ultralytics 8.0.238__py3-none-any.whl → 8.0.239__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (134) hide show
  1. ultralytics/__init__.py +2 -2
  2. ultralytics/cfg/__init__.py +241 -138
  3. ultralytics/data/__init__.py +9 -2
  4. ultralytics/data/annotator.py +4 -4
  5. ultralytics/data/augment.py +186 -169
  6. ultralytics/data/base.py +54 -48
  7. ultralytics/data/build.py +34 -23
  8. ultralytics/data/converter.py +242 -70
  9. ultralytics/data/dataset.py +117 -95
  10. ultralytics/data/explorer/__init__.py +3 -1
  11. ultralytics/data/explorer/explorer.py +120 -100
  12. ultralytics/data/explorer/gui/__init__.py +1 -0
  13. ultralytics/data/explorer/gui/dash.py +123 -89
  14. ultralytics/data/explorer/utils.py +37 -39
  15. ultralytics/data/loaders.py +75 -62
  16. ultralytics/data/split_dota.py +44 -36
  17. ultralytics/data/utils.py +160 -142
  18. ultralytics/engine/exporter.py +348 -292
  19. ultralytics/engine/model.py +102 -66
  20. ultralytics/engine/predictor.py +74 -55
  21. ultralytics/engine/results.py +61 -41
  22. ultralytics/engine/trainer.py +192 -144
  23. ultralytics/engine/tuner.py +66 -59
  24. ultralytics/engine/validator.py +31 -26
  25. ultralytics/hub/__init__.py +54 -31
  26. ultralytics/hub/auth.py +28 -25
  27. ultralytics/hub/session.py +282 -133
  28. ultralytics/hub/utils.py +64 -42
  29. ultralytics/models/__init__.py +1 -1
  30. ultralytics/models/fastsam/__init__.py +1 -1
  31. ultralytics/models/fastsam/model.py +6 -6
  32. ultralytics/models/fastsam/predict.py +3 -2
  33. ultralytics/models/fastsam/prompt.py +55 -48
  34. ultralytics/models/fastsam/val.py +1 -1
  35. ultralytics/models/nas/__init__.py +1 -1
  36. ultralytics/models/nas/model.py +9 -8
  37. ultralytics/models/nas/predict.py +8 -6
  38. ultralytics/models/nas/val.py +11 -9
  39. ultralytics/models/rtdetr/__init__.py +1 -1
  40. ultralytics/models/rtdetr/model.py +11 -9
  41. ultralytics/models/rtdetr/train.py +18 -16
  42. ultralytics/models/rtdetr/val.py +25 -19
  43. ultralytics/models/sam/__init__.py +1 -1
  44. ultralytics/models/sam/amg.py +13 -14
  45. ultralytics/models/sam/build.py +44 -42
  46. ultralytics/models/sam/model.py +6 -6
  47. ultralytics/models/sam/modules/decoders.py +6 -4
  48. ultralytics/models/sam/modules/encoders.py +37 -35
  49. ultralytics/models/sam/modules/sam.py +5 -4
  50. ultralytics/models/sam/modules/tiny_encoder.py +95 -73
  51. ultralytics/models/sam/modules/transformer.py +3 -2
  52. ultralytics/models/sam/predict.py +39 -27
  53. ultralytics/models/utils/loss.py +99 -95
  54. ultralytics/models/utils/ops.py +34 -31
  55. ultralytics/models/yolo/__init__.py +1 -1
  56. ultralytics/models/yolo/classify/__init__.py +1 -1
  57. ultralytics/models/yolo/classify/predict.py +8 -6
  58. ultralytics/models/yolo/classify/train.py +37 -31
  59. ultralytics/models/yolo/classify/val.py +26 -24
  60. ultralytics/models/yolo/detect/__init__.py +1 -1
  61. ultralytics/models/yolo/detect/predict.py +8 -6
  62. ultralytics/models/yolo/detect/train.py +47 -37
  63. ultralytics/models/yolo/detect/val.py +100 -82
  64. ultralytics/models/yolo/model.py +31 -25
  65. ultralytics/models/yolo/obb/__init__.py +1 -1
  66. ultralytics/models/yolo/obb/predict.py +13 -11
  67. ultralytics/models/yolo/obb/train.py +3 -3
  68. ultralytics/models/yolo/obb/val.py +70 -59
  69. ultralytics/models/yolo/pose/__init__.py +1 -1
  70. ultralytics/models/yolo/pose/predict.py +17 -12
  71. ultralytics/models/yolo/pose/train.py +28 -25
  72. ultralytics/models/yolo/pose/val.py +91 -64
  73. ultralytics/models/yolo/segment/__init__.py +1 -1
  74. ultralytics/models/yolo/segment/predict.py +10 -8
  75. ultralytics/models/yolo/segment/train.py +16 -15
  76. ultralytics/models/yolo/segment/val.py +90 -68
  77. ultralytics/nn/__init__.py +26 -6
  78. ultralytics/nn/autobackend.py +144 -112
  79. ultralytics/nn/modules/__init__.py +96 -13
  80. ultralytics/nn/modules/block.py +28 -7
  81. ultralytics/nn/modules/conv.py +41 -23
  82. ultralytics/nn/modules/head.py +60 -52
  83. ultralytics/nn/modules/transformer.py +49 -32
  84. ultralytics/nn/modules/utils.py +20 -15
  85. ultralytics/nn/tasks.py +215 -141
  86. ultralytics/solutions/ai_gym.py +59 -47
  87. ultralytics/solutions/distance_calculation.py +17 -14
  88. ultralytics/solutions/heatmap.py +57 -55
  89. ultralytics/solutions/object_counter.py +46 -39
  90. ultralytics/solutions/speed_estimation.py +13 -16
  91. ultralytics/trackers/__init__.py +1 -1
  92. ultralytics/trackers/basetrack.py +1 -0
  93. ultralytics/trackers/bot_sort.py +2 -1
  94. ultralytics/trackers/byte_tracker.py +10 -7
  95. ultralytics/trackers/track.py +7 -7
  96. ultralytics/trackers/utils/gmc.py +25 -25
  97. ultralytics/trackers/utils/kalman_filter.py +85 -42
  98. ultralytics/trackers/utils/matching.py +8 -7
  99. ultralytics/utils/__init__.py +173 -152
  100. ultralytics/utils/autobatch.py +10 -10
  101. ultralytics/utils/benchmarks.py +76 -86
  102. ultralytics/utils/callbacks/__init__.py +1 -1
  103. ultralytics/utils/callbacks/base.py +29 -29
  104. ultralytics/utils/callbacks/clearml.py +51 -43
  105. ultralytics/utils/callbacks/comet.py +81 -66
  106. ultralytics/utils/callbacks/dvc.py +33 -26
  107. ultralytics/utils/callbacks/hub.py +44 -26
  108. ultralytics/utils/callbacks/mlflow.py +31 -24
  109. ultralytics/utils/callbacks/neptune.py +35 -25
  110. ultralytics/utils/callbacks/raytune.py +9 -4
  111. ultralytics/utils/callbacks/tensorboard.py +16 -11
  112. ultralytics/utils/callbacks/wb.py +39 -33
  113. ultralytics/utils/checks.py +189 -141
  114. ultralytics/utils/dist.py +15 -12
  115. ultralytics/utils/downloads.py +112 -96
  116. ultralytics/utils/errors.py +1 -1
  117. ultralytics/utils/files.py +11 -11
  118. ultralytics/utils/instance.py +22 -22
  119. ultralytics/utils/loss.py +117 -67
  120. ultralytics/utils/metrics.py +224 -158
  121. ultralytics/utils/ops.py +38 -28
  122. ultralytics/utils/patches.py +3 -3
  123. ultralytics/utils/plotting.py +217 -120
  124. ultralytics/utils/tal.py +19 -13
  125. ultralytics/utils/torch_utils.py +138 -109
  126. ultralytics/utils/triton.py +12 -10
  127. ultralytics/utils/tuner.py +49 -47
  128. {ultralytics-8.0.238.dist-info → ultralytics-8.0.239.dist-info}/METADATA +2 -1
  129. ultralytics-8.0.239.dist-info/RECORD +188 -0
  130. ultralytics-8.0.238.dist-info/RECORD +0 -188
  131. {ultralytics-8.0.238.dist-info → ultralytics-8.0.239.dist-info}/LICENSE +0 -0
  132. {ultralytics-8.0.238.dist-info → ultralytics-8.0.239.dist-info}/WHEEL +0 -0
  133. {ultralytics-8.0.238.dist-info → ultralytics-8.0.239.dist-info}/entry_points.txt +0 -0
  134. {ultralytics-8.0.238.dist-info → ultralytics-8.0.239.dist-info}/top_level.txt +0 -0
@@ -6,12 +6,9 @@ from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir
6
6
  from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS
7
7
 
8
8
 
9
- def run_ray_tune(model,
10
- space: dict = None,
11
- grace_period: int = 10,
12
- gpu_per_trial: int = None,
13
- max_samples: int = 10,
14
- **train_args):
9
+ def run_ray_tune(
10
+ model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args
11
+ ):
15
12
  """
16
13
  Runs hyperparameter tuning using Ray Tune.
