ultralytics-thop 0.2.3__py3-none-any.whl → 0.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- thop/__init__.py +1 -1
 - thop/fx_profile.py +3 -5
 - thop/profile.py +4 -6
 - thop/rnn_hooks.py +33 -36
 - thop/utils.py +1 -12
 - thop/vision/basic_hooks.py +1 -3
 - thop/vision/calc_func.py +7 -15
 - {ultralytics_thop-0.2.3.dist-info → ultralytics_thop-0.2.5.dist-info}/METADATA +1 -1
 - ultralytics_thop-0.2.5.dist-info/RECORD +13 -0
 - thop/onnx_profile.py +0 -82
 - thop/vision/efficientnet.py +0 -9
 - thop/vision/onnx_counter.py +0 -371
 - ultralytics_thop-0.2.3.dist-info/RECORD +0 -16
 - {ultralytics_thop-0.2.3.dist-info → ultralytics_thop-0.2.5.dist-info}/LICENSE +0 -0
 - {ultralytics_thop-0.2.3.dist-info → ultralytics_thop-0.2.5.dist-info}/WHEEL +0 -0
 - {ultralytics_thop-0.2.3.dist-info → ultralytics_thop-0.2.5.dist-info}/top_level.txt +0 -0
 
    
        thop/__init__.py
    CHANGED
    
    
    
        thop/fx_profile.py
    CHANGED
    
    | 
         @@ -85,9 +85,7 @@ def count_nn_bn2d(module: nn.BatchNorm2d, input_shapes, output_shapes): 
     | 
|
| 
       85 
85 
     | 
    
         
             
                """Calculate the total operations for a given nn.BatchNorm2d module based on its output shape."""
         
     | 
| 
       86 
86 
     | 
    
         
             
                assert len(output_shapes) == 1, "nn.BatchNorm2d should only have one output"
         
     | 
| 
       87 
87 
     | 
    
         
             
                y = output_shapes[0]
         
     | 
| 
       88 
     | 
    
         
            -
                 
     | 
| 
       89 
     | 
    
         
            -
                total_ops = 2 * y.numel()
         
     | 
| 
       90 
     | 
    
         
            -
                return total_ops
         
     | 
| 
      
 88 
     | 
    
         
            +
                return 2 * y.numel()
         
     | 
| 
       91 
89 
     | 
    
         | 
| 
       92 
90 
     | 
    
         | 
| 
       93 
91 
     | 
    
         
             
            zero_ops = (
         
     | 
| 
         @@ -120,7 +118,7 @@ missing_maps = {} 
     | 
|
| 
       120 
118 
     | 
    
         
             
            from torch.fx import symbolic_trace
         
     | 
| 
       121 
119 
     | 
    
         
             
            from torch.fx.passes.shape_prop import ShapeProp
         
     | 
| 
       122 
120 
     | 
    
         | 
| 
       123 
     | 
    
         
            -
            from .utils import  
     | 
| 
      
 121 
     | 
    
         
            +
            from .utils import prRed, prYellow
         
     | 
| 
       124 
122 
     | 
    
         | 
| 
       125 
123 
     | 
    
         | 
| 
       126 
124 
     | 
    
         
             
            def null_print(*args, **kwargs):
         
     | 
| 
         @@ -193,7 +191,7 @@ def fx_profile(mod: nn.Module, input: th.Tensor, verbose=False): 
     | 
|
| 
       193 
191 
     | 
    
         
             
                            prRed(f"{key} is missing")
         
     | 
| 
       194 
192 
     | 
    
         
             
                        print("module type:", type(m))
         
     | 
| 
       195 
193 
     | 
    
         
             
                        if isinstance(m, zero_ops):
         
     | 
| 
       196 
     | 
    
         
            -
                            print( 
     | 
| 
      
 194 
     | 
    
         
            +
                            print("weight_shape: None")
         
     | 
| 
       197 
195 
     | 
    
         
             
                        else:
         
     | 
| 
       198 
196 
     | 
    
         
             
                            print(type(m))
         
     | 
| 
       199 
197 
     | 
    
         
             
