ultralytics 8.1.1__py3-none-any.whl → 8.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +1 -1
- ultralytics/cfg/datasets/Argoverse.yaml +5 -7
- ultralytics/cfg/datasets/DOTAv1.5.yaml +4 -4
- ultralytics/cfg/datasets/DOTAv1.yaml +4 -4
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +2 -4
- ultralytics/cfg/datasets/ImageNet.yaml +4 -6
- ultralytics/cfg/datasets/Objects365.yaml +3 -5
- ultralytics/cfg/datasets/SKU-110K.yaml +4 -6
- ultralytics/cfg/datasets/VOC.yaml +0 -2
- ultralytics/cfg/datasets/VisDrone.yaml +4 -6
- ultralytics/cfg/datasets/coco-pose.yaml +6 -7
- ultralytics/cfg/datasets/coco.yaml +5 -7
- ultralytics/cfg/datasets/coco128-seg.yaml +4 -6
- ultralytics/cfg/datasets/coco128.yaml +4 -6
- ultralytics/cfg/datasets/coco8-pose.yaml +5 -6
- ultralytics/cfg/datasets/coco8-seg.yaml +4 -6
- ultralytics/cfg/datasets/coco8.yaml +4 -6
- ultralytics/cfg/datasets/dota8.yaml +3 -3
- ultralytics/cfg/datasets/open-images-v7.yaml +4 -6
- ultralytics/cfg/datasets/tiger-pose.yaml +4 -5
- ultralytics/cfg/datasets/xView.yaml +3 -5
- ultralytics/cfg/default.yaml +103 -103
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +27 -27
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +23 -23
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +23 -23
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +27 -27
- ultralytics/cfg/models/v3/yolov3-spp.yaml +32 -34
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +24 -26
- ultralytics/cfg/models/v3/yolov3.yaml +32 -34
- ultralytics/cfg/models/v5/yolov5-p6.yaml +41 -43
- ultralytics/cfg/models/v5/yolov5.yaml +26 -28
- ultralytics/cfg/models/v6/yolov6.yaml +17 -17
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +25 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +25 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +7 -7
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +26 -26
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +27 -27
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +23 -23
- ultralytics/cfg/models/v8/yolov8-obb.yaml +23 -23
- ultralytics/cfg/models/v8/yolov8-p2.yaml +23 -23
- ultralytics/cfg/models/v8/yolov8-p6.yaml +24 -24
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +25 -25
- ultralytics/cfg/models/v8/yolov8-pose.yaml +19 -19
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +23 -23
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +24 -24
- ultralytics/cfg/models/v8/yolov8-seg.yaml +18 -18
- ultralytics/cfg/models/v8/yolov8.yaml +23 -23
- ultralytics/cfg/trackers/botsort.yaml +7 -7
- ultralytics/cfg/trackers/bytetrack.yaml +6 -6
- ultralytics/data/annotator.py +1 -1
- ultralytics/data/augment.py +1 -2
- ultralytics/data/base.py +0 -1
- ultralytics/data/build.py +1 -2
- ultralytics/data/dataset.py +0 -1
- ultralytics/data/explorer/explorer.py +11 -12
- ultralytics/data/explorer/utils.py +3 -3
- ultralytics/data/split_dota.py +15 -23
- ultralytics/engine/model.py +12 -11
- ultralytics/engine/predictor.py +1 -1
- ultralytics/engine/trainer.py +1 -4
- ultralytics/hub/__init__.py +5 -3
- ultralytics/hub/auth.py +1 -2
- ultralytics/hub/session.py +14 -6
- ultralytics/hub/utils.py +4 -0
- ultralytics/models/fastsam/model.py +0 -1
- ultralytics/models/nas/model.py +0 -1
- ultralytics/models/rtdetr/train.py +0 -1
- ultralytics/models/rtdetr/val.py +1 -2
- ultralytics/models/sam/build.py +0 -1
- ultralytics/models/sam/model.py +0 -1
- ultralytics/models/sam/modules/encoders.py +1 -6
- ultralytics/models/sam/predict.py +0 -1
- ultralytics/models/utils/loss.py +0 -1
- ultralytics/models/yolo/detect/val.py +1 -2
- ultralytics/models/yolo/obb/val.py +14 -39
- ultralytics/nn/modules/head.py +5 -6
- ultralytics/nn/modules/utils.py +1 -1
- ultralytics/nn/tasks.py +1 -1
- ultralytics/solutions/ai_gym.py +9 -1
- ultralytics/solutions/distance_calculation.py +4 -8
- ultralytics/solutions/heatmap.py +16 -21
- ultralytics/solutions/object_counter.py +30 -29
- ultralytics/solutions/speed_estimation.py +19 -24
- ultralytics/trackers/track.py +0 -1
- ultralytics/trackers/utils/gmc.py +1 -1
- ultralytics/trackers/utils/matching.py +1 -3
- ultralytics/utils/benchmarks.py +2 -7
- ultralytics/utils/callbacks/base.py +1 -0
- ultralytics/utils/callbacks/comet.py +4 -22
- ultralytics/utils/callbacks/hub.py +1 -3
- ultralytics/utils/callbacks/neptune.py +1 -3
- ultralytics/utils/callbacks/tensorboard.py +2 -1
- ultralytics/utils/checks.py +2 -2
- ultralytics/utils/loss.py +3 -6
- ultralytics/utils/ops.py +8 -9
- ultralytics/utils/plotting.py +13 -15
- ultralytics/utils/tal.py +1 -2
- {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/METADATA +15 -15
- ultralytics-8.1.3.dist-info/RECORD +190 -0
- ultralytics-8.1.1.dist-info/RECORD +0 -188
- {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/LICENSE +0 -0
- {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/WHEEL +0 -0
- {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.1.1.dist-info → ultralytics-8.1.3.dist-info}/top_level.txt +0 -0
ultralytics/utils/checks.py
CHANGED
|
@@ -214,9 +214,9 @@ def check_version(
|
|
|
214
214
|
try:
|
|
215
215
|
name = current # assigned package name to 'name' arg
|
|
216
216
|
current = metadata.version(current) # get version string from package name
|
|
217
|
-
except metadata.PackageNotFoundError:
|
|
217
|
+
except metadata.PackageNotFoundError as e:
|
|
218
218
|
if hard:
|
|
219
|
-
raise ModuleNotFoundError(emojis(f"WARNING ⚠️ {current} package is required but not installed"))
|
|
219
|
+
raise ModuleNotFoundError(emojis(f"WARNING ⚠️ {current} package is required but not installed")) from e
|
|
220
220
|
else:
|
|
221
221
|
return False
|
|
222
222
|
|
ultralytics/utils/loss.py
CHANGED
|
@@ -7,7 +7,6 @@ import torch.nn.functional as F
|
|
|
7
7
|
from ultralytics.utils.metrics import OKS_SIGMA
|
|
8
8
|
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
|
|
9
9
|
from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
|
|
10
|
-
|
|
11
10
|
from .metrics import bbox_iou, probiou
|
|
12
11
|
from .tal import bbox2dist
|
|
13
12
|
|
|
@@ -39,9 +38,7 @@ class VarifocalLoss(nn.Module):
|
|
|
39
38
|
class FocalLoss(nn.Module):
|
|
40
39
|
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
|
|
41
40
|
|
|
42
|
-
def __init__(
|
|
43
|
-
self,
|
|
44
|
-
):
|
|
41
|
+
def __init__(self):
|
|
45
42
|
"""Initializer for FocalLoss class with no parameters."""