17
14
 
@@ -38,12 +35,12 @@ def run_ray_tune(model,
38
35
  ```
39
36
  """
40
37
 
41
- LOGGER.info('💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune')
38
+ LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
42
39
  if train_args is None:
43
40
  train_args = {}
44
41
 
45
42
  try:
46
- subprocess.run('pip install ray[tune]'.split(), check=True)
43
+ subprocess.run("pip install ray[tune]".split(), check=True)
47
44
 
48
45
  import ray
49
46
  from ray import tune
@@ -56,33 +53,34 @@ def run_ray_tune(model,
56
53
  try:
57
54
  import wandb
58
55
 
59
- assert hasattr(wandb, '__version__')
56
+ assert hasattr(wandb, "__version__")
60
57
  except (ImportError, AssertionError):
61
58
  wandb = False
62
59
 
63
60
  default_space = {
64
61
  # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
65
- 'lr0': tune.uniform(1e-5, 1e-1),
66
- 'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
67
- 'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
68
- 'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
69
- 'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
70
- 'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum
71
- 'box': tune.uniform(0.02, 0.2), # box loss gain
72
- 'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
73
- 'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
74
- 'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
75
- 'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
76
- 'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg)
77
- 'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction)
78
- 'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain)
79
- 'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg)
80
- 'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
81
- 'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability)
82
- 'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability)
83
- 'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability)
84
- 'mixup': tune.uniform(0.0, 1.0), # image mixup (probability)
85
- 'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability)
62
+ "lr0": tune.uniform(1e-5, 1e-1),
63
+ "lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
64
+ "momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
65
+ "weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
66
+ "warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
67
+ "warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum
68
+ "box": tune.uniform(0.02, 0.2), # box loss gain
69
+ "cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
70
+ "hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
71
+ "hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
72
+ "hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
73
+ "degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg)
74
+ "translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction)
75
+ "scale": tune.uniform(0.0, 0.9), # image scale (+/- gain)
76
+ "shear": tune.uniform(0.0, 10.0), # image shear (+/- deg)
77
+ "perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
78
+ "flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability)
79
+ "fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability)
80
+ "mosaic": tune.uniform(0.0, 1.0), # image mixup (probability)
81
+ "mixup": tune.uniform(0.0, 1.0), # image mixup (probability)
82
+ "copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability)
83
+ }
86
84
 
87
85
  # Put the model in ray store
88
86
  task = model.task
@@ -107,35 +105,39 @@ def run_ray_tune(model,
107
105
  # Get search space
108
106
  if not space:
109
107
  space = default_space
110
- LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.')
108
+ LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.")
111
109
 
112
110
  # Get dataset
113
- data = train_args.get('data', TASK2DATA[task])
114
- space['data'] = data
115
- if 'data' not in train_args:
111
+ data = train_args.get("data", TASK2DATA[task])
112
+ space["data"] = data
113
+ if "data" not in train_args:
116
114
  LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".')
117
115
 
118
116
  # Define the trainable function with allocated resources
119
- trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0})
117
+ trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0})
120
118
 
121
119
  # Define the ASHA scheduler for hyperparameter search
122
- asha_scheduler = ASHAScheduler(time_attr='epoch',
123
- metric=TASK2METRIC[task],
124
- mode='max',
125
- max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100,
126
- grace_period=grace_period,
127
- reduction_factor=3)
120
+ asha_scheduler = ASHAScheduler(
121
+ time_attr="epoch",
122
+ metric=TASK2METRIC[task],
123
+ mode="max",
124
+ max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100,
125
+ grace_period=grace_period,
126
+ reduction_factor=3,
127
+ )
128
128
 
129
129
  # Define the callbacks for the hyperparameter search
130
- tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else []
130
+ tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else []
131
131
 
132
132
  # Create the Ray Tune hyperparameter search tuner
133
- tune_dir = get_save_dir(DEFAULT_CFG, name='tune').resolve() # must be absolute dir
133
+ tune_dir = get_save_dir(DEFAULT_CFG, name="tune").resolve() # must be absolute dir
134
134
  tune_dir.mkdir(parents=True, exist_ok=True)
135
- tuner = tune.Tuner(trainable_with_resources,
136
- param_space=space,
137
- tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
138
- run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir))
135
+ tuner = tune.Tuner(
136
+ trainable_with_resources,
137
+ param_space=space,
138
+ tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
139
+ run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir),
140
+ )
139
141
 
140
142
  # Run the hyperparameter search
141
143
  tuner.fit()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.0.238
3
+ Version: 8.0.239