                            print(f"weight_shape: {mod.state_dict()[node.target + '.weight'].shape}")
         
     | 
    
        thop/profile.py
    CHANGED
    
    | 
         @@ -1,9 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from thop.rnn_hooks import *
         
     | 
| 
       2 
2 
     | 
    
         
             
            from thop.vision.basic_hooks import *
         
     | 
| 
       3 
3 
     | 
    
         | 
| 
       4 
     | 
    
         
            -
             
     | 
| 
       5 
     | 
    
         
            -
            # logger.setLevel(logging.INFO)
         
     | 
| 
       6 
     | 
    
         
            -
            from .utils import prGreen, prRed, prYellow
         
     | 
| 
      
 4 
     | 
    
         
            +
            from .utils import prRed
         
     | 
| 
       7 
5 
     | 
    
         | 
| 
       8 
6 
     | 
    
         
             
            default_dtype = torch.float64
         
     | 
| 
       9 
7 
     | 
    
         | 
| 
         @@ -68,7 +66,7 @@ def profile_origin(model, inputs, custom_ops=None, verbose=True, report_missing= 
     | 
|
| 
       68 
66 
     | 
    
         
             
                    verbose = True
         
     | 
| 
       69 
67 
     | 
    
         | 
| 
       70 
68 
     | 
    
         
             
                def add_hooks(m):
         
     | 
| 
       71 
     | 
    
         
            -
                    if  
     | 
| 
      
 69 
     | 
    
         
            +
                    if list(m.children()):
         
     | 
| 
       72 
70 
     | 
    
         
             
                        return
         
     | 
| 
       73 
71 
     | 
    
         | 
| 
       74 
72 
     | 
    
         
             
                    if hasattr(m, "total_ops") or hasattr(m, "total_params"):
         
     | 
| 
         @@ -114,7 +112,7 @@ def profile_origin(model, inputs, custom_ops=None, verbose=True, report_missing= 
     | 
|
| 
       114 
112 
     | 
    
         
             
                total_ops = 0
         
     | 
| 
       115 
113 
     | 
    
         
             
                total_params = 0
         
     | 
| 
       116 
114 
     | 
    
         
             
                for m in model.modules():
         
     | 
| 
       117 
     | 
    
         
            -
                    if  
     | 
| 
      
 115 
     | 
    
         
            +
                    if list(m.children()):  # skip for non-leaf module
         
     | 
| 
       118 
116 
     | 
    
         
             
                        continue
         
     | 
| 
       119 
117 
     | 
    
         
             
                    total_ops += m.total_ops
         
     | 
| 
       120 
118 
     | 
    
         
             
                    total_params += m.total_params
         
     | 
| 
         @@ -129,7 +127,7 @@ def profile_origin(model, inputs, custom_ops=None, verbose=True, report_missing= 
     | 
|
| 
       129 
127 
     | 
    
         | 
| 
       130 
128 
     | 
    
         
             
                # remove temporal buffers
         
     | 
| 
       131 
129 
     | 
    
         
             
                for n, m in model.named_modules():
         
     | 
| 
       132 
     | 
    
         
            -
                    if  
     | 
| 
      
 130 
     | 
    
         
            +
                    if list(m.children()):
         
     | 
| 
       133 
131 
     | 
    
         
             
                        continue
         
     | 
| 
       134 
132 
     | 
    
         
             
                    if "total_ops" in m._buffers:
         
     | 
| 
       135 
133 
     | 
    
         
             
                        m._buffers.pop("total_ops")
         
     | 
    
        thop/rnn_hooks.py
    CHANGED
    
    | 
         @@ -103,13 +103,12 @@ def count_rnn(m: nn.RNN, x, y): 
     | 
|
| 
       103 
103 
     | 
    