|
|
46
43
|
super().__init__()
|
|
47
44
|
|
|
@@ -650,8 +647,8 @@ class v8OBBLoss(v8DetectionLoss):
|
|
|
650
647
|
raise TypeError(
|
|
651
648
|
"ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
|
|
652
649
|
"This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
|
|
653
|
-
"i.e. 'yolo train model=yolov8n-obb.pt data=
|
|
654
|
-
"correctly formatted 'OBB' dataset using 'data=
|
|
650
|
+
"i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
|
|
651
|
+
"correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
|
|
655
652
|
"as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
|
|
656
653
|
) from e
|
|
657
654
|
|
ultralytics/utils/ops.py
CHANGED
|
@@ -40,7 +40,7 @@ class Profile(contextlib.ContextDecorator):
|
|
|
40
40
|
"""
|
|
41
41
|
self.t = t
|
|
42
42
|
self.device = device
|
|
43
|
-
self.cuda =
|
|
43
|
+
self.cuda = bool(device and str(device).startswith("cuda"))
|
|
44
44
|
|
|
45
45
|
def __enter__(self):
|
|
46
46
|
"""Start timing."""
|
|
@@ -534,30 +534,29 @@ def xyxyxyxy2xywhr(corners):
|
|
|
534
534
|
# especially some objects are cut off by augmentations in dataloader.
|
|
535
535
|
(x, y), (w, h), angle = cv2.minAreaRect(pts)
|
|
536
536
|
rboxes.append([x, y, w, h, angle / 180 * np.pi])
|
|
537
|
-
|
|
537
|
+
return (
|
|
538
538
|
torch.tensor(rboxes, device=corners.device, dtype=corners.dtype)
|
|
539
539
|
if is_torch
|
|
540
540
|
else np.asarray(rboxes, dtype=points.dtype)
|
|
541
|
-
)
|
|
542
|
-
return rboxes
|
|
541
|
+
) # rboxes
|
|
543
542
|
|
|
544
543
|
|
|
545
|
-
def xywhr2xyxyxyxy(
|
|
544
|
+
def xywhr2xyxyxyxy(rboxes):
|
|
546
545
|
"""
|
|
547
546
|
Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4]. Rotation values should
|
|
548
547
|
be in degrees from 0 to 90.
|
|
549
548
|
|
|
550
549
|
Args:
|
|
551
|
-
|
|
550
|
+
rboxes (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
|
|
552
551
|
|
|
553
552
|
Returns:
|
|
554
553
|
(numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 4, 2) or (b, n, 4, 2).
|
|
555
554
|
"""
|
|
556
|
-
is_numpy = isinstance(
|
|
555
|
+
is_numpy = isinstance(rboxes, np.ndarray)
|
|
557
556
|
cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)
|
|
558
557
|
|
|
559
|
-
ctr =
|
|
560
|
-
w, h, angle = (
|
|
558
|
+
ctr = rboxes[..., :2]
|
|
559
|
+
w, h, angle = (rboxes[..., i : i + 1] for i in range(2, 5))
|
|
561
560
|
cos_value, sin_value = cos(angle), sin(angle)
|
|
562
561
|
vec1 = [w / 2 * cos_value, w / 2 * sin_value]
|
|
563
562
|
vec2 = [-h / 2 * sin_value, h / 2 * cos_value]
|
ultralytics/utils/plotting.py
CHANGED
|
@@ -13,7 +13,6 @@ from PIL import Image, ImageDraw, ImageFont
|
|
|
13
13
|
from PIL import __version__ as pil_version
|
|
14
14
|
|
|
15
15
|
from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
|
|
16
|
-
|
|
17
16
|
from .checks import check_font, check_version, is_ascii
|
|
18
17
|
from .files import increment_path
|
|
19
18
|
|
|
@@ -257,7 +256,7 @@ class Annotator:
|
|
|
257
256
|
# Convert to numpy first
|
|
258
257
|
self.im = np.asarray(self.im).copy()
|
|
259
258
|
nkpt, ndim = kpts.shape
|
|
260
|
-
is_pose = nkpt == 17 and ndim
|
|
259
|
+
is_pose = nkpt == 17 and ndim in {2, 3}
|
|
261
260
|
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
|
|
262
261
|
for i, k in enumerate(kpts):
|
|
263
262
|
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
|
|
@@ -433,7 +432,7 @@ class Annotator:
|
|
|
433
432
|
center_kpt (int): centroid pose index for workout monitoring
|
|
434
433
|
line_thickness (int): thickness for text display
|
|
435
434
|
"""
|
|
436