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -44,6 +44,7 @@ Requires-Dist: py-cpuinfo
44
44
  Requires-Dist: thop >=0.1.1
45
45
  Requires-Dist: pandas >=1.1.4
46
46
  Requires-Dist: seaborn >=0.11.0
47
+ Requires-Dist: hub-sdk >=0.0.2
47
48
  Provides-Extra: dev
48
49
  Requires-Dist: ipython ; extra == 'dev'
49
50
  Requires-Dist: check-manifest ; extra == 'dev'
@@ -0,0 +1,188 @@
1
+ ultralytics/__init__.py,sha256=HhJiJvTjw9BtF4PvoxUMHi0H78bCBN6r7rHKHyIk7H0,531
2
+ ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
+ ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
+ ultralytics/cfg/__init__.py,sha256=VxZT4VAUAOly8Zc48pPM3pwKNDhRXCKyryS5B5X7Tns,20717
5
+ ultralytics/cfg/default.yaml,sha256=fXBQCccyGRnLePGq-3GSKohK5qJpPyqPqUy7dRLmaGM,8196
6
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=UDZRtNB-Ia68850fMjodbGTTcvJnopEsZ6DDe2qGbu0,2929
7
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=tFSOTOi3w7lv54Dht0HXtWLqx4jKf_AjpFkwtE2p7Zo,1197
8
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=X7iur0KOdDYofKw25FMDQgjPr62DvSRCtxdifSbWebo,1167
9
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=UnNRj348vxherTWaOKwzq7948gPZ4IC9gMHCYa0zi00,2060
10
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=CQxQkT6LdywQzAMNAtdv5kUTI7z516NocebUMTDcK_I,42513
11
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=nTcfSdc_bBY8uKuyYAZRYjrHSpV4-EcwR7HNZq247lM,9329
12
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=mvHmdb0s6dbYifUSxxqtdr9N4-LFPXKr3JWoRNybXwE,2499
13
+ ultralytics/cfg/datasets/VOC.yaml,sha256=9A_FzOCY0iFo61vyVz4erfbtWy44PJWMVjI1xV35Y3w,3657
14
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=BIrrWOiyhHa00Yo-OCo_v8d0BoBSyRkY4DTPeB2NlQE,3079
15
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=w3VKlL8M7SjLOdJb3YnIyUlx0KLZw_V_H-FACQibWfk,1608
16
+ ultralytics/cfg/datasets/coco.yaml,sha256=TyO0WciW91SkoeNP6yX-mX8EGQfLHhWrqpC7CKDGWOg,2589
17
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=Zi6SR-SGKjgkVhXngvGtd0__Vs4Moe2LcwmKrKgiPzY,1931
18
+ ultralytics/cfg/datasets/coco128.yaml,sha256=UhBuqpROmmhYTLLIXYIhSnT0Uo-pUsWT2x4200rjKBo,1914
19
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=mEGAoP_lo26dqXojNUnj7pv7bA4J9l3d7TI9BieZAFk,967
20
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=A5WI0oNOmJouOW5NSxlKtfDDw_pORMw3Ofbsugwsaws,1871
21
+ ultralytics/cfg/datasets/coco8.yaml,sha256=zw8H49_J266ymlAGgf4yl4Z2DejA72uaKHMOTCwCloo,1846
22
+ ultralytics/cfg/datasets/dota8.yaml,sha256=gMmuz2hjCLw-GQ649mng5qDdqC5IENrPQwj9X_sNLyQ,1045
23
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=-Jt6pLrkxJrsQDIkzxqhCJHW8WoYq9OzKDTXjGuZAQc,12499
24
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=WNOaxUM628ewNQbqz1lPRxhYpIDLktgAWwtOaiu3r98,869
25
+ ultralytics/cfg/datasets/xView.yaml,sha256=v3H7uGibhN_RMHPCchqN_CikH1EtGIXTZuhDBKvGpjs,5222
26
+ ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Vi0qtzSupvrWQzYWmHCiOc6kEvuKkRbAbqcdanKtEz8,1959
27
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=6-D9oVLN-KDAxYMdpl_C5VN_9P9RcqCsgNtNLSlV9b4,1533
28
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=vwpY1mazBW2xHcTAparUlXo0cX7_CopcBRRI0ojw2-g,1531
29
+ ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=pVc1eYW_1VFyTlA_fMfj712CVwmG0_4ZyOEpZbMQwpE,2166
30
+ ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=SK-lrXpjXlOpod0VJIV_T3kQ_NGRONP6Ma1HFako3NA,1550
31
+ ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=RcnGwbby2WtgS9cZ3jBybQuAHBDMpgMADPb0x6_bDM0,1252
32
+ ultralytics/cfg/models/v3/yolov3.yaml,sha256=wXUDtWndgxIFbuaoeuY5tFcYZv87ZqOlrdhLKEToiuw,1537
33
+ ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=3nY2FYH2lz8pfb3J3kFcY09-075f2ErF_p_i9wlyXqE,1923
34
+ ultralytics/cfg/models/v5/yolov5.yaml,sha256=rsBD3nnBQNMcmV7X-twn2BevDGIChErdIcB-3eR-10Y,1550
35
+ ultralytics/cfg/models/v6/yolov6.yaml,sha256=rXb2qPqpm14WVLV4nh8ib-fEjhRa_nuMiCkGdelXbDo,1735
36
+ ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=rO8Eq8OuTQUkYMQi2AtNgVvtsPHYNxEXr9xT29k-IG8,920
37
+ ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=-lUAC6ZCnqoh6mzxiwHABm4mt9bMZWfcmD3qFKXeeTE,2311
38
+ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=RIOVsIzaTKcB2AqbswRKPEtVEUHvA_GTyCzSGzAQQoc,2380
39
+ ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=y2MGNR0_IzbLqUDjG1IYKNHHLcH1MWkwGzc2IczJsVM,2120
40
+ ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=jDb5KVG64UBeq1BzDLOtOMnve3uPdXPe-yfYi2EAWEI,1923
41
+ ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=jgBsa0-uNwtDHGHJWLVEwuFwxq_twpl9ihRIc4b6bk8,1751
42
+ ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=oGN0OQ9TtVnttzLd9frFVav8dPxe3OuUA8p4PFRrQmM,1856
43
+ ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=4sGjrH3lJ7i19Dq1aedCofUI3RyOsn3v98MzWyGovZ8,1949
44
+ ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=kfQnVeZK5sfdRGKuBUpNmIUxXO89qWchQUG-xQHkDDk,1580
45
+ ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=7jfhW8JwL2HojeNR4PYNvsB3rJkiGBMA7VrZ2xdHJRs,1920
46
+ ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=bSPxw96Az9kibJ4D-5pvuhOMrKe1z7RrPuKqTtLFlOw,1866
47
+ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=QvXQOvQsyYj2GAB-ePB48g4N9jW5JdIkeH800Ev64uI,1490
48
+ ultralytics/cfg/models/v8/yolov8.yaml,sha256=A01V3w3qsOBgAAT9e2AwxXhU_SALEI2IvdoqcPOTnxc,1913
49
+ ultralytics/cfg/trackers/botsort.yaml,sha256=N3ddRUl2uOvJI_Q7TBIw88MyaeV240X_wlx5Z6IiUhU,890
50
+ ultralytics/cfg/trackers/bytetrack.yaml,sha256=FFpmCj7E0xpOde7R-W3zUVcy6hKCHAij9qwp9SAp-pI,694
51
+ ultralytics/data/__init__.py,sha256=A3i0n-2MnNzSdYqhM8xynBO2HJNKGSXWhPvRyO0_u1I,409
52
+ ultralytics/data/annotator.py,sha256=jPiNaHf701zYt_Wy2PKvzFBsDGAF34elvGYMO_H7r-U,2122
53
+ ultralytics/data/augment.py,sha256=3GAt-oU2yPXioj4oUDwKPJ6Dpp3img0VoHz2YOUPjTE,52003
54
+ ultralytics/data/base.py,sha256=_xuqvUJVVbxKYZMk0RmHot52vZVT6Q9BIybsPASJH5Q,13217
55
+ ultralytics/data/build.py,sha256=1zpiak_KZC0yeYHvLSRRaaWx7_H4Rcc7M8LbhBI1He0,6448
56
+ ultralytics/data/converter.py,sha256=sju4NdjyKAtdKHMgYDD7yBKmP0gd3Q96PI4UInyi2Q0,13840