         
             
                if isinstance(x[0], PackedSequence):
         
     | 
| 
       104 
104 
     | 
    
         
             
                    batch_size = torch.max(x[0].batch_sizes)
         
     | 
| 
       105 
105 
     | 
    
         
             
                    num_steps = x[0].batch_sizes.size(0)
         
     | 
| 
      
 106 
     | 
    
         
            +
                elif m.batch_first:
         
     | 
| 
      
 107 
     | 
    
         
            +
                    batch_size = x[0].size(0)
         
     | 
| 
      
 108 
     | 
    
         
            +
                    num_steps = x[0].size(1)
         
     | 
| 
       106 
109 
     | 
    
         
             
                else:
         
     | 
| 
       107 
     | 
    
         
            -
                     
     | 
| 
       108 
     | 
    
         
            -
             
     | 
| 
       109 
     | 
    
         
            -
                        num_steps = x[0].size(1)
         
     | 
| 
       110 
     | 
    
         
            -
                    else:
         
     | 
| 
       111 
     | 
    
         
            -
                        batch_size = x[0].size(1)
         
     | 
| 
       112 
     | 
    
         
            -
                        num_steps = x[0].size(0)
         
     | 
| 
      
 110 
     | 
    
         
            +
                    batch_size = x[0].size(1)
         
     | 
| 
      
 111 
     | 
    
         
            +
                    num_steps = x[0].size(0)
         
     | 
| 
       113 
112 
     | 
    
         | 
| 
       114 
113 
     | 
    
         
             
                total_ops = 0
         
     | 
| 
       115 
114 
     | 
    
         
             
                if m.bidirectional:
         
     | 
| 
         @@ -117,12 +116,12 @@ def count_rnn(m: nn.RNN, x, y): 
     | 
|
| 
       117 
116 
     | 
    
         
             
                else:
         
     | 
| 
       118 
117 
     | 
    
         
             
                    total_ops += _count_rnn_cell(input_size, hidden_size, bias)
         
     | 
| 
       119 
118 
     | 
    
         | 
| 
       120 
     | 
    
         
            -
                for  
     | 
| 
       121 
     | 
    
         
            -
                     
     | 
| 
       122 
     | 
    
         
            -
                         
     | 
| 
       123 
     | 
    
         
            -
             
     | 
| 
       124 
     | 
    
         
            -
                         
     | 
| 
       125 
     | 
    
         
            -
             
     | 
| 
      
 119 
     | 
    
         
            +
                for _ in range(num_layers - 1):
         
     | 
| 
      
 120 
     | 
    
         
            +
                    total_ops += (
         
     | 
| 
      
 121 
     | 
    
         
            +
                        _count_rnn_cell(hidden_size * 2, hidden_size, bias) * 2
         
     | 
| 
      
 122 
     | 
    
         
            +
                        if m.bidirectional
         
     | 
| 
      
 123 
     | 
    
         
            +
                        else _count_rnn_cell(hidden_size, hidden_size, bias)
         
     | 
| 
      
 124 
     | 
    
         
            +
                    )
         
     | 
| 
       126 
125 
     | 
    
         
             
                # time unroll
         
     | 
| 
       127 
126 
     | 
    
         
             
                total_ops *= num_steps
         
     | 
| 
       128 
127 
     | 
    
         
             
                # batch_size
         
     | 
| 
         @@ -141,13 +140,12 @@ def count_gru(m: nn.GRU, x, y): 
     | 
|
| 
       141 
140 
     | 
    
         
             
                if isinstance(x[0], PackedSequence):
         
     | 
| 
       142 
141 
     | 
    
         
             
                    batch_size = torch.max(x[0].batch_sizes)
         
     | 
| 
       143 
142 
     | 
    
         
             
                    num_steps = x[0].batch_sizes.size(0)
         
     | 
| 
      
 143 
     | 
    
         
            +
                elif m.batch_first:
         
     | 
| 
      
 144 
     | 
    
         
            +
                    batch_size = x[0].size(0)
         
     | 
| 
      
 145 
     | 
    
         
            +
                    num_steps = x[0].size(1)
         
     | 
| 
       144 
146 
     | 
    
         
             
                else:
         
     | 
| 
       145 
     | 
    
         
            -
                     
     | 
| 
       146 
     | 
    
         
            -
             
     | 
| 
       147 
     | 
    
         
            -
                        num_steps = x[0].size(1)
         
     | 
| 
       148 
     | 
    
         
            -
                    else:
         
     | 
| 
       149 
     | 
    
         
            -
                        batch_size = x[0].size(1)
         
     | 
| 
       150 
     | 
    
         
            -
                        num_steps = x[0].size(0)
         
     | 
| 
      
 147 
     | 
    
         
            +
                    batch_size = x[0].size(1)
         
     | 
| 
      
 148 
     | 
    
         
            +
                    num_steps = x[0].size(0)
         
     | 
| 
       151 
149 
     | 
    
         | 
| 
       152 
150 
     | 
    
         
             
                total_ops = 0
         
     | 
| 
       153 
151 
     | 
    
         
             
                if m.bidirectional:
         
     | 
| 
         @@ -155,12 +153,12 @@ def count_gru(m: nn.GRU, x, y): 
     | 
|
| 
       155 
153 
     | 
    
