt24,29136
106
+ ultralytics/models/sam/modules/transformer.py,sha256=-wboK4gNKOJMP8J8ACN2JoK-xze40NZG696HsxdYObs,11170
107
+ ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
108
+ ultralytics/models/utils/loss.py,sha256=IMzcnDwwkgO9F6GDKVxrDdVdhUX_7d9uY4tX-AgtT0g,15134
109
+ ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4GM4,13244
110
+ ultralytics/models/yolo/__init__.py,sha256=QjNcjG9I6pQAV2xONRP_t3PkyZtpgy-a6yR3Ef4R7ok,207
111
+ ultralytics/models/yolo/model.py,sha256=DdisvtV1Hjj37X5kObjwTwrFzxX3Xb-oB2WBPmh9tpM,1729
112
+ ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
113
+ ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
114
+ ultralytics/models/yolo/classify/train.py,sha256=-DOLOM7OCN3RvH6iv8k7mMh7BDehsfJCO2LiwXMM0vU,6832
115
+ ultralytics/models/yolo/classify/val.py,sha256=EP_hjRExXgdI4xojTKvj_YeNdaz_i2CoUzorl55r0OA,4861
116
+ ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
117
+ ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
118
+ ultralytics/models/yolo/detect/train.py,sha256=zvxmevSiWNq8rdlGYeM3SZkMCcFh0qFQN9HjwxcGjJw,6306
119
+ ultralytics/models/yolo/detect/val.py,sha256=O9q_WqP70bDs8jEM0VPsbzV_3FklZDd47-I8AsIBoq4,13591
120
+ ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
121
+ ultralytics/models/yolo/obb/predict.py,sha256=fk9jSiC2xjLdhbhz6FR-aMPA11VZrovn0tliuzLnlUs,1961
122
+ ultralytics/models/yolo/obb/train.py,sha256=ay4Z83CyWtw8GeKyhFvfg94iZHUDz0qmCPCAFc2xJhU,1477
123
+ ultralytics/models/yolo/obb/val.py,sha256=Gh0ZxbSDLMcsvcOQHOP2F2sQjmM5c5y_z0Veg6y0nXE,8409
124
+ ultralytics/models/yolo/pose/__init__.py,sha256=OGvxN3LqJot2h8GX1csJ1KErsHnDKsm33Ce6ZBU9Lr4,199
125
+ ultralytics/models/yolo/pose/predict.py,sha256=illk4qyZvybc_XMo9TKT54FIkizx91MYviE5c5OwBTQ,2404
126
+ ultralytics/models/yolo/pose/train.py,sha256=ki8bkT8WfIFjTKf1ofeRDqeIqmk6A8a7AFog7nM-otM,2926
127
+ ultralytics/models/yolo/pose/val.py,sha256=w_VIKzGcj_0CRNObPqk0NnDOfRN-xl2C6uwpFOkJH3Q,10607
128
+ ultralytics/models/yolo/segment/__init__.py,sha256=mSbKOE8BnHL7PL2nCOVG7dRM7CI6hJezFPPwZFjEmy8,247
129
+ ultralytics/models/yolo/segment/predict.py,sha256=ycT8Z6U8N-4x94YQxM1nZc6rBWbF2-ErGmO7akMNtXM,2491
130
+ ultralytics/models/yolo/segment/train.py,sha256=aOQpDIptZfKSl9mFa6B-3W3QccMRlmBINBkI9K8-3sQ,2298
131
+ ultralytics/models/yolo/segment/val.py,sha256=OPLzdhD5VFuIVjQObExwEdjR7OxDrj0hqNailh3XnkI,11709
132
+ ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
133
+ ultralytics/nn/autobackend.py,sha256=42BYn6nKan5TaOjYa3sKg24RbaEWdSUVljRtqD7pyGA,27088