|
-
angle_text, count_text, stage_text = (f" {angle_text:.2f}", "Steps :
|
|
435
|
+
angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")
|
|
437
436
|
font_scale = 0.6 + (line_thickness / 10.0)
|
|
438
437
|
|
|
439
438
|
# Draw angle
|
|
@@ -707,16 +706,16 @@ def plot_images(
|
|
|
707
706
|
if len(bboxes):
|
|
708
707
|
boxes = bboxes[idx]
|
|
709
708
|
conf = confs[idx] if confs is not None else None # check for confidence presence (label vs pred)
|
|
709
|
+
is_obb = boxes.shape[-1] == 5 # xywhr
|
|
710
|
+
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
|
|
710
711
|
if len(boxes):
|
|
711
712
|
if boxes[:, :4].max() <= 1.1: # if normalized with tolerance 0.1
|
|
712
|
-
boxes[
|
|
713
|
-
boxes[
|
|
713
|
+
boxes[..., 0::2] *= w # scale to pixels
|
|
714
|
+
boxes[..., 1::2] *= h
|
|
714
715
|
elif scale < 1: # absolute coords need scale if image scales
|
|
715
|
-
boxes[
|
|
716
|
-
boxes[
|
|
717
|
-
boxes[
|
|
718
|
-
is_obb = boxes.shape[-1] == 5 # xywhr
|
|
719
|
-
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
|
|
716
|
+
boxes[..., :4] *= scale
|
|
717
|
+
boxes[..., 0::2] += x
|
|
718
|
+
boxes[..., 1::2] += y
|
|
720
719
|
for j, box in enumerate(boxes.astype(np.int64).tolist()):
|
|
721
720
|
c = classes[j]
|
|
722
721
|
color = colors(c)
|
|
@@ -773,12 +772,11 @@ def plot_images(
|
|
|
773
772
|
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
|
|
774
773
|
)
|
|
775
774
|
annotator.fromarray(im)
|
|
776
|
-
if save:
|
|
777
|
-
annotator.im.save(fname) # save
|
|
778
|
-
if on_plot:
|
|
779
|
-
on_plot(fname)
|
|
780
|
-
else:
|
|
775
|
+
if not save:
|
|
781
776
|
return np.asarray(annotator.im)
|
|
777
|
+
annotator.im.save(fname) # save
|
|
778
|
+
if on_plot:
|
|
779
|
+
on_plot(fname)
|
|
782
780
|
|
|
783
781
|
|
|
784
782
|
@plt_settings()
|
ultralytics/utils/tal.py
CHANGED
|
@@ -288,8 +288,7 @@ class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
|
|
|
288
288
|
norm_ad = (ad * ad).sum(dim=-1)
|
|
289
289
|
ap_dot_ab = (ap * ab).sum(dim=-1)
|
|
290
290
|
ap_dot_ad = (ap * ad).sum(dim=-1)
|
|
291
|
-
|
|
292
|
-
return is_in_box
|
|
291
|
+
return (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad) # is_in_box
|
|
293
292
|
|
|
294
293
|
|
|
295
294
|
def make_anchors(feats, strides, grid_cell_offset=0.5):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.1.
|
|
3
|
+
Version: 8.1.3
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -44,7 +44,6 @@ Requires-Dist: py-cpuinfo
|
|
|
44
44
|
Requires-Dist: thop >=0.1.1
|
|
45
45
|
Requires-Dist: pandas >=1.1.4
|
|
46
46
|
Requires-Dist: seaborn >=0.11.0
|
|
47
|
-
Requires-Dist: hub-sdk >=0.0.2
|
|
48
47
|
Provides-Extra: dev
|
|
49
48
|
Requires-Dist: ipython ; extra == 'dev'
|
|
50
49
|
Requires-Dist: check-manifest ; extra == 'dev'
|
|
@@ -68,6 +67,7 @@ Requires-Dist: tensorflow <=2.13.1 ; extra == 'export'
|
|
|
68
67
|
Requires-Dist: tensorflowjs >=3.9.0 ; extra == 'export'
|
|
69
68
|
Requires-Dist: coremltools >=7.0 ; (platform_system != "Windows") and extra == 'export'
|
|
70
69
|
Provides-Extra: extra
|
|
70
|
+
Requires-Dist: hub-sdk >=0.0.2 ; extra == 'extra'
|
|
71
71
|
Requires-Dist: ipython ; extra == 'extra'
|
|
72
72
|
Requires-Dist: albumentations >=1.0.3 ; extra == 'extra'
|
|
73
73
|
Requires-Dist: pycocotools >=2.0.6 ; extra == 'extra'
|
|
@@ -180,14 +180,14 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
|
|
|
180
180
|
|
|
181
181
|
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics) tutorial, making it easy to learn and implement advanced YOLOv8 features.