         
             
                else:
         
     | 
| 
       156 
154 
     | 
    
         
             
                    total_ops += _count_gru_cell(input_size, hidden_size, bias)
         
     | 
| 
       157 
155 
     | 
    
         | 
| 
       158 
     | 
    
         
            -
                for  
     | 
| 
       159 
     | 
    
         
            -
                     
     | 
| 
       160 
     | 
    
         
            -
                         
     | 
| 
       161 
     | 
    
         
            -
             
     | 
| 
       162 
     | 
    
         
            -
                         
     | 
| 
       163 
     | 
    
         
            -
             
     | 
| 
      
 156 
     | 
    
         
            +
                for _ in range(num_layers - 1):
         
     | 
| 
      
 157 
     | 
    
         
            +
                    total_ops += (
         
     | 
| 
      
 158 
     | 
    
         
            +
                        _count_gru_cell(hidden_size * 2, hidden_size, bias) * 2
         
     | 
| 
      
 159 
     | 
    
         
            +
                        if m.bidirectional
         
     | 
| 
      
 160 
     | 
    
         
            +
                        else _count_gru_cell(hidden_size, hidden_size, bias)
         
     | 
| 
      
 161 
     | 
    
         
            +
                    )
         
     | 
| 
       164 
162 
     | 
    
         
             
                # time unroll
         
     | 
| 
       165 
163 
     | 
    
         
             
                total_ops *= num_steps
         
     | 
| 
       166 
164 
     | 
    
         
             
                # batch_size
         
     | 
| 
         @@ -181,13 +179,12 @@ def count_lstm(m: nn.LSTM, x, y): 
     | 
|
| 
       181 
179 
     | 
    
         
             
                if isinstance(x[0], PackedSequence):
         
     | 
| 
       182 
180 
     | 
    
         
             
                    batch_size = torch.max(x[0].batch_sizes)
         
     | 
| 
       183 
181 
     | 
    
         
             
                    num_steps = x[0].batch_sizes.size(0)
         
     | 
| 
      
 182 
     | 
    
         
            +
                elif m.batch_first:
         
     | 
| 
      
 183 
     | 
    
         
            +
                    batch_size = x[0].size(0)
         
     | 
| 
      
 184 
     | 
    
         
            +
                    num_steps = x[0].size(1)
         
     | 
| 
       184 
185 
     | 
    
         
             
                else:
         
     | 
| 
       185 
     | 
    
         
            -
                     
     | 
| 
       186 
     | 
    
         
            -
             
     | 
| 
       187 
     | 
    
         
            -
                        num_steps = x[0].size(1)
         
     | 
| 
       188 
     | 
    
         
            -
                    else:
         
     | 
| 
       189 
     | 
    
         
            -
                        batch_size = x[0].size(1)
         
     | 
| 
       190 
     | 
    
         
            -
                        num_steps = x[0].size(0)
         
     | 
| 
      
 186 
     | 
    
         
            +
                    batch_size = x[0].size(1)
         
     | 
| 
      
 187 
     | 
    
         
            +
                    num_steps = x[0].size(0)
         
     | 
| 
       191 
188 
     | 
    
         | 
| 
       192 
189 
     | 
    
         
             
                total_ops = 0
         
     | 
| 
       193 
190 
     | 
    
         
             
                if m.bidirectional:
         
     | 
| 
         @@ -195,12 +192,12 @@ def count_lstm(m: nn.LSTM, x, y): 
     | 
|
| 
       195 
192 
     | 
    