57
+ ultralytics/data/dataset.py,sha256=giPQlRLbT8bsbqyTx5rNd5BXrIWGz8lFccQfiT8AzB0,16505
58
+ ultralytics/data/loaders.py,sha256=loSxGXzfzxrxuL3pPqTcCXoqhI3BP5RrvjIjBnaK7Dk,22300
59
+ ultralytics/data/split_dota.py,sha256=wmT2MpwwxY5LUN_3g4nqEm2Gqv5LpbnjexfLDpenRLw,10134
60
+ ultralytics/data/utils.py,sha256=DHP14WwUF7uFPOpdUkH-gEC8Dgzl1E0Z_DXiLHx-gPE,29509
61
+ ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
62
+ ultralytics/data/explorer/explorer.py,sha256=ilMP5Yj5OojMav5Q5JpZfZPKWHIcLv5H3VrVTojlTIg,18643
63
+ ultralytics/data/explorer/utils.py,sha256=JZRk9LHHZLgknWPUDBQn-90xNpkujK0yKryC3d1O1Cw,7068
64
+ ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
65
+ ultralytics/data/explorer/gui/dash.py,sha256=O6TGD3y0DWZuwaRUkSKpB5mXf-tSw7p-O_KE8kiZP2k,8903
66
+ ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
67
+ ultralytics/engine/exporter.py,sha256=iNzyKvBXLyZDwkauKp6CnUpTNRb8p6ulxv5xYWwhXq0,51352
68
+ ultralytics/engine/model.py,sha256=RVumHGOBFpBFjjFAeyErxq00Vi_rRbYXMuEeUK7xmUw,21144
69
+ ultralytics/engine/predictor.py,sha256=ADoOz15V7AGHpqHqUZY_6kZHEw0pjbbZh5UlHwfpVFU,17716
70
+ ultralytics/engine/results.py,sha256=S4T2EqTeRrxUzR3ZcI5XJO_bWSaWO_roqGfqf2hCdZo,27345
71
+ ultralytics/engine/trainer.py,sha256=RHWzp1xe7ZFulVC6WroATjBnnr_53EBB3KXl6a9Jjro,34296
72
+ ultralytics/engine/tuner.py,sha256=yJTecrgsZbeE4XC8iJWoUA_DKACUnDSt8N1V_PTeCcc,11758
73
+ ultralytics/engine/validator.py,sha256=U7PHoPE_j3tqgO5s3GW0BzGO3MOAROANZmophpfpL-0,14443
74
+ ultralytics/hub/__init__.py,sha256=d1XiZjFITamSPVVj-XuSxf33AVYc8HDtX0XW9eMtnS8,4959
75
+ ultralytics/hub/auth.py,sha256=7HmomgpGk0s0WvseCSkU6p9FyP3ah6oxZ6VFohKzPYM,5385
76
+ ultralytics/hub/session.py,sha256=0AJio1r3Ii2G1LTONtydYceyXQR1lAfFDgI51qukocY,13525
77
+ ultralytics/hub/utils.py,sha256=4pcoMotOCUETmTt0uUgecqdBIPBprnmZVFfDAVCbno8,9557
78
+ ultralytics/models/__init__.py,sha256=-i1eeXMAglo0zMRGG3phmdoJNO7OJQZgyj8j0t7eiDE,173
79
+ ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
80
+ ultralytics/models/fastsam/model.py,sha256=uKzkxu3RUhYZScqXS6Gc0cNIQ6E2PykbceRc52s7hn8,1055
81
+ ultralytics/models/fastsam/predict.py,sha256=0WHUFrqHUNy1cTNpLKsN0FKqLKCvr7fHU6pp91_QVg0,4121
82
+ ultralytics/models/fastsam/prompt.py,sha256=vVBpYQfJswDYRrHpQpWObMAyYcPD-OurEyTxna7J7K4,16190
83
+ ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
84
+ ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
85
+ ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
86
+ ultralytics/models/nas/model.py,sha256=DheQlP2m_-_OLoLUFw8k4OQ1Fr0g8gS8I0PwkmqIBBs,2865
87
+ ultralytics/models/nas/predict.py,sha256=O7f92KE6hi5DENTRzXiMsm-qK-ndVoO1Bs3dugp8aLA,2136
88
+ ultralytics/models/nas/val.py,sha256=u35kVTVgGxK_rbHytUvFB4F3_nZn4MPv3PbZLFWSmkQ,1680
89
+ ultralytics/models/rtdetr/__init__.py,sha256=AZga1C3qlGTtgpAupDW4doijq5aZlQeF8e55_DP2Uas,197
90
+ ultralytics/models/rtdetr/model.py,sha256=fVrj6Jgav6M5ZNRR6QQupQuXBmmbDQZgq9KKfEifBL0,2167
91
+ ultralytics/models/rtdetr/predict.py,sha256=pmjUlcUTqxoBNa5tW_EuFjh7ldXSm99Qnk5MEaJF0DQ,3425
92
+ ultralytics/models/rtdetr/train.py,sha256=20AFYVW9NPxw0-cp-sRdIovWidFL0IIhJRv2oZjkPlM,3685
93
+ ultralytics/models/rtdetr/val.py,sha256=hds9DKp3QTPZAmxfPdqGlv_TjR1iyneM-4fayQDuEXo,5441
94
+ ultralytics/models/sam/__init__.py,sha256=9A1iyfPN_ncqq3TMExe_-uPoARjEX3psoHEI1xMG2VE,144
95
+ ultralytics/models/sam/amg.py,sha256=w7mLxojmI50t6yPzx034WdQJUipMpEtHyvhXxFBo46A,7915
96
+ ultralytics/models/sam/build.py,sha256=-i-vj0egQ2idBZUf3Xf-H89QeToM3ky0HTxKP_KEXTs,4944
97
+ ultralytics/models/sam/model.py,sha256=t4J6OcpbQdLM1h92O4MZ6ono_ITF-TlGCNSy561Tpvc,4707
98
+ ultralytics/models/sam/predict.py,sha256=k7rZnQJjPxRhGr80uu4buBjWW9OZcbYy1qXSyIsSdOs,23633
99
+ ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
100
+ ultralytics/models/sam/modules/decoders.py,sha256=Axv7aPWJmGCe4APNNUky8ZK8zxPj6TpvuW5qL24Z47Y,7815
101
+ ultralytics/models/sam/modules/encoders.py,sha256=CSCgE59R0WM08FxpzOyGsYqbllcOBtkBPn2e6BXrGPA,24785
102
+ ultralytics/models/sam/modules/sam.py,sha256=zC4l4kcrIQD_ekczjl2l6dgaABqqjROZxQ-FDb-itt0,2783
103
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=PRHsOHKMNfi5SLtPkJQeU49s7SDTkhmN3RHh3J2Bt24,29136
104
+ ultralytics/models/sam/modules/transformer.py,sha256=-wboK4gNKOJMP8J8ACN2JoK-xze40NZG696HsxdYObs,11170
105
+ ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
106
+ ultralytics/models/utils/loss.py,sha256=SC3hbnIt_cQNNtdeMWpTgfl4tlIsPsQacUANDXrC-Cc,15135
107
+ ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4GM4,13244
108
+ ultralytics/models/yolo/__init__.py,sha256=QjNcjG9I6pQAV2xONRP_t3PkyZtpgy-a6yR3Ef4R7ok,207
109
+ ultralytics/models/yolo/model.py,sha256=DdisvtV1Hjj37X5kObjwTwrFzxX3Xb-oB2WBPmh9tpM,1729
110
+ ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
111
+ ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
112
+ ultralytics/models/yolo/classify/train.py,sha256=-DOLOM7OCN3RvH6iv8k7mMh7BDehsfJCO2LiwXMM0vU,6832
113
+ ultralytics/models/yolo/classify/val.py,sha256=EP_hjRExXgdI4xojTKvj_YeNdaz_i2CoUzorl55r0OA,4861
114
+ ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
115
+ ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
116
+ ultralytics/models/yolo/detect/train.py,sha256=zvxmevSiWNq8rdlGYeM3SZkMCcFh0qFQN9HjwxcGjJw,6306
117
+ ultralytics/models/yolo/detect/val.py,sha256=6t2uxz1Vg4DYcCDWlpMDvWndthWd3ud2QAJqzJQmQac,13631
118
+ ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
119
+ ultralytics/models/yolo/obb/predict.py,sha256=faS941nIeEdiCapQBtP80C2lGv9TYwzTFt7Vxd3-Ti8,1977
120
+ ultralytics/models/yolo/obb/train.py,sha256=ay4Z83CyWtw8GeKyhFvfg94iZHUDz0qmCPCAFc2xJhU,1477
121
+ ultralytics/models/yolo/obb/val.py,sha256=b2_h_ZiUehemrPyGZ3L79AEE0ROvtXVOpwDoOrTjV84,9154
122
+ ultralytics/models/yolo/pose/__init__.py,sha256=OGvxN3LqJot2h8GX1csJ1KErsHnDKsm33Ce6ZBU9Lr4,199
123
+ ultralytics/models/yolo/pose/predict.py,sha256=illk4qyZvybc_XMo9TKT54FIkizx91MYviE5c5OwBTQ,2404
124