|
|
182
182
|
|
|
183
|
-
| Docs
|
|
184
|
-
|
|
|
185
|
-
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a>
|
|
186
|
-
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a>
|
|
187
|
-
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a>
|
|
188
|
-
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a>
|
|
189
|
-
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a>
|
|
190
|
-
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
|
|
183
|
+
| Docs | Notebook | YouTube |
|
|
184
|
+
| --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
185
|
+
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
186
|
+
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
187
|
+
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
188
|
+
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
189
|
+
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
190
|
+
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
|
|
191
191
|
|
|
192
192
|
## <div align="center">Models</div>
|
|
193
193
|
|
|
@@ -209,7 +209,7 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
209
209
|
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
|
210
210
|
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
|
211
211
|
|
|
212
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](
|
|
212
|
+
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
213
213
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
214
214
|
|
|
215
215
|
</details>
|
|
@@ -243,7 +243,7 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
243
243
|
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
|
244
244
|
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
|
245
245
|
|
|
246
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](
|
|
246
|
+
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
247
247
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
248
248
|
|
|
249
249
|
</details>
|
|
@@ -261,7 +261,7 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
|
|
|
261
261
|
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
|
|
262
262
|
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
|
263
263
|
|
|
264
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](
|
|
264
|
+
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
265
265
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
266
266
|
|
|
267
267
|
</details>
|
|
@@ -272,8 +272,8 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
272
272
|
|
|
273
273
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
274
274
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
275
|
-
| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 |
|
|
276
|
-
| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 |
|
|
275
|
+
| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
|
|
276
|
+
| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
|
|
277
277
|
| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
|
|
278
278
|
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
|
|
279
279
|
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
|
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
ultralytics/__init__.py,sha256=x7I92zyeefIyrA7Wn7xv-PcKvT4PVthtgtnPInTLxRU,529
|
|
2
|
+
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
3
|
+
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
4
|
+
ultralytics/cfg/__init__.py,sha256=7VOr93XpIpRcVfCtwJYcCsIszbBooBAHJ9y8Msio_jw,20713
|
|
5
|
+
ultralytics/cfg/default.yaml,sha256=Ihuy6Dziu-qm9dZ1qRSu7lrJB8sF3U8yTXPiZ9aKXlM,8091
|
|
6
|
+
ultralytics/cfg/datasets/Argoverse.yaml,sha256=0RN8DdsgyPrWDwsi-pyApDYYq8EXfzJktwOfB5ZVXS0,2924
|
|
7
|
+
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=YDsyFPI6F6-OQXLBM3hOXo3vADYREwZzmMQfJNdpWyM,1193
|
|
8
|
+
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=dxLUliHvJOW4q4vJRu5qIYVvNfjvXWB7GVh_Fhk--dM,1163
|
|
9
|
+
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=crk8fSL1XSLXe9zlTV9UQx94wjQ4933CKQS6bBHRSJw,2058
|
|
10
|
+
ultralytics/cfg/datasets/ImageNet.yaml,sha256=P5t0rwMNZX2iu7ooBkd5xSi75m66ccBzO0XiBABGGhU,42507
|
|
11
|
+
ultralytics/cfg/datasets/Objects365.yaml,sha256=kiiV4KLMH2mcPPRrg6cQGygnbiTrHxwtAgA0ht6wcW4,9324
|
|
12
|
+
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=geRkccBRl2eKgfNYTOPYwD9mTfqktTBGiMJoE3PZEnA,2493
|
|
13
|
+
ultralytics/cfg/datasets/VOC.yaml,sha256=3-CDpjIq_s5pkbsJ9TjrYIeV24rYGuJGu4Qg6uktEZE,3655