         
             
                else:
         
     | 
| 
       196 
193 
     | 
    
         
             
                    total_ops += _count_lstm_cell(input_size, hidden_size, bias)
         
     | 
| 
       197 
194 
     | 
    
         | 
| 
       198 
     | 
    
         
            -
                for  
     | 
| 
       199 
     | 
    
         
            -
                     
     | 
| 
       200 
     | 
    
         
            -
                         
     | 
| 
       201 
     | 
    
         
            -
             
     | 
| 
       202 
     | 
    
         
            -
                         
     | 
| 
       203 
     | 
    
         
            -
             
     | 
| 
      
 195 
     | 
    
         
            +
                for _ in range(num_layers - 1):
         
     | 
| 
      
 196 
     | 
    
         
            +
                    total_ops += (
         
     | 
| 
      
 197 
     | 
    
         
            +
                        _count_lstm_cell(hidden_size * 2, hidden_size, bias) * 2
         
     | 
| 
      
 198 
     | 
    
         
            +
                        if m.bidirectional
         
     | 
| 
      
 199 
     | 
    
         
            +
                        else _count_lstm_cell(hidden_size, hidden_size, bias)
         
     | 
| 
      
 200 
     | 
    
         
            +
                    )
         
     | 
| 
       204 
201 
     | 
    
         
             
                # time unroll
         
     | 
| 
       205 
202 
     | 
    
         
             
                total_ops *= num_steps
         
     | 
| 
       206 
203 
     | 
    
         
             
                # batch_size
         
     | 
    
        thop/utils.py
    CHANGED
    
    | 
         @@ -20,15 +20,6 @@ prRed = colorful_print(print, color=COLOR_RED) 
     | 
|
| 
       20 
20 
     | 
    
         
             
            prGreen = colorful_print(print, color=COLOR_GREEN)
         
     | 
| 
       21 
21 
     | 
    
         
             
            prYellow = colorful_print(print, color=COLOR_YELLOW)
         
     | 
| 
       22 
22 
     | 
    
         | 
| 
       23 
     | 
    
         
            -
            # def prRed(skk):
         
     | 
| 
       24 
     | 
    
         
            -
            #     print("\033[91m{}\033[00m".format(skk))
         
     | 
| 
       25 
     | 
    
         
            -
             
     | 
| 
       26 
     | 
    
         
            -
            # def prGreen(skk):
         
     | 
| 
       27 
     | 
    
         
            -
            #     print("\033[92m{}\033[00m".format(skk))
         
     | 
| 
       28 
     | 
    
         
            -
             
     | 
| 
       29 
     | 
    
         
            -
            # def prYellow(skk):
         
     | 
| 
       30 
     | 
    
         
            -
            #     print("\033[93m{}\033[00m".format(skk))
         
     | 
| 
       31 
     | 
    
         
            -
             
     | 
| 
       32 
23 
     | 
    
         | 
| 
       33 
24 
     | 
    
         
             
            def clever_format(nums, format="%.2f"):
         
     | 
| 
       34 
25 
     | 
    
         
             
                """Formats numerical values into a more readable string with units (K, M, G, T) based on their magnitude."""
         
     | 
| 
         @@ -48,9 +39,7 @@ def clever_format(nums, format="%.2f"): 
     | 
|
| 
       48 
39 
     | 
    
         
             
                    else:
         
     | 
| 
       49 
40 
     | 
    
         
             
                        clever_nums.append(format % num + "B")
         
     | 
| 
       50 
41 
     | 
    
         | 
| 
       51 
     | 
    
         
            -
                 
     | 
| 
       52 
     | 
    
         
            -
             
     | 
| 
       53 
     | 
    
         
            -
                return clever_nums
         
     | 
| 
      
 42 
     | 
    
         
            +
                return clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)
         
     | 
| 
       54 
43 
     | 
    
         | 
| 
       55 
44 
     | 
    
         | 
| 
       56 
45 
     | 
    
         
             
            if __name__ == "__main__":
         
     | 
    
        thop/vision/basic_hooks.py
    CHANGED
    
    | 
         @@ -1,7 +1,5 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            import argparse
         
     | 
| 
       2 
1 
     | 
    
         
             
            import logging
         
     | 
| 
       3 
2 
     | 
    
         | 
| 
       4 
     | 
    
         
            -
            import torch
         
     | 
| 
       5 
3 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       6 
4 
     | 
    