+ ultralytics/models/yolo/pose/train.py,sha256=ki8bkT8WfIFjTKf1ofeRDqeIqmk6A8a7AFog7nM-otM,2926
125
+ ultralytics/models/yolo/pose/val.py,sha256=w_VIKzGcj_0CRNObPqk0NnDOfRN-xl2C6uwpFOkJH3Q,10607
126
+ ultralytics/models/yolo/segment/__init__.py,sha256=mSbKOE8BnHL7PL2nCOVG7dRM7CI6hJezFPPwZFjEmy8,247
127
+ ultralytics/models/yolo/segment/predict.py,sha256=ycT8Z6U8N-4x94YQxM1nZc6rBWbF2-ErGmO7akMNtXM,2491
128
+ ultralytics/models/yolo/segment/train.py,sha256=aOQpDIptZfKSl9mFa6B-3W3QccMRlmBINBkI9K8-3sQ,2298
129
+ ultralytics/models/yolo/segment/val.py,sha256=OPLzdhD5VFuIVjQObExwEdjR7OxDrj0hqNailh3XnkI,11709
130
+ ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
131
+ ultralytics/nn/autobackend.py,sha256=42BYn6nKan5TaOjYa3sKg24RbaEWdSUVljRtqD7pyGA,27088
132
+ ultralytics/nn/tasks.py,sha256=O_ti6RM0kN66Cn0Nlg6qfGJ3HYHaLuATqemmeo9K_ug,38371
133
+ ultralytics/nn/modules/__init__.py,sha256=ejmeNK9L-yGUX3pGr_1-HlPcCdrf7XPLFVZ3OR0mmno,1954
134
+ ultralytics/nn/modules/block.py,sha256=1bi5rRzHNTg10VlRdpRP_xjTJHEIfMQ1FY2nIgHKmws,14488
135
+ ultralytics/nn/modules/conv.py,sha256=ndUYNL2f9DK41y1vVbtEusMByXy-LMMsBKlcWjRQ9Z8,12722
136
+ ultralytics/nn/modules/head.py,sha256=lLI7oZEQybT_iBMHRYWEqAOZ3wOOMxm9adRnDJyIMHQ,19536
137
+ ultralytics/nn/modules/transformer.py,sha256=GiHdW306OcsUilSwSOtMufvwK798Sc9pG9MiFAt2Ay4,17920
138
+ ultralytics/nn/modules/utils.py,sha256=ogkQJdpgsMwAR_6HzpPIbmnkxGxJscughWltxlaOgnw,3198
139
+ ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
140
+ ultralytics/solutions/ai_gym.py,sha256=lzNYFRhHTgpRpcvm_wo8IiJSyWuWepcwQuMQhjf3x8U,5691
141
+ ultralytics/solutions/distance_calculation.py,sha256=_giqHm26K4fHHTc2rLWbs_f5DrX53OgmqXRoxpSQ_KI,6888
142
+ ultralytics/solutions/heatmap.py,sha256=2Ubj03kP1Xt4ltWHmzRLw-3Wq5xIFjT8xHSQwm4LkIw,10983
143
+ ultralytics/solutions/object_counter.py,sha256=OCWaOzEuYoRura4JkBEJ8ykQ0VSylNTVJkxeQ9mAuuo,10236
144
+ ultralytics/solutions/speed_estimation.py,sha256=k8gwZszYfxyoN0WNYc1kuDQuJHG4J5b3v-xwrFjal1c,6762
145
+ ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
146
+ ultralytics/trackers/basetrack.py,sha256=L-PNIwA6c4XRzVXKKVQVZFV6eNxnwMqRZvUN5__2Z4E,3671
147
+ ultralytics/trackers/bot_sort.py,sha256=39AvhYVbT7izF3--rX_e6Lhgb5czTA23gw6AgnNcRds,8601
148
+ ultralytics/trackers/byte_tracker.py,sha256=OHChGJWNyl0yhtxd2hj7di2j2z3orY1GSIVrGDVRaL8,18350
149
+ ultralytics/trackers/track.py,sha256=-fyy5Xem5e7CkoVM1XWqht2LaBQj6TcHwRq_l1-WviM,2997
150
+ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
151
+ ultralytics/trackers/utils/gmc.py,sha256=CWCskJJeB6cKMXABl2MhBw3M2kdeM-_RAHyj5QR7vrU,13949
152
+ ultralytics/trackers/utils/kalman_filter.py,sha256=JN1sAcfJZy8fTZxc8w3jUJnGQDKtgAL__p4nTR6RM2I,15168
153
+ ultralytics/trackers/utils/matching.py,sha256=FC3qZ5VIJov5F3A1coUB5b80s9kNF_9sunFeprtJD1Y,5038
154
+ ultralytics/utils/__init__.py,sha256=WphOGqOoNGBGh5QBL6yQxS3eQIKahKkMPaUszvGXack,34272
155
+ ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
156
+ ultralytics/utils/benchmarks.py,sha256=wF0oWMM2satUASGyqdmnFt5Gixe0Twd9KQbeXkpB9gg,17527
157
+ ultralytics/utils/checks.py,sha256=NbjVW3vH48aExgK2TYTDcxFe3OsSwxIRyZFcOI-N2Qk,27580
158
+ ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
159
+ ultralytics/utils/downloads.py,sha256=JTL4Y97vrolcqDeHAszPcTxVKE6ohDNLiJB399q1MNg,21189
160
+ ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
161
+ ultralytics/utils/files.py,sha256=V1cD9sC3hGd5uNVdOa4uZGySGjnsXC6Lh7mjqI_UDxo,5275
162
+ ultralytics/utils/instance.py,sha256=fPClvPPtTk8VeXWiRv90DrFk1j1lTUKdYJtpZKUDDtA,15575
163
+ ultralytics/utils/loss.py,sha256=aMi7OBZS2c63KSeiWsYvDaykbLu5iTy3rR2Wt13-NCg,32575
164
+ ultralytics/utils/metrics.py,sha256=h0aQNyW2_eud3M-7KT8C1P15GeJkf9Sw9KoASXMPim0,53176
165
+ ultralytics/utils/ops.py,sha256=55SHUZL_BWNs6lRar9Nm_loJyDxNeDZQuQl5aCXsxgQ,32478
166
+ ultralytics/utils/patches.py,sha256=vFhjxtoZTT1zfj7ZkifAlZpFH2i_gEkz9svR1U3ZCEI,2233
167
+ ultralytics/utils/plotting.py,sha256=ByJ-2f9HXojmA5jWZhn71u6MMiMkIQyfCRUSqW6MHwc,42806
168
+ ultralytics/utils/tal.py,sha256=ADnEiWNV2-sb0ZVwgg6EbdFBgNCDiUrX2aG0zjMh2dM,16032
169
+ ultralytics/utils/torch_utils.py,sha256=Byij6JEKJeQE_G00wWpRJi0eorSo0xwXbwHJKzt_Jsk,25141
170
+ ultralytics/utils/triton.py,sha256=tX3iEHFVBLJctnn9gybVk7PHk5kMkkLxwwAyfeWiT8s,3934
171
+ ultralytics/utils/tuner.py,sha256=S5xet_s0K8T2pP71YVEFVGJnm0YoGDqJP0Ycr9PDlfY,6004
172
+ ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
173
+ ultralytics/utils/callbacks/base.py,sha256=A8H6jXnPQJfOxA1ByTBWF2ePDs5ldccUabXG0u5BfRI,5776
174
+ ultralytics/utils/callbacks/clearml.py,sha256=K7bDf5tS8xL4KeFMkoVDL2kKkil3f4qoKy8KfZkD854,5897
175
+ ultralytics/utils/callbacks/comet.py,sha256=eLTIGTdsAdZYiXAhPhCToW0k4l7qqn_7I6wfW9-EOkg,13886
176
+ ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
177
+ ultralytics/utils/callbacks/hub.py,sha256=bbtJLMTFADXFQXqu8k2xdqjUzvaW3CcCCNd8uE6m8R8,3431
178
+ ultralytics/utils/callbacks/mlflow.py,sha256=x3_au37OP23MeWNncoBFO2NIiwWRzZAQ0KdZ-Q0sRkg,4848
179
+ ultralytics/utils/callbacks/neptune.py,sha256=aU8xfwWSW-I6cPFSP-6eCcPeS1kIFTvOlZyqr-uhbfw,3783
180
+ ultralytics/utils/callbacks/raytune.py,sha256=6OgGNuC35F29lw8Dl_d0lue4-iBR6dqrBVQnIRQDx4E,632
181
+ ultralytics/utils/callbacks/tensorboard.py,sha256=duA3_g-avX14n0x5dCDNRlcwDujERemvlU4ZaRXW93Y,2934
182
+ ultralytics/utils/callbacks/wb.py,sha256=03ACY2YwpTRigD0ZQH7_zlpwMdGw0lt23zX4d5Zaz28,6650
183
+ ultralytics-8.0.239.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
184
+ ultralytics-8.0.239.dist-info/METADATA,sha256=AoAI-slVaGdo0F5if-r3LjBjBPFvvU31o_3yOMuVLX4,39414
185
+ ultralytics-8.0.239.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
186
+ ultralytics-8.0.239.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
187
+ ultralytics-8.0.239.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
188
+ ultralytics-8.0.239.dist-info/RECORD,,
@@ -1,188 +0,0 @@
1
- ultralytics/__init__.py,sha256=OrD8iW7avCdLBd43fGkoEVkLOsGg84tJn09x6KC74WQ,531
2
- ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
- ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
- ultralytics/cfg/__init__.py,sha256=123UY_uf8JEj2qIRkAJt-C3EMGnTQrdW5xei77_JUS4,20441
5
- ultralytics/cfg/default.yaml,sha256=fXBQCccyGRnLePGq-3GSKohK5qJpPyqPqUy7dRLmaGM,8196
6
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=UDZRtNB-Ia68850fMjodbGTTcvJnopEsZ6DDe2qGbu0,2929
7
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=tFSOTOi3w7lv54Dht0HXtWLqx4jKf_AjpFkwtE2p7Zo,1197
8
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=X7iur0KOdDYofKw25FMDQgjPr62DvSRCtxdifSbWebo,1167
9
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=UnNRj348vxherTWaOKwzq7948gPZ4IC9gMHCYa0zi00,2060
10
- ultralytics/cfg/datasets/ImageNet.yaml,sha256=CQxQkT6LdywQzAMNAtdv5kUTI7z516NocebUMTDcK_I,42513
11
- ultralytics/cfg/datasets/Objects365.yaml,sha256=nTcfSdc_bBY8uKuyYAZRYjrHSpV4-EcwR7HNZq247lM,9329
12
- ultralytics/cfg/datasets/SKU-110K.yaml,sha256=mvHmdb0s6dbYifUSxxqtdr9N4-LFPXKr3JWoRNybXwE,2499
13
- ultralytics/cfg/datasets/VOC.yaml,sha256=9A_FzOCY0iFo61vyVz4erfbtWy44PJWMVjI1xV35Y3w,3657
14
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=BIrrWOiyhHa00Yo-OCo_v8d0BoBSyRkY4DTPeB2NlQE,3079
15
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=w3VKlL8M7SjLOdJb3YnIyUlx0KLZw_V_H-FACQibWfk,1608
16
- ultralytics/cfg/datasets/coco.yaml,sha256=TyO0WciW91SkoeNP6yX-mX8EGQfLHhWrqpC7CKDGWOg,2589
17
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=Zi6SR-SGKjgkVhXngvGtd0__Vs4Moe2LcwmKrKgiPzY,1931
18
- ultralytics/cfg/datasets/coco128.yaml,sha256=UhBuqpROmmhYTLLIXYIhSnT0Uo-pUsWT2x4200rjKBo,1914
19
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=mEGAoP_lo26dqXojNUnj7pv7bA4J9l3d7TI9BieZAFk,967
20
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=A5WI0oNOmJouOW5NSxlKtfDDw_pORMw3Ofbsugwsaws,1871
21
- ultralytics/cfg/datasets/coco8.yaml,sha256=zw8H49_J266ymlAGgf4yl4Z2DejA72uaKHMOTCwCloo,1846
22
- ultralytics/cfg/datasets/dota8.yaml,sha256=gMmuz2hjCLw-GQ649mng5qDdqC5IENrPQwj9X_sNLyQ,1045
23
- ultralytics/cfg/datasets/open-images-v7.yaml,sha256=-Jt6pLrkxJrsQDIkzxqhCJHW8WoYq9OzKDTXjGuZAQc,12499
24
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=WNOaxUM628ewNQbqz1lPRxhYpIDLktgAWwtOaiu3r98,869
25
- ultralytics/cfg/datasets/xView.yaml,sha256=v3H7uGibhN_RMHPCchqN_CikH1EtGIXTZuhDBKvGpjs,5222
26
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Vi0qtzSupvrWQzYWmHCiOc6kEvuKkRbAbqcdanKtEz8,1959
27
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=6-D9oVLN-KDAxYMdpl_C5VN_9P9RcqCsgNtNLSlV9b4,1533
28
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=vwpY1mazBW2xHcTAparUlXo0cX7_CopcBRRI0ojw2-g,1531
29
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=pVc1eYW_1VFyTlA_fMfj712CVwmG0_4ZyOEpZbMQwpE,2166
30
- ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=SK-lrXpjXlOpod0VJIV_T3kQ_NGRONP6Ma1HFako3NA,1550
31
- ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=RcnGwbby2WtgS9cZ3jBybQuAHBDMpgMADPb0x6_bDM0,1252
32
- ultralytics/cfg/models/v3/yolov3.yaml,sha256=wXUDtWndgxIFbuaoeuY5tFcYZv87ZqOlrdhLKEToiuw,1537
33
- ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=3nY2FYH2lz8pfb3J3kFcY09-075f2ErF_p_i9wlyXqE,1923
34
- ultralytics/cfg/models/v5/yolov5.yaml,sha256=rsBD3nnBQNMcmV7X-twn2BevDGIChErdIcB-3eR-10Y,1550
35
- ultralytics/cfg/models/v6/yolov6.yaml,sha256=rXb2qPqpm14WVLV4nh8ib-fEjhRa_nuMiCkGdelXbDo,1735
36
- ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=rO8Eq8OuTQUkYMQi2AtNgVvtsPHYNxEXr9xT29k-IG8,920
37
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=-lUAC6ZCnqoh6mzxiwHABm4mt9bMZWfcmD3qFKXeeTE,2311
38
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=RIOVsIzaTKcB2AqbswRKPEtVEUHvA_GTyCzSGzAQQoc,2380
39
- ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=y2MGNR0_IzbLqUDjG1IYKNHHLcH1MWkwGzc2IczJsVM,2120
40
- ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=jDb5KVG64UBeq1BzDLOtOMnve3uPdXPe-yfYi2EAWEI,1923
41
- ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=jgBsa0-uNwtDHGHJWLVEwuFwxq_twpl9ihRIc4b6bk8,1751
42
- ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=oGN0OQ9TtVnttzLd9frFVav8dPxe3OuUA8p4PFRrQmM,1856
43
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=4sGjrH3lJ7i19Dq1aedCofUI3RyOsn3v98MzWyGovZ8,1949
44
- ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=kfQnVeZK5sfdRGKuBUpNmIUxXO89qWchQUG-xQHkDDk,1580
45
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=7jfhW8JwL2HojeNR4PYNvsB3rJkiGBMA7VrZ2xdHJRs,1920
46
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=bSPxw96Az9kibJ4D-5pvuhOMrKe1z7RrPuKqTtLFlOw,1866
47
- ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=QvXQOvQsyYj2GAB-ePB48g4N9jW5JdIkeH800Ev64uI,1490
48
- ultralytics/cfg/models/v8/yolov8.yaml,sha256=A01V3w3qsOBgAAT9e2AwxXhU_SALEI2IvdoqcPOTnxc,1913
49
- ultralytics/cfg/trackers/botsort.yaml,sha256=N3ddRUl2uOvJI_Q7TBIw88MyaeV240X_wlx5Z6IiUhU,890
50
- ultralytics/cfg/trackers/bytetrack.yaml,sha256=FFpmCj7E0xpOde7R-W3zUVcy6hKCHAij9qwp9SAp-pI,694
51
- ultralytics/data/__init__.py,sha256=TWN-3tE7pPBkGkvAFZoSexBkCw24Fp49swcKeIylHlE,389
52
- ultralytics/data/annotator.py,sha256=8Ui_4H4dAU09BQ-gDwW4uqDVMxiKZzNIfF1s5ZvhGk0,2122
53
- ultralytics/data/augment.py,sha256=nUfV9F4FeE3rbMe8qeAi6xirOnntdcbs7yBXeOP1sGw,51951
54
- ultralytics/data/base.py,sha256=ltqBt-UFnnPlK_2E4nVvYjIAUkR9PAgW1kNdGN101m4,13309
55
- ultralytics/data/build.py,sha256=fEfECMKU1jBXAetVQ4KftLKc0GrKeF0BqT8mUstCSBI,6608
56
- ultralytics/data/converter.py,sha256=tbV_LVvkr4gkLTuNM2v0dQPBuOBH2pknKlB3ivagzQU,12505
57
- ultralytics/data/dataset.py,sha256=1Mp9pNuAaXrhidQryBnyuZegGHrmy1WJp33i5G744Fo,16616
58
- ultralytics/data/loaders.py,sha256=yDI0Xtb6IxpkU-fxdlPiBOY1FYDPEPDahre0rcgy2T8,22200
59
- ultralytics/data/split_dota.py,sha256=ksPKf972nAV2C0_OVJVcQKGJeJqFSroIhg7hste9ob0,10079
60
- ultralytics/data/utils.py,sha256=fVCAV86yyd1ANZKs9R4936BT0trmc5NI9bj6E4AYfIc,29529
61
- ultralytics/data/explorer/__init__.py,sha256=LfmDOOUa4EJMcW_-kIwrNzqMBDdspUf1bjLCyzNDUvs,70
62