|
|
14
|
+
ultralytics/cfg/datasets/VisDrone.yaml,sha256=NfrbjVnE48E7TPbxtF7rtQHvVBO0DchFJFEuGrG1VRU,3073
|
|
15
|
+
ultralytics/cfg/datasets/coco-pose.yaml,sha256=w7H-J2e87GIV_PZdRDgqEFa75ObScpBK_l85U4ZMsMo,1603
|
|
16
|
+
ultralytics/cfg/datasets/coco.yaml,sha256=xbim-GcWpvF_uwlStjbPjxXFhVfL0U_WNQI99b5gjdY,2584
|
|
17
|
+
ultralytics/cfg/datasets/coco128-seg.yaml,sha256=6wRjT1C6eXblXzzSvCjXfVSYF12pjZl7DKVDkFbdUQ0,1925
|
|
18
|
+
ultralytics/cfg/datasets/coco128.yaml,sha256=vPraVMUKvhJY2dnhPbsCzwAPEOw1J8P6WyqkEUVysQY,1908
|
|
19
|
+
ultralytics/cfg/datasets/coco8-pose.yaml,sha256=MErskGM63ED7bJUNPd6Rv5nTPHR77GaqB3pgSzJ3heA,961
|
|
20
|
+
ultralytics/cfg/datasets/coco8-seg.yaml,sha256=hH0sEb_ZdtjziVg9PNNjdZADuYIbvYLD9-B2J7s7rlc,1865
|
|
21
|
+
ultralytics/cfg/datasets/coco8.yaml,sha256=yGDMRSehDIsT1h36JA-FTWZrtJRertD3tfoBLsS2Ydc,1840
|
|
22
|
+
ultralytics/cfg/datasets/dota8.yaml,sha256=HlwU4tpnUCCn7DQBXYRBGbfARNcALfCCRJnqycmHprg,1042
|
|
23
|
+
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=gsN0JXLSdQglio024p6NEegNbX06kJUNuj0bh9oEi-U,12493
|
|
24
|
+
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=v2pOOrijTqdFA82nd2Jt-ZOWKNQl_qYgEqSgl4d0xWs,864
|
|
25
|
+
ultralytics/cfg/datasets/xView.yaml,sha256=rjQPRNk--jlYN9wcVTu1KbopgZIkWXhr_s1UkSdcERs,5217
|
|
26
|
+
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Nbzi93tAJhBw69hUNBkzXaeMMWwW6tWeAsdN8ynryuU,1934
|
|
27
|
+
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=o0nWoKciT-vypC2eS5qIEWNSac0L6vwLtbK9ucQluG4,1512
|
|
28
|
+
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=rb64WQK-3a_PebUcy6CbpskvlC74H9M3tMIr3R5vHDU,1510
|
|
29
|
+
ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=E5utqNL7oNztyPKySGPoVET8RIUeqAqchdaslu5Zb5g,2141
|
|
30
|
+
ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=NfKJeBpDgDSwXo7fSN8myQUQ68YLB9xRtqdBgGlVPHs,1525
|
|
31
|
+
ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=5mnGGCN-mNDvqvOz2AzGhfwEg01exzeHNPS3NA3poiY,1229
|
|
32
|
+
ultralytics/cfg/models/v3/yolov3.yaml,sha256=-94p4tePdDtdpnz79u7O1sChV69kTi01lFxcVGoJ8MY,1512
|
|
33
|
+
ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=2smCKuGT8Q263i0ImJJNU8Or-XXmuLMf9JanBm4TjiE,1894
|
|
34
|
+
ultralytics/cfg/models/v5/yolov5.yaml,sha256=sROQV8tgv6lLRgxwBDIo9Maz7NUJgYZR_I4MbM9O1BQ,1526
|
|
35
|
+
ultralytics/cfg/models/v6/yolov6.yaml,sha256=Sb0nmmtdqqHCFuExyT-Hip10ZL4m53bhYlKge0kFGCY,1718
|
|
36
|
+
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=uC6kl0Lvvlb8boIOR7BdAqYTS8YucH_91ZG3pOWIS7Q,883
|
|
37
|
+
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=FgkNmcgLjAQU34ukH4LMI6zc1paO8j7jyqrx-3qji9A,882
|
|
38
|
+
ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=-uN4IaCHFBmyJ1ZZ09h2d8z3ceVoSWXD44dbFRsBeaA,913
|
|
39
|
+
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=bn5DHwwZ3mAxUvaywq76_4JNgWabMFMCnCNoTpLSDKk,2288
|
|
40
|
+
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=kqgbEKNua7XwH95zteW6IzXaAjjaWA0ljzmCAI7b8E8,2356
|
|
41
|
+
ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=WUHOI18aA11kgANDCWbDDy3jswNlP_nIkpWX09BfBuI,2096
|
|
42
|
+
ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=Tv5JDZTLOrfyBj3ggqse9ShjDpM-nIFIxhiseQKwJEA,1899
|
|
43
|
+
ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=tfHkkVAC0fkCc7AbisTzGpXW3Ffk2-K5-wjReSbm7Gw,1731
|
|
44
|
+
ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=9xVJo6qVuxRRDJfGNmTIPqjAvoJmxcdQOgewuNVOHHg,1835
|
|
45
|
+
ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=yzxI20bMBdo6f5kd53VfuEHm_QqE_V3uwAvFJE0Tbr0,1927
|
|
46
|
+
ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=DHoJd7q7Hw89JBX5im-M3NWG8mge3VdPVNb4K4jTzIQ,1563
|
|
47
|
+
ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=ofujf77LW3stXS6-leVM_ExROWifJ84D5WqRhujyVJI,1896
|
|
48
|
+
ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=OfMLMHBOY6dt4_YsNuPANGPwM3BPBf7i_V3tQPyExYE,1845
|
|
49
|
+
ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=fN85m_aDMCH4oTJ3z-ft98Pdh6dk0pZh4oB1LInoJrA,1474
|
|
50
|
+
ultralytics/cfg/models/v8/yolov8.yaml,sha256=VjSe_V2Gn9ZpJrwTtz0A6_6IMp6UuugNiR7aEShR5rc,1889
|
|
51
|
+
ultralytics/cfg/trackers/botsort.yaml,sha256=YrPmj18p1UU40kJH5NRdL_4S8f7knggkk_q2KYnVudo,883
|
|
52
|
+
ultralytics/cfg/trackers/bytetrack.yaml,sha256=QvHmtuwulK4X6j3T5VEqtCm0sbWWBUVmWPcCcM20qe0,688
|
|
53
|
+