         
             
            from torch.nn.modules.conv import _ConvNd
         
     | 
| 
       7 
5 
     | 
    
         | 
| 
         @@ -139,7 +137,7 @@ def count_upsample(m, x, y): 
     | 
|
| 
       139 
137 
     | 
    
         
             
                    "bilinear",
         
     | 
| 
       140 
138 
     | 
    
         
             
                    "bicubic",
         
     | 
| 
       141 
139 
     | 
    
         
             
                ):  # "trilinear"
         
     | 
| 
       142 
     | 
    
         
            -
                    logging.warning("mode  
     | 
| 
      
 140 
     | 
    
         
            +
                    logging.warning(f"mode {m.mode} is not implemented yet, take it a zero op")
         
     | 
| 
       143 
141 
     | 
    
         
             
                    m.total_ops += 0
         
     | 
| 
       144 
142 
     | 
    
         
             
                else:
         
     | 
| 
       145 
143 
     | 
    
         
             
                    x = x[0]
         
     | 
    
        thop/vision/calc_func.py
    CHANGED
    
    | 
         @@ -14,23 +14,17 @@ def l_prod(in_list): 
     | 
|
| 
       14 
14 
     | 
    
         | 
| 
       15 
15 
     | 
    
         
             
            def l_sum(in_list):
         
     | 
| 
       16 
16 
     | 
    
         
             
                """Calculate the sum of all elements in a list."""
         
     | 
| 
       17 
     | 
    
         
            -
                 
     | 
| 
       18 
     | 
    
         
            -
                for _ in in_list:
         
     | 
| 
       19 
     | 
    
         
            -
                    res += _
         
     | 
| 
       20 
     | 
    
         
            -
                return res
         
     | 
| 
      
 17 
     | 
    
         
            +
                return sum(in_list)
         
     | 
| 
       21 
18 
     | 
    
         | 
| 
       22 
19 
     | 
    
         | 
| 
       23 
20 
     | 
    
         
             
            def calculate_parameters(param_list):
         
     | 
| 
       24 
21 
     | 
    
         
             
                """Calculate the total number of parameters in a list of tensors."""
         
     | 
| 
       25 
     | 
    
         
            -
                 
     | 
| 
       26 
     | 
    
         
            -
                for p in param_list:
         
     | 
| 
       27 
     | 
    
         
            -
                    total_params += torch.DoubleTensor([p.nelement()])
         
     | 
| 
       28 
     | 
    
         
            -
                return total_params
         
     | 
| 
      
 22 
     | 
    
         
            +
                return sum(torch.DoubleTensor([p.nelement()]) for p in param_list)
         
     | 
| 
       29 
23 
     | 
    
         | 
| 
       30 
24 
     | 
    
         | 
| 
       31 
25 
     | 
    
         
             
            def calculate_zero_ops():
         
     | 
| 
       32 
26 
     | 
    
         
             
                """Return a tensor initialized to zero."""
         
     | 
| 
       33 
     | 
    
         
            -
                return torch.DoubleTensor([ 
     | 
| 
      
 27 
     | 
    
         
            +
                return torch.DoubleTensor([0])
         
     | 
| 
       34 
28 
     | 
    
         | 
| 
       35 
29 
     | 
    
         | 
| 
       36 
30 
     | 
    
         
             
            def calculate_conv2d_flops(input_size: list, output_size: list, kernel_size: list, groups: int, bias: bool = False):
         
     | 
| 
         @@ -90,14 +84,12 @@ def calculate_adaptive_avg(kernel_size, output_size): 
     | 
|
| 
       90 
84 
     | 
    
         
             
            def calculate_upsample(mode: str, output_size):
         
     | 
| 
       91 
85 
     | 
    
         
             
                """Calculate the number of operations for upsample methods given the mode and output size."""
         