- ultralytics/data/explorer/explorer.py,sha256=8ftXNNLsazfm_62urnLZqPDogsppTrQamNWYkwJIRY8,18247
63
- ultralytics/data/explorer/utils.py,sha256=FFCnLqfBF_YEmCMdnsgjSeceltpXti2uH2NmtF6svng,6918
64
- ultralytics/data/explorer/gui/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
65
- ultralytics/data/explorer/gui/dash.py,sha256=EwmL4lqijRJHYYGZxF2uKDW-PIR1mCl3cFvPoM5hdis,8067
66
- ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
67
- ultralytics/engine/exporter.py,sha256=5Lv_xWGHtrqa7QZr7l2J0lzJdPf-mz2Y98AXLwlMsjs,51308
68
- ultralytics/engine/model.py,sha256=rvD7wYUso5TRAJWvrXaJY5XOIKhfI22olAxzJgoReL4,20105
69
- ultralytics/engine/predictor.py,sha256=d6WBp4UaQZIoeyhytiferu1GPsYsSxG5m_86nMoyIyg,17833
70
- ultralytics/engine/results.py,sha256=bW3ntdsNgQaKtWVPAtkfkBiRNJnQAKXRfdY4NED5kAE,26752
71
- ultralytics/engine/trainer.py,sha256=7bx8oYg6XtgUD6OKRWLbXREvpewQdVXaQAnaSKVoS4A,34233
72
- ultralytics/engine/tuner.py,sha256=_9MAsXQwDtmDznqb6_cgk1DIo8FTwLgM3OTEifCxRp0,11715
73
- ultralytics/engine/validator.py,sha256=1-N1Fh563A4sD-sB1c3MiYX9PtJliZ-ta0c-sObUDfc,14453
74
- ultralytics/hub/__init__.py,sha256=iZzEg98gDEr2bfPZopHwnFIfDVDZ9a-yuAAkPKnn2hw,3685
75
- ultralytics/hub/auth.py,sha256=D_ffQgmWNfp-ccJ2guc76UgOcMRPEKzcOJI8AALZesk,5364
76
- ultralytics/hub/session.py,sha256=tnUz6R2JHxTBSSBMwCoEDteMNGARDay1Ecp6FN1ieEc,8423
77
- ultralytics/hub/utils.py,sha256=3zQhBCl8zHrqgHHOzVrcw7SoHtBj-GEynX2pNkLH6YU,9581
78
- ultralytics/models/__init__.py,sha256=RRIwQXcNlY3adevQs6mzD00OqejzASHro9TCSLNkwac,173
79
- ultralytics/models/fastsam/__init__.py,sha256=c3N-XQAJ9Mkw1WGw5gev4xXCUNiOp-_IgxonvqeYSVM,254
80
- ultralytics/models/fastsam/model.py,sha256=g3usRQyZgzGz06YIri1tB9FdSWJsXq195D6Ll2AAGpY,1055
81
- ultralytics/models/fastsam/predict.py,sha256=VKOI55m6mMNKD9Ox1gJLavWHvWKa9OFjaLdy3zQXtF4,4111
82
- ultralytics/models/fastsam/prompt.py,sha256=W1CeudGMVGmP5CLy9Wq_hMJzpkD8Vk1qIbGiQ-g5IdQ,16279
83
- ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
84
- ultralytics/models/fastsam/val.py,sha256=q6CowEk9Ob5Hvzbtz_H4dpXQOxMfuIJNPUG3L2A1qdw,1967
85
- ultralytics/models/nas/__init__.py,sha256=O7qvgqJqoLB1NXwjTNHMJHJRhDwNHS2P_oyUV_b1qq8,179
86
- ultralytics/models/nas/model.py,sha256=FvsafZK-3bJ5hCjUDdXQeNv-TI-7B-rjzWKP_K0PrLY,2864
87
- ultralytics/models/nas/predict.py,sha256=Ac8gwfzIdOFf6JKj261aLTcz5DOPOTpFH2JWTB69li0,2253
88
- ultralytics/models/nas/val.py,sha256=cgOWsKloCYYpzL94vzM6ENYRnAN0MeLGdHZ5OAUIBN4,1846
89
- ultralytics/models/rtdetr/__init__.py,sha256=1Zpc6ZcizFO0EMhP8X4m3DG27vDBX4aM4RX0rMSeo6E,197
90
- ultralytics/models/rtdetr/model.py,sha256=KhZ-smEQKpmZdEaSHft_EnRd-OZaebiVSz6Ue1tzipQ,2144
91
- ultralytics/models/rtdetr/predict.py,sha256=pmjUlcUTqxoBNa5tW_EuFjh7ldXSm99Qnk5MEaJF0DQ,3425
92
- ultralytics/models/rtdetr/train.py,sha256=9zoMg1kKik1DGUmeoekx2u25uPZVqIpCVBeUC3dOHJY,3798
93
- ultralytics/models/rtdetr/val.py,sha256=gSVynpopUMPZwn247w587597Ox1d_yhmpkQhn2bxNdg,5228
94
- ultralytics/models/sam/__init__.py,sha256=uPcWRJO8p5YlMZyxc6bmaT5W4kZWw4oyFgu_rEX9ie0,144
95
- ultralytics/models/sam/amg.py,sha256=j2UE-EELjre_904vkevrw6kiDcacxDN20G8o1Q-9zA8,8107
96
- ultralytics/models/sam/build.py,sha256=icGv7lT7XmxoMkI6ViI5HKvl_l8rstR5BO_WSXEuotU,4871
97
- ultralytics/models/sam/model.py,sha256=IXLp5G_FP3BjfjLuBdDFmGJipAGaQL-Hj3ahieQzQlE,4707
98
- ultralytics/models/sam/predict.py,sha256=oDUmLkA0eLL3IEvgVZI5iQILcPkoC_6W6l5oQocfVMc,23719
99
- ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
100
- ultralytics/models/sam/modules/decoders.py,sha256=3A9tjYUI_AL61ZhGkdJXfXoaziG194keUBjUPAcXWrc,7795
101
- ultralytics/models/sam/modules/encoders.py,sha256=ETAWp0j_pH_ZzKT61xXeFglRtKfswpfqzn7QnYXHDfY,25003
102
- ultralytics/models/sam/modules/sam.py,sha256=gO5T9sLry0ZrpGewIzZfmlLqdpH0-Q3-gwEKft6Rn9o,2781
103
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=4NmTVqMJsJTdqaFqXCurgK5qvoGLEPMwkCMAKrAPs5k,28980
104
- ultralytics/models/sam/modules/transformer.py,sha256=94thnK3t33GSw_I1M6AA4uHv6ow4btVu__L7HPbYrro,11157
105
- ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
106
- ultralytics/models/utils/loss.py,sha256=3fHny9zGZUykRhDjzTvBNp8Y5fDhXxOKaWTSx4Fmriw,15961
107
- ultralytics/models/utils/ops.py,sha256=I-ajy0ME9PgXYd_3mbV8EQpOSDJRSO6VK5famdVhKSY,13283
108
- ultralytics/models/yolo/__init__.py,sha256=ttjTrFQhjxLkv8fRZM9JuxfiKP979o5FreDIsRF67lw,207
109
- ultralytics/models/yolo/model.py,sha256=h-JMrOn_UdyCNeHV_UrLFXtoNjA4HDnzRPFa2nfQ6OU,1661
110
- ultralytics/models/yolo/classify/__init__.py,sha256=377bRZtp3zOFJKZKiAME8K_OJ_IuDlkR2CawJ1CM3t0,355
111
- ultralytics/models/yolo/classify/predict.py,sha256=FWBR2q03ATdch7bfGZQF_FvGH2T0l75evOd1NVhNbu4,2517
112
- ultralytics/models/yolo/classify/train.py,sha256=0cVfR4Qw5VoWi-iozt4wwF04OG-iQhnO3T-VImsbynM,6765
113
- ultralytics/models/yolo/classify/val.py,sha256=0kl4uG26XOlkGjx2RlpKJzMXhMO4_EHx3e3A4o2jfWs,4959
114
- ultralytics/models/yolo/detect/__init__.py,sha256=XaRS_yfJHZ1UdeaTSve1d7eGYSYwXBJRp6PXM0fZgyQ,229
115
- ultralytics/models/yolo/detect/predict.py,sha256=ukb3YJSTW95fIUyf-52aykgKcK1WSzQTBGwYHVFq4zY,1627
116
- ultralytics/models/yolo/detect/train.py,sha256=faO82SB_9bBqy8Ov4dtai8IMK2L9dV-GBC7VHgOyZLc,6332
117
- ultralytics/models/yolo/detect/val.py,sha256=ZKf4NN_2DdoU6cRJeBS6_WfX1ZJqeeCoYYdTlCEs2-o,13634
118
- ultralytics/models/yolo/obb/__init__.py,sha256=JfdGn4zSyLyR5KjphgqF6gyF2smWoqe9Q2slQDdntQA,193
119
- ultralytics/models/yolo/obb/predict.py,sha256=b8j3PHWwoywCSUUIjeYSqIZ81EHdHaXxG514hKOCAbE,2072
120
- ultralytics/models/yolo/obb/train.py,sha256=6NYsEYXbxlvaP2-5EeIjGm9i-hlWPXlQMEswdExybPM,1477
121
- ultralytics/models/yolo/obb/val.py,sha256=BfBMlpnYrMQWW5xVjDlxE4q7LkwxInynk8Vi2yu6ywc,9133
122
- ultralytics/models/yolo/pose/__init__.py,sha256=zzdVWRgbHSvJF2xTeGB62VhHZM5y-7Yq9YwVGczvB_o,199
123
- ultralytics/models/yolo/pose/predict.py,sha256=-BMzGZOxC6LrCDjj8g-c8JPzLLCEgZHOebcXrq6Vabw,2517
124
- ultralytics/models/yolo/pose/train.py,sha256=nN_ZqU34COAyW0GWSLR0QlQeYvP2xmmecGT3sDaF3JI,3035
125