ultralytics/data/__init__.py,sha256=A3i0n-2MnNzSdYqhM8xynBO2HJNKGSXWhPvRyO0_u1I,409
|
|
54
|
+
ultralytics/data/annotator.py,sha256=evXQzARVerc0hb9ol-n_GrrHf-dlXO4lCMMWEZoJ2UM,2117
|
|
55
|
+
ultralytics/data/augment.py,sha256=ORotqUN-qulkHxzoW5hFF_CZDlBhuaqGgAsiPUVIf4I,52000
|
|
56
|
+
ultralytics/data/base.py,sha256=XcgBVEr-9wl58Ka-5gJUMg43LXsBQ6PiCKdHWZTdvEI,13216
|
|
57
|
+
ultralytics/data/build.py,sha256=dVP0PKuaiWk5ndpHca-xAOdRx5EIcmULKyRgqO5E_tQ,6440
|
|
58
|
+
ultralytics/data/converter.py,sha256=sju4NdjyKAtdKHMgYDD7yBKmP0gd3Q96PI4UInyi2Q0,13840
|
|
59
|
+
ultralytics/data/dataset.py,sha256=waqG4WiQ8hSVo5IMydq1NvMNQ5IM2du_m0bCv1q140U,16504
|
|
60
|
+
ultralytics/data/loaders.py,sha256=loSxGXzfzxrxuL3pPqTcCXoqhI3BP5RrvjIjBnaK7Dk,22300
|
|
61
|
+
ultralytics/data/split_dota.py,sha256=1q2FZC0SE4deRpXUSbKTbUAjX9VeejUIFM2DBLF8Cco,9961
|
|
62
|
+
ultralytics/data/utils.py,sha256=DHP14WwUF7uFPOpdUkH-gEC8Dgzl1E0Z_DXiLHx-gPE,29509
|
|
63
|
+
ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
|
|
64
|
+
ultralytics/data/explorer/explorer.py,sha256=VObECm8IUBaClQoQS_W9ctN1xKGKQVSNR0yhWiAnFeY,18642
|
|
65
|
+
ultralytics/data/explorer/utils.py,sha256=a6ugY8rKpFM8dIRcUwRyjRkRJ-zXEwe-NiJr6CLVlus,7041
|
|
66
|
+
ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
67
|
+
ultralytics/data/explorer/gui/dash.py,sha256=O6TGD3y0DWZuwaRUkSKpB5mXf-tSw7p-O_KE8kiZP2k,8903
|
|
68
|
+
ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
69
|
+
ultralytics/engine/exporter.py,sha256=tT3Egg-56KwmvgokQUNIXVpgkXj1uxuEaw6w_wpuUu8,52004
|
|
70
|
+
ultralytics/engine/model.py,sha256=3DswlxSJB7hz4psAGtmaTv_yHJsg1lJgV-P18RjUsvg,21420
|
|
71
|
+
ultralytics/engine/predictor.py,sha256=CbZUppzq2gT6zcas6jtKQ9-IbH_Lh3Az5z9zCcIl5f0,17850
|
|
72
|
+
ultralytics/engine/results.py,sha256=zYLE8yMa_qjIHCvhvSDLU2QSUKH7as1hvabKEwYWkKs,27527
|
|
73
|
+
ultralytics/engine/trainer.py,sha256=xCBpfBT4YUqfW7F1sjPY0bmjOWBEnfmE3LQ1BiXPTrA,34264
|
|
74
|
+
ultralytics/engine/tuner.py,sha256=yJTecrgsZbeE4XC8iJWoUA_DKACUnDSt8N1V_PTeCcc,11758
|
|
75
|
+
ultralytics/engine/validator.py,sha256=znVY4997-pMzx23FP_JpQczIEvWT5jp-sIEovYXI6RQ,14576
|
|
76
|
+
ultralytics/hub/__init__.py,sha256=yH_bbIOUwZsDgoxnrvv_8a96DuPNzaZaK5jejzy8r_4,5020
|
|
77
|
+
ultralytics/hub/auth.py,sha256=92vY72MsvXdubj_CCHwsGI2UVVZxIG_MEDvIBMkxm5o,5366
|
|
78
|
+
ultralytics/hub/session.py,sha256=6ltA1DxoKBMWJWNdyShc_nUndY3EjuBs3OtW9HUP7sQ,14226
|
|
79
|
+
ultralytics/hub/utils.py,sha256=rfUfr1gI_gN2hq6A8AzCejep6DBvsElBIqz-BFzZoRc,9736
|
|
80
|
+
ultralytics/models/__init__.py,sha256=-i1eeXMAglo0zMRGG3phmdoJNO7OJQZgyj8j0t7eiDE,173
|
|
81
|
+
ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
|
|
82
|
+
ultralytics/models/fastsam/model.py,sha256=2b4HEcl798xbPRceXEYTu5YoBe9zJJA4BaVzH1KAM3Q,1054
|
|
83
|
+
ultralytics/models/fastsam/predict.py,sha256=0WHUFrqHUNy1cTNpLKsN0FKqLKCvr7fHU6pp91_QVg0,4121
|
|
84
|
+
ultralytics/models/fastsam/prompt.py,sha256=vVBpYQfJswDYRrHpQpWObMAyYcPD-OurEyTxna7J7K4,16190
|
|
85
|
+
ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
|
|
86
|
+
ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
|
|
87
|
+
ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
|
|
88
|
+
ultralytics/models/nas/model.py,sha256=Nr1YHj0YQkBITp3xVVGliEcbrjpZemtBt0crz1h63qo,2864
|
|
89
|
+
ultralytics/models/nas/predict.py,sha256=O7f92KE6hi5DENTRzXiMsm-qK-ndVoO1Bs3dugp8aLA,2136
|
|
90
|
+
ultralytics/models/nas/val.py,sha256=u35kVTVgGxK_rbHytUvFB4F3_nZn4MPv3PbZLFWSmkQ,1680
|
|
91
|
+
ultralytics/models/rtdetr/__init__.py,sha256=AZga1C3qlGTtgpAupDW4doijq5aZlQeF8e55_DP2Uas,197
|
|
92
|
+
ultralytics/models/rtdetr/model.py,sha256=fVrj6Jgav6M5ZNRR6QQupQuXBmmbDQZgq9KKfEifBL0,2167
|
|
93
|
+
ultralytics/models/rtdetr/predict.py,sha256=pmjUlcUTqxoBNa5tW_EuFjh7ldXSm99Qnk5MEaJF0DQ,3425
|
|
94
|
+
ultralytics/models/rtdetr/train.py,sha256=HdSC2x22Rks6qKNI7EGa6nWMZPhi_7VdQrbcayxk0ec,3684
|
|
95
|
+
ultralytics/models/rtdetr/val.py,sha256=sE99MGrq5rSyIN8dNBpJVTe9b__Ax9NyS8MYccQGDPs,5401
|
|
96
|
+
ultralytics/models/sam/__init__.py,sha256=9A1iyfPN_ncqq3TMExe_-uPoARjEX3psoHEI1xMG2VE,144
|
|
97
|
+
ultralytics/models/sam/amg.py,sha256=w7mLxojmI50t6yPzx034WdQJUipMpEtHyvhXxFBo46A,7915
|
|
98
|
+
ultralytics/models/sam/build.py,sha256=jJvloRbPwHvSnVWwM3pEdzpM5MdIcEHbRaqQk_S9lG8,4943
|
|
99
|
+
ultralytics/models/sam/model.py,sha256=yLIjB00UZ6WDkcRBXtUmwmu8gTIsKyTdKsLAxI1SeoM,4706