134
+ ultralytics/nn/tasks.py,sha256=vbaN_C0BHoHnoebi74ODsR-oC-4YG3K1OAduDEcM9Z8,38370
135
+ ultralytics/nn/modules/__init__.py,sha256=ejmeNK9L-yGUX3pGr_1-HlPcCdrf7XPLFVZ3OR0mmno,1954
136
+ ultralytics/nn/modules/block.py,sha256=1bi5rRzHNTg10VlRdpRP_xjTJHEIfMQ1FY2nIgHKmws,14488
137
+ ultralytics/nn/modules/conv.py,sha256=ndUYNL2f9DK41y1vVbtEusMByXy-LMMsBKlcWjRQ9Z8,12722
138
+ ultralytics/nn/modules/head.py,sha256=NmBGgrMLQ9DGfGg5zskzLaR84NYxipI-5NOQ0gapaho,19530
139
+ ultralytics/nn/modules/transformer.py,sha256=GiHdW306OcsUilSwSOtMufvwK798Sc9pG9MiFAt2Ay4,17920
140
+ ultralytics/nn/modules/utils.py,sha256=6CCeDy6GGkDM7XjGm4FCtVpXoEuICIPCsruI8etNS3g,3197
141
+ ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
142
+ ultralytics/solutions/ai_gym.py,sha256=d3XRr-u0vIp1Bi9mAwDzGkxBztnhWU_ak5e8XR2J31s,6006
143
+ ultralytics/solutions/distance_calculation.py,sha256=4YWM94Y5-LedFHocT9qc-CREx6GaXiLy0YlCxZRSjFs,6810
144
+ ultralytics/solutions/heatmap.py,sha256=tAuLoFi3_iQZUw7qjCRu3w03eRL5Hx79-7TvksvzZwo,10838
145
+ ultralytics/solutions/object_counter.py,sha256=kSurxRDScaaXL6J-5rocsT2ethGVcGYHcuiIk-VOYe0,10514
146
+ ultralytics/solutions/speed_estimation.py,sha256=7zskVZzbzX5kabmGD_pw0cJrb4pucGMJQ7GW1PVF2WM,6610
147
+ ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
148
+ ultralytics/trackers/basetrack.py,sha256=-vBDD-Q9lsxfTMK2w9kuqWGrYbRMmaBCCEbGGyR53gE,3675
149
+ ultralytics/trackers/bot_sort.py,sha256=39AvhYVbT7izF3--rX_e6Lhgb5czTA23gw6AgnNcRds,8601
150
+ ultralytics/trackers/byte_tracker.py,sha256=OHChGJWNyl0yhtxd2hj7di2j2z3orY1GSIVrGDVRaL8,18350
151
+ ultralytics/trackers/track.py,sha256=QEUkdzkvv9tNyoLU9yMhZv2B2zqJQh_aDmHh8daVhaw,3039
152
+ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
153
+ ultralytics/trackers/utils/gmc.py,sha256=dnCv90urvqQiVG6qsVnFQRBbu1rDQbqmJU7MucOWYyY,13949
154
+ ultralytics/trackers/utils/kalman_filter.py,sha256=JN1sAcfJZy8fTZxc8w3jUJnGQDKtgAL__p4nTR6RM2I,15168
155
+ ultralytics/trackers/utils/matching.py,sha256=fxHmfWNt7NmiQHYxC4NBFiSakZTznF58zIYqq0C_RJE,5002
156
+ ultralytics/utils/__init__.py,sha256=WphOGqOoNGBGh5QBL6yQxS3eQIKahKkMPaUszvGXack,34272
157
+ ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
158
+ ultralytics/utils/benchmarks.py,sha256=gqZaIih9bcpMbFnm65taWnWSKCN1EGzTruZeMDQkQA4,17405
159
+ ultralytics/utils/checks.py,sha256=OfIxd2_qufJpjOWOHt3NrRquGCr5GyEUHOMvjT-PhIs,27592
160
+ ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
161
+ ultralytics/utils/downloads.py,sha256=S4b_DUjZcSKWXWSVoGuSOYXt9aS_NzFz0NtkFOTHHoM,21189