     | 
| 
       92 
86 
     | 
    
         
             
                total_ops = output_size
         
     | 
| 
       93 
     | 
    
         
            -
                if mode == " 
     | 
| 
       94 
     | 
    
         
            -
                    total_ops *=  
     | 
| 
      
 87 
     | 
    
         
            +
                if mode == "bicubic":
         
     | 
| 
      
 88 
     | 
    
         
            +
                    total_ops *= 224 + 35
         
     | 
| 
       95 
89 
     | 
    
         
             
                elif mode == "bilinear":
         
     | 
| 
       96 
90 
     | 
    
         
             
                    total_ops *= 11
         
     | 
| 
       97 
     | 
    
         
            -
                elif mode == " 
     | 
| 
       98 
     | 
    
         
            -
                     
     | 
| 
       99 
     | 
    
         
            -
                    ops_solve_p = 35  # 16 muls + 12 adds + 4 muls + 3 adds
         
     | 
| 
       100 
     | 
    
         
            -
                    total_ops *= ops_solve_A + ops_solve_p
         
     | 
| 
      
 91 
     | 
    
         
            +
                elif mode == "linear":
         
     | 
| 
      
 92 
     | 
    
         
            +
                    total_ops *= 5
         
     | 
| 
       101 
93 
     | 
    
         
             
                elif mode == "trilinear":
         
     | 
| 
       102 
94 
     | 
    
         
             
                    total_ops *= 13 * 2 + 5
         
     | 
| 
       103 
95 
     | 
    
         
             
                return torch.DoubleTensor([int(total_ops)])
         
     | 
| 
         @@ -0,0 +1,13 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            thop/__init__.py,sha256=ak8s9pZyCaUepsHNVomcvFic7NYCsxX-9WIN1P9cx5I,146
         
     | 
| 
      
 2 
     | 
    
         
            +
            thop/fx_profile.py,sha256=0xMPn0jsH4cpXT-8bd4cJP5gc2P6DudsuwmCoJ2Y48o,8270
         
     | 
| 
      
 3 
     | 
    
         
            +
            thop/profile.py,sha256=z89mX1zVr_42axKbhgz9k2MJbgBLaBPt30lYT_PcWuA,7848
         
     | 
| 
      
 4 
     | 
    
         
            +
            thop/rnn_hooks.py,sha256=GYuKaNPEdZzTuqNCrJpTBjeQHsWs65UXCCaViS2giik,6485
         
     | 
| 
      
 5 
     | 
    
         
            +
            thop/utils.py,sha256=V_Pj_qC6RjqMyuiSX05eeUujT07hZQV-xobCIabjDds,1422
         
     | 
| 
      
 6 
     | 
    
         
            +
            thop/vision/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
         
     | 
| 
      
 7 
     | 
    
         
            +
            thop/vision/basic_hooks.py,sha256=RwJR5dNjDMEF9HaX077E6eEH1P90JIGPzel8H2A-y2k,4865
         
     | 
| 
      
 8 
     | 
    
         
            +
            thop/vision/calc_func.py,sha256=RE-qQWGjZIlRx8CNKjF-ZY7aS0WShPkvnOAYvQA8z8I,4130
         
     | 
| 
      
 9 
     | 
    
         
            +
            ultralytics_thop-0.2.5.dist-info/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
         
     | 
| 
      
 10 
     | 
    
         
            +
            ultralytics_thop-0.2.5.dist-info/METADATA,sha256=v5tYx1jLisa63M6tUvHm3T05KmZ_3mfABXlpymUmK7M,8229
         
     | 
| 
      
 11 
     | 
    
         
            +
            ultralytics_thop-0.2.5.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
         
     | 
| 
      
 12 
     | 
    
         
            +
            ultralytics_thop-0.2.5.dist-info/top_level.txt,sha256=HQ7D0gSvDJ31CNR-f0EuXNVve05RYBmwyIkHQKiEhU8,5
         
     | 
| 
      
 13 
     | 
    
         
            +
            ultralytics_thop-0.2.5.dist-info/RECORD,,
         
     | 
    
        thop/onnx_profile.py
    DELETED
    
    | 
         @@ -1,82 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            import numpy as np
         
     | 
| 
       2 
     | 
    
         
            -
            import onnx
         
     | 
| 
       3 
     | 
    
         
            -
            import torch
         
     | 
| 
       4 
     | 
    
         
            -
            import torch.nn
         
     | 
| 
       5 
     | 
    
         
            -
            from onnx import numpy_helper
         
     | 
| 
       6 
     | 
    
         
            -
             
     | 
| 
       7 
     | 
    
         
            -
            from thop.vision.onnx_counter import onnx_operators
         
     | 
| 
       8 
     | 
    
         
            -
             
     | 
| 
       9 
     | 
    
         
            -
             
     | 
| 
       10 
     | 
    
         
            -
            class OnnxProfile:
         
     | 
| 
       11 
     | 
    
         
            -
                def __init__(self):
         
     | 
| 
       12 
     | 
    
         
            -
                    """Initialize the OnnxProfile class with necessary imports for ONNX profiling."""
         