|
|
100
|
+
ultralytics/models/sam/predict.py,sha256=C8dErpMefMwQvReJSvxRMaTala6OJbAckrGO3m508kI,23632
|
|
101
|
+
ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
102
|
+
ultralytics/models/sam/modules/decoders.py,sha256=Axv7aPWJmGCe4APNNUky8ZK8zxPj6TpvuW5qL24Z47Y,7815
|
|
103
|
+
ultralytics/models/sam/modules/encoders.py,sha256=pRNZHzt2J2xD_D0Btu8pk4DcItfr6dRr9rcRfxoZZhU,24746
|
|
104
|
+
ultralytics/models/sam/modules/sam.py,sha256=zC4l4kcrIQD_ekczjl2l6dgaABqqjROZxQ-FDb-itt0,2783
|
|
105
|
+
ultralytics/models/sam/modules/tiny_encoder.py,sha256=PRHsOHKMNfi5SLtPkJQeU49s7SDTkhmN3RHh3J2Bt24,29136
|
|
106
|
+
ultralytics/models/sam/modules/transformer.py,sha256=-wboK4gNKOJMP8J8ACN2JoK-xze40NZG696HsxdYObs,11170
|
|
107
|
+
ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
108
|
+
ultralytics/models/utils/loss.py,sha256=IMzcnDwwkgO9F6GDKVxrDdVdhUX_7d9uY4tX-AgtT0g,15134
|
|
109
|
+
ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4GM4,13244
|
|
110
|
+
ultralytics/models/yolo/__init__.py,sha256=QjNcjG9I6pQAV2xONRP_t3PkyZtpgy-a6yR3Ef4R7ok,207
|
|
111
|
+
ultralytics/models/yolo/model.py,sha256=DdisvtV1Hjj37X5kObjwTwrFzxX3Xb-oB2WBPmh9tpM,1729
|
|
112
|
+
ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
|
|
113
|
+
ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
|
|
114
|
+
ultralytics/models/yolo/classify/train.py,sha256=-DOLOM7OCN3RvH6iv8k7mMh7BDehsfJCO2LiwXMM0vU,6832
|
|
115
|
+
ultralytics/models/yolo/classify/val.py,sha256=EP_hjRExXgdI4xojTKvj_YeNdaz_i2CoUzorl55r0OA,4861
|
|
116
|
+
ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
|
|
117
|
+
ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
|
|
118
|
+
ultralytics/models/yolo/detect/train.py,sha256=zvxmevSiWNq8rdlGYeM3SZkMCcFh0qFQN9HjwxcGjJw,6306
|
|
119
|
+
ultralytics/models/yolo/detect/val.py,sha256=O9q_WqP70bDs8jEM0VPsbzV_3FklZDd47-I8AsIBoq4,13591
|
|
120
|
+
ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
|
|
121
|
+
ultralytics/models/yolo/obb/predict.py,sha256=fk9jSiC2xjLdhbhz6FR-aMPA11VZrovn0tliuzLnlUs,1961
|
|
122
|
+
ultralytics/models/yolo/obb/train.py,sha256=ay4Z83CyWtw8GeKyhFvfg94iZHUDz0qmCPCAFc2xJhU,1477
|
|
123
|
+
ultralytics/models/yolo/obb/val.py,sha256=Gh0ZxbSDLMcsvcOQHOP2F2sQjmM5c5y_z0Veg6y0nXE,8409
|
|
124
|
+
ultralytics/models/yolo/pose/__init__.py,sha256=OGvxN3LqJot2h8GX1csJ1KErsHnDKsm33Ce6ZBU9Lr4,199
|
|
125
|
+
ultralytics/models/yolo/pose/predict.py,sha256=illk4qyZvybc_XMo9TKT54FIkizx91MYviE5c5OwBTQ,2404
|
|
126
|
+
ultralytics/models/yolo/pose/train.py,sha256=ki8bkT8WfIFjTKf1ofeRDqeIqmk6A8a7AFog7nM-otM,2926
|
|
127
|
+
ultralytics/models/yolo/pose/val.py,sha256=w_VIKzGcj_0CRNObPqk0NnDOfRN-xl2C6uwpFOkJH3Q,10607
|
|
128
|
+
ultralytics/models/yolo/segment/__init__.py,sha256=mSbKOE8BnHL7PL2nCOVG7dRM7CI6hJezFPPwZFjEmy8,247
|
|
129
|
+
ultralytics/models/yolo/segment/predict.py,sha256=ycT8Z6U8N-4x94YQxM1nZc6rBWbF2-ErGmO7akMNtXM,2491
|
|
130
|
+
ultralytics/models/yolo/segment/train.py,sha256=aOQpDIptZfKSl9mFa6B-3W3QccMRlmBINBkI9K8-3sQ,2298
|
|
131
|
+
ultralytics/models/yolo/segment/val.py,sha256=OPLzdhD5VFuIVjQObExwEdjR7OxDrj0hqNailh3XnkI,11709
|
|
132
|
+
ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
|
|
133
|
+
ultralytics/nn/autobackend.py,sha256=42BYn6nKan5TaOjYa3sKg24RbaEWdSUVljRtqD7pyGA,27088
|
|
134
|
+
ultralytics/nn/tasks.py,sha256=vbaN_C0BHoHnoebi74ODsR-oC-4YG3K1OAduDEcM9Z8,38370
|
|
135
|
+
ultralytics/nn/modules/__init__.py,sha256=ejmeNK9L-yGUX3pGr_1-HlPcCdrf7XPLFVZ3OR0mmno,1954
|
|
136
|
+
ultralytics/nn/modules/block.py,sha256=1bi5rRzHNTg10VlRdpRP_xjTJHEIfMQ1FY2nIgHKmws,14488
|
|
137
|
+
ultralytics/nn/modules/conv.py,sha256=ndUYNL2f9DK41y1vVbtEusMByXy-LMMsBKlcWjRQ9Z8,12722
|
|
138
|
+
ultralytics/nn/modules/head.py,sha256=NmBGgrMLQ9DGfGg5zskzLaR84NYxipI-5NOQ0gapaho,19530
|
|
139
|
+
ultralytics/nn/modules/transformer.py,sha256=GiHdW306OcsUilSwSOtMufvwK798Sc9pG9MiFAt2Ay4,17920
|
|
140
|
+
ultralytics/nn/modules/utils.py,sha256=6CCeDy6GGkDM7XjGm4FCtVpXoEuICIPCsruI8etNS3g,3197
|
|
141
|
+
ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
142
|
+
ultralytics/solutions/ai_gym.py,sha256=d3XRr-u0vIp1Bi9mAwDzGkxBztnhWU_ak5e8XR2J31s,6006
|
|
143
|
+
ultralytics/solutions/distance_calculation.py,sha256=4YWM94Y5-LedFHocT9qc-CREx6GaXiLy0YlCxZRSjFs,6810
|
|
144
|
+