162
+ ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
163
+ ultralytics/utils/files.py,sha256=V1cD9sC3hGd5uNVdOa4uZGySGjnsXC6Lh7mjqI_UDxo,5275
164
+ ultralytics/utils/instance.py,sha256=fPClvPPtTk8VeXWiRv90DrFk1j1lTUKdYJtpZKUDDtA,15575
165
+ ultralytics/utils/loss.py,sha256=erpbpLbt_VNOO-FItADFOjKTfwuf2A3ozECuCJiSqHM,32555
166
+ ultralytics/utils/metrics.py,sha256=h0aQNyW2_eud3M-7KT8C1P15GeJkf9Sw9KoASXMPim0,53176
167
+ ultralytics/utils/ops.py,sha256=9qqrpSRjoShFvkeYbCBtqvKmSO3JwHunLqAfTR0UDcg,32665
168
+ ultralytics/utils/patches.py,sha256=2iMWzwBpAjTt0UzaPzFO5JPVoKklUhftuo_3H7xBoDc,2659
169
+ ultralytics/utils/plotting.py,sha256=nl3GZsWe4-pBNwY7V8hOtT1GKAxdmwN_kCaNb8Kk9Hc,42710
170
+ ultralytics/utils/tal.py,sha256=fQ6dPFEJTVtFBFeTS_rtZMx_UsJyi80s3YfT8joCC6M,16015
171
+ ultralytics/utils/torch_utils.py,sha256=Byij6JEKJeQE_G00wWpRJi0eorSo0xwXbwHJKzt_Jsk,25141
172
+ ultralytics/utils/triton.py,sha256=tX3iEHFVBLJctnn9gybVk7PHk5kMkkLxwwAyfeWiT8s,3934
173
+ ultralytics/utils/tuner.py,sha256=S5xet_s0K8T2pP71YVEFVGJnm0YoGDqJP0Ycr9PDlfY,6004
174
+ ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
175
+ ultralytics/utils/callbacks/base.py,sha256=sOe3JvyBFmRwVZ8_Q03u7JwTeOOm9CI4s9-UEhnG0xA,5777
176
+ ultralytics/utils/callbacks/clearml.py,sha256=K7bDf5tS8xL4KeFMkoVDL2kKkil3f4qoKy8KfZkD854,5897
177
+ ultralytics/utils/callbacks/comet.py,sha256=9mLgOprENliphnxfd8iTwtkdhS6eR7J7-q4YWaHL0So,13744
178
+ ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
179
+ ultralytics/utils/callbacks/hub.py,sha256=8zeiCkmwPc0W-W02QDNgk-o08GlUTj_k5nleLJKT6sU,3404
180
+ ultralytics/utils/callbacks/mlflow.py,sha256=x3_au37OP23MeWNncoBFO2NIiwWRzZAQ0KdZ-Q0sRkg,4848
181
+ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyzC5q7p4ipQ,3756
182
+ ultralytics/utils/callbacks/raytune.py,sha256=6OgGNuC35F29lw8Dl_d0lue4-iBR6dqrBVQnIRQDx4E,632
183
+ ultralytics/utils/callbacks/tensorboard.py,sha256=KOvmZTLL0C1GatB7zD9ef19DJWMMgyGRv7Kj5NEJOfg,3044
184
+ ultralytics/utils/callbacks/wb.py,sha256=03ACY2YwpTRigD0ZQH7_zlpwMdGw0lt23zX4d5Zaz28,6650
185
+ ultralytics-8.1.3.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
186
+ ultralytics-8.1.3.dist-info/METADATA,sha256=pOl6o4VffA6CDIQV1XdwdW-S13X41nXQ3nZp5lM1I-U,40204
187
+ ultralytics-8.1.3.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
188
+ ultralytics-8.1.3.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
189
+ ultralytics-8.1.3.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
190
+ ultralytics-8.1.3.dist-info/RECORD,,