- ultralytics/models/yolo/pose/val.py,sha256=PzAQZxIF8HMsixWwvV8oorGqevwGrTCfsGqT4gtXsX8,10445
126
- ultralytics/models/yolo/segment/__init__.py,sha256=2-fAGrEWcnOZDlspSWOfsyYfIAcDE3sUgbv8QTUgnRM,247
127
- ultralytics/models/yolo/segment/predict.py,sha256=yUs60HFBn7PZ3mErtUAnT69ijPBzFdTs7JH-v7-rAZY,2612
128
- ultralytics/models/yolo/segment/train.py,sha256=vHl2FrnC51d9wVQ_YZsv6GYApt1Vy_MS_HM6aOkb6GQ,2459
129
- ultralytics/models/yolo/segment/val.py,sha256=CwTbz7dIEuiJTpBxJ93bLwrdURmsI71Kd3cFr362sbU,11784
130
- ultralytics/nn/__init__.py,sha256=7T_GW3YsPg1kA-74UklF2UcabcRyttRZYrCOXiNnJqU,555
131
- ultralytics/nn/autobackend.py,sha256=BRiDYbLrsIOF9DHoVB-IbLUZ1NOtzBdSy9xb420c2FQ,27022
132
- ultralytics/nn/tasks.py,sha256=FJj5wycHQ3-Gn11oFoIn_8tQSa5fZai3Ymb8aPl4dBg,38090
133
- ultralytics/nn/modules/__init__.py,sha256=4xJL1FShMrNR1pljKHjLlR8zDN1hsp-0QmFL1yHAUks,1721
134
- ultralytics/nn/modules/block.py,sha256=_A24bZ1xSWvrvqk5RODeobBZL6ReI6ICk-vwilERTZs,14475
135
- ultralytics/nn/modules/conv.py,sha256=z_OQka9s5h0p3k1yWrq7SHg1BsA6PfN5lDSQubW2I_k,12774
136
- ultralytics/nn/modules/head.py,sha256=8v2tURoWVmoBSCE5X7qDW9x9pMrMim7bMpUkOaBWkfc,19728
137
- ultralytics/nn/modules/transformer.py,sha256=R7K_3r4aTlvghiTTRzh69NmNzlO_1SiiifbevHGllEE,17895
138
- ultralytics/nn/modules/utils.py,sha256=q-qfebnMD2iqZyTslZTHsZYW7hyrX62VRgUmHX683-U,3436
139
- ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
140
- ultralytics/solutions/ai_gym.py,sha256=YnBeC8Vf3-ai4OQIebEXl5yDho6uRspY2XVL8Ipr-h8,6235
141
- ultralytics/solutions/distance_calculation.py,sha256=JhUO78-hpS7OKv4YlswRij0TDNUzyiSLXwUAvGvl0q8,6925
142
- ultralytics/solutions/heatmap.py,sha256=F106h0Ecu8yIPtp8uLSnWX5PIRbjpzoIAE-HMcIaBYg,11137
143
- ultralytics/solutions/object_counter.py,sha256=KmdRXipFS5wk9RXA-4d45jLo3m6RggL-bQSWyqKKULY,10394
144
- ultralytics/solutions/speed_estimation.py,sha256=icTk1846yo7QqkfQRLaqZMPxq2uLrnOvLesw4WjN7Jk,6776
145
- ultralytics/trackers/__init__.py,sha256=dR9unDaRBd6MgMnTKxqJZ0KsJ8BeFGg-LTYQvC7BnIY,227
146
- ultralytics/trackers/basetrack.py,sha256=Vbs76Zue_jYdJFudztTJaUnGgMMUwVqoa0BSOhyBh0o,3580
147
- ultralytics/trackers/bot_sort.py,sha256=orTkrMj2yHfEQVKaQVWbguTx98S2gvLnaOB0D2JN1Gc,8602
148
- ultralytics/trackers/byte_tracker.py,sha256=3dAh-h6dN1-d0-88mBr04BD_Gq6NvhPOy4FeD3PRnzI,18422
149
- ultralytics/trackers/track.py,sha256=-djBk0crrL0g3jjIdJmPo_CO_XD509JqAlPof6GCusM,2997
150
- ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
151
- ultralytics/trackers/utils/gmc.py,sha256=hjQX7VolfjGJMOC9r1pZFHEvVYFFz2TQJso7NiGT17o,14070
152
- ultralytics/trackers/utils/kalman_filter.py,sha256=vQZ7oui0eDeeRzJlBD9SlicHVoMjKdnaCsiuXGGXrN4,14830
153
- ultralytics/trackers/utils/matching.py,sha256=1VWQK9BQgGV_hyOgUN05gZAksciMdwpAhUXaPhkK-38,5064
154
- ultralytics/utils/__init__.py,sha256=vMzr9PorMG8nkIsD29sEOq4lOyD0XoIXt4X1XPVtjC4,34107
155
- ultralytics/utils/autobatch.py,sha256=mZjJerTi6WTzGq1_0JiU8XNHi70b1psCOAE-feZROgs,3862
156
- ultralytics/utils/benchmarks.py,sha256=ct6g9UyfHPi6a7_EuppbTrVeu_ePiCLF7Kib8RZKRgw,18217
157
- ultralytics/utils/checks.py,sha256=lXpovrtUgjpv6axCoSsxYDCCugXAIZ4OQ0PD2-Sovcw,27526
158
- ultralytics/utils/dist.py,sha256=egR2Z6Xlg75v72hddTut0q0-BIYvF-YCn_HE7PByuK8,2396
159
- ultralytics/utils/downloads.py,sha256=m563hzrSfQlJ8CVu2AAFVkkOBERK-QQB1zqp462jjI0,21582
160
- ultralytics/utils/errors.py,sha256=wcNM8Yc0ln4X868kUM6pIsjKT_W67Kez4Vm72Xe-tYo,816
161
- ultralytics/utils/files.py,sha256=bDBjjEjlsgDvbn0DWxBGIs90GJM-XKLsYuJ83pPmk-c,5277
162
- ultralytics/utils/instance.py,sha256=z08sAPcguogK-GUbVilAIh72uk0yCXvEF_7Tmcm8k_g,15573
163
- ultralytics/utils/loss.py,sha256=GrZyJLpzIVMYFFIjcHetr-PUEBRzilYeUB-M6pgIhu4,32515
164
- ultralytics/utils/metrics.py,sha256=rTuD6-35D3c5YI72rFfuSPg5EyT4B1MRc0XfxNRDT0o,53701
165
- ultralytics/utils/ops.py,sha256=mmk_49VQeX2lLndXNspdW_PLy2F_AgM3uSp8N4_7bVM,32417
166
- ultralytics/utils/patches.py,sha256=V3ARuy0sg-_yn6nzL7iOWSzR_RzFOuzsICy4P6qUegc,2233
167
- ultralytics/utils/plotting.py,sha256=bdtzjAkzbO-2TfFBcTj2BvTeYG5l_BuxDNHtY08M6kM,42086
168
- ultralytics/utils/tal.py,sha256=TVAVirGJI2qh8KUEhzB1eQfIPCb8qwwgLJbW6aSQw9c,16040
169
- ultralytics/utils/torch_utils.py,sha256=bp71tJB1UiR1McY9fnv7CLy5Ldb0iDiCLHj8eZjn0D4,25238
170
- ultralytics/utils/triton.py,sha256=opbB1ndgwfmUJzyvUH9vvMe2SrDW6FqmFxKEeNDaALQ,3932
171
- ultralytics/utils/tuner.py,sha256=8QfeoYdVtPZHSkg7o06DTlwFKQS-f_5XemDa1vKkums,6227
172
- ultralytics/utils/callbacks/__init__.py,sha256=nhrnMPpPDb5fgqw42w8e7fC5TjEPC-jp04dpQtaQtkU,214
173
- ultralytics/utils/callbacks/base.py,sha256=yh4yWvwOgPY2RoLYfDU6-rwpndKvaox7hsd49G-Gkjc,5775
174
- ultralytics/utils/callbacks/clearml.py,sha256=x6vZoDriszWDUyR0xGz30hGnONo1Np3l94IkuRnzkmY,6275
175
- ultralytics/utils/callbacks/comet.py,sha256=58KW2zaqxFnn7Uab1fDBE5p89A1KKi2bjqTFK95sFkI,13870
176
- ultralytics/utils/callbacks/dvc.py,sha256=pfywO1UqXTcXqo7WdvjPfhSKu8KmoMr0meu5LEh0rrY,4997
177
- ultralytics/utils/callbacks/hub.py,sha256=ViiYhxTUxrWW9KXp0NhjXYoK8vxJoFa8gIxZRtmQT1o,3350
178
- ultralytics/utils/callbacks/mlflow.py,sha256=0Rpblb_AioGFqgrKdV4xUhPjXdXHTutXFoy3hZdPMWc,4828
179
- ultralytics/utils/callbacks/neptune.py,sha256=qIN0gJipB1f3Di7bw0Rb28jLYoCzJSWSqFhVgyC5Gi0,3697
180
- ultralytics/utils/callbacks/raytune.py,sha256=PGZvW_haVq8Cqha3GgvL7iBMAaxfn8_3u_IIdYCNMPo,608
181
- ultralytics/utils/callbacks/tensorboard.py,sha256=XXnpkIJrI_A_68JLRvYvRMHzekn-US1uIcru7vRs_e0,2896
182
- ultralytics/utils/callbacks/wb.py,sha256=x_j4ZH4Klp0_Ld13f0UezFluUTS5Ovfgk9hcjwqeruU,6762
183
- ultralytics-8.0.238.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
184
- ultralytics-8.0.238.dist-info/METADATA,sha256=ebmWNg1IzAl_bsaqtKeJ_I-sFfYj49f00zcag5hTpTQ,39383
185
- ultralytics-8.0.238.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
186
- ultralytics-8.0.238.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
187
- ultralytics-8.0.238.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
188
- ultralytics-8.0.238.dist-info/RECORD,,