ultralytics/solutions/heatmap.py,sha256=tAuLoFi3_iQZUw7qjCRu3w03eRL5Hx79-7TvksvzZwo,10838
|
|
145
|
+
ultralytics/solutions/object_counter.py,sha256=kSurxRDScaaXL6J-5rocsT2ethGVcGYHcuiIk-VOYe0,10514
|
|
146
|
+
ultralytics/solutions/speed_estimation.py,sha256=7zskVZzbzX5kabmGD_pw0cJrb4pucGMJQ7GW1PVF2WM,6610
|
|
147
|
+
ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
|
|
148
|
+
ultralytics/trackers/basetrack.py,sha256=-vBDD-Q9lsxfTMK2w9kuqWGrYbRMmaBCCEbGGyR53gE,3675
|
|
149
|
+
ultralytics/trackers/bot_sort.py,sha256=39AvhYVbT7izF3--rX_e6Lhgb5czTA23gw6AgnNcRds,8601
|
|
150
|
+
ultralytics/trackers/byte_tracker.py,sha256=OHChGJWNyl0yhtxd2hj7di2j2z3orY1GSIVrGDVRaL8,18350
|
|
151
|
+
ultralytics/trackers/track.py,sha256=QEUkdzkvv9tNyoLU9yMhZv2B2zqJQh_aDmHh8daVhaw,3039
|
|
152
|
+
ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
153
|
+
ultralytics/trackers/utils/gmc.py,sha256=dnCv90urvqQiVG6qsVnFQRBbu1rDQbqmJU7MucOWYyY,13949
|
|
154
|
+
ultralytics/trackers/utils/kalman_filter.py,sha256=JN1sAcfJZy8fTZxc8w3jUJnGQDKtgAL__p4nTR6RM2I,15168
|
|
155
|
+
ultralytics/trackers/utils/matching.py,sha256=fxHmfWNt7NmiQHYxC4NBFiSakZTznF58zIYqq0C_RJE,5002
|
|
156
|
+
ultralytics/utils/__init__.py,sha256=WphOGqOoNGBGh5QBL6yQxS3eQIKahKkMPaUszvGXack,34272
|
|
157
|
+
ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
|
|
158
|
+
ultralytics/utils/benchmarks.py,sha256=gqZaIih9bcpMbFnm65taWnWSKCN1EGzTruZeMDQkQA4,17405
|
|
159
|
+
ultralytics/utils/checks.py,sha256=OfIxd2_qufJpjOWOHt3NrRquGCr5GyEUHOMvjT-PhIs,27592
|
|
160
|
+
ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
|
|
161
|
+
ultralytics/utils/downloads.py,sha256=S4b_DUjZcSKWXWSVoGuSOYXt9aS_NzFz0NtkFOTHHoM,21189
|
|
162
|
+
ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
|
|
163
|
+
ultralytics/utils/files.py,sha256=V1cD9sC3hGd5uNVdOa4uZGySGjnsXC6Lh7mjqI_UDxo,5275
|
|
164
|
+
ultralytics/utils/instance.py,sha256=fPClvPPtTk8VeXWiRv90DrFk1j1lTUKdYJtpZKUDDtA,15575
|
|
165
|
+
ultralytics/utils/loss.py,sha256=erpbpLbt_VNOO-FItADFOjKTfwuf2A3ozECuCJiSqHM,32555
|
|
166
|
+
ultralytics/utils/metrics.py,sha256=h0aQNyW2_eud3M-7KT8C1P15GeJkf9Sw9KoASXMPim0,53176
|
|
167
|
+
ultralytics/utils/ops.py,sha256=9qqrpSRjoShFvkeYbCBtqvKmSO3JwHunLqAfTR0UDcg,32665
|
|
168
|
+
ultralytics/utils/patches.py,sha256=2iMWzwBpAjTt0UzaPzFO5JPVoKklUhftuo_3H7xBoDc,2659
|
|
169
|
+
ultralytics/utils/plotting.py,sha256=nl3GZsWe4-pBNwY7V8hOtT1GKAxdmwN_kCaNb8Kk9Hc,42710
|
|
170
|
+
ultralytics/utils/tal.py,sha256=fQ6dPFEJTVtFBFeTS_rtZMx_UsJyi80s3YfT8joCC6M,16015
|
|
171
|
+
ultralytics/utils/torch_utils.py,sha256=Byij6JEKJeQE_G00wWpRJi0eorSo0xwXbwHJKzt_Jsk,25141
|
|
172
|
+
ultralytics/utils/triton.py,sha256=tX3iEHFVBLJctnn9gybVk7PHk5kMkkLxwwAyfeWiT8s,3934
|
|
173
|
+
ultralytics/utils/tuner.py,sha256=S5xet_s0K8T2pP71YVEFVGJnm0YoGDqJP0Ycr9PDlfY,6004
|
|
174
|
+
ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
|
|
175
|
+
ultralytics/utils/callbacks/base.py,sha256=sOe3JvyBFmRwVZ8_Q03u7JwTeOOm9CI4s9-UEhnG0xA,5777
|
|
176
|
+
ultralytics/utils/callbacks/clearml.py,sha256=K7bDf5tS8xL4KeFMkoVDL2kKkil3f4qoKy8KfZkD854,5897
|
|
177
|
+
ultralytics/utils/callbacks/comet.py,sha256=9mLgOprENliphnxfd8iTwtkdhS6eR7J7-q4YWaHL0So,13744
|
|
178
|
+
ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
|
|
179
|
+
ultralytics/utils/callbacks/hub.py,sha256=8zeiCkmwPc0W-W02QDNgk-o08GlUTj_k5nleLJKT6sU,3404
|
|
180
|
+
ultralytics/utils/callbacks/mlflow.py,sha256=x3_au37OP23MeWNncoBFO2NIiwWRzZAQ0KdZ-Q0sRkg,4848
|
|
181
|
+
ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyzC5q7p4ipQ,3756
|
|
182
|
+
ultralytics/utils/callbacks/raytune.py,sha256=6OgGNuC35F29lw8Dl_d0lue4-iBR6dqrBVQnIRQDx4E,632
|
|
183
|
+
ultralytics/utils/callbacks/tensorboard.py,sha256=KOvmZTLL0C1GatB7zD9ef19DJWMMgyGRv7Kj5NEJOfg,3044
|
|
184
|
+
ultralytics/utils/callbacks/wb.py,sha256=03ACY2YwpTRigD0ZQH7_zlpwMdGw0lt23zX4d5Zaz28,6650
|
|
185
|
+
ultralytics-8.1.3.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
186
|
+
ultralytics-8.1.3.dist-info/METADATA,sha256=pOl6o4VffA6CDIQV1XdwdW-S13X41nXQ3nZp5lM1I-U,40204
|
|
187
|
+
ultralytics-8.1.3.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
188
|
+
ultralytics-8.1.3.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
189
|
+
ultralytics-8.1.3.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
190
|
+
ultralytics-8.1.3.dist-info/RECORD,,
|