     | 
| 
       13 
     | 
    
         
            -
                    pass
         
     | 
| 
       14 
     | 
    
         
            -
             
     | 
| 
       15 
     | 
    
         
            -
                def calculate_params(self, model: onnx.ModelProto):
         
     | 
| 
       16 
     | 
    
         
            -
                    """Calculate the total number of parameters in an ONNX model."""
         
     | 
| 
       17 
     | 
    
         
            -
                    onnx_weights = model.graph.initializer
         
     | 
| 
       18 
     | 
    
         
            -
                    params = 0
         
     | 
| 
       19 
     | 
    
         
            -
             
     | 
| 
       20 
     | 
    
         
            -
                    for onnx_w in onnx_weights:
         
     | 
| 
       21 
     | 
    
         
            -
                        try:
         
     | 
| 
       22 
     | 
    
         
            -
                            weight = numpy_helper.to_array(onnx_w)
         
     | 
| 
       23 
     | 
    
         
            -
                            params += np.prod(weight.shape)
         
     | 
| 
       24 
     | 
    
         
            -
                        except Exception as _:
         
     | 
| 
       25 
     | 
    
         
            -
                            pass
         
     | 
| 
       26 
     | 
    
         
            -
             
     | 
| 
       27 
     | 
    
         
            -
                    return params
         
     | 
| 
       28 
     | 
    
         
            -
             
     | 
| 
       29 
     | 
    
         
            -
                def create_dict(self, weight, input, output):
         
     | 
| 
       30 
     | 
    
         
            -
                    """Create and return a dictionary mapping weight, input, and output names to their respective dimensions."""
         
     | 
| 
       31 
     | 
    
         
            -
                    diction = {}
         
     | 
| 
       32 
     | 
    
         
            -
                    for w in weight:
         
     | 
| 
       33 
     | 
    
         
            -
                        dim = np.array(w.dims)
         
     | 
| 
       34 
     | 
    
         
            -
                        diction[str(w.name)] = dim
         
     | 
| 
       35 
     | 
    
         
            -
                        if dim.size == 1:
         
     | 
| 
       36 
     | 
    
         
            -
                            diction[str(w.name)] = np.append(1, dim)
         
     | 
| 
       37 
     | 
    
         
            -
                    for i in input:
         
     | 
| 
       38 
     | 
    
         
            -
                        # print(i.type.tensor_type.shape.dim[0].dim_value)
         
     | 
| 
       39 
     | 
    
         
            -
                        dim = np.array(i.type.tensor_type.shape.dim[0].dim_value)
         
     | 
| 
       40 
     | 
    
         
            -
                        # print(i.type.tensor_type.shape.dim.__sizeof__())
         
     | 
| 
       41 
     | 
    
         
            -
                        # name2dims[str(i.name)] = [dim]
         
     | 
| 
       42 
     | 
    
         
            -
                        dim = []
         
     | 
| 
       43 
     | 
    
         
            -
                        for key in i.type.tensor_type.shape.dim:
         
     | 
| 
       44 
     | 
    
         
            -
                            dim = np.append(dim, int(key.dim_value))
         
     | 
| 
       45 
     | 
    
         
            -
                            # print(key.dim_value)
         
     | 
| 
       46 
     | 
    
         
            -
                        # print(dim)
         
     | 
| 
       47 
     | 
    
         
            -
                        diction[str(i.name)] = dim
         
     | 
| 
       48 
     | 
    
         
            -
                        if dim.size == 1:
         
     | 
| 
       49 
     | 
    
         
            -
                            diction[str(i.name)] = np.append(1, dim)
         
     | 
| 
       50 
     | 
    
         
            -
                    for o in output:
         
     | 
| 
       51 
     | 
    
         
            -
                        dim = np.array(o.type.tensor_type.shape.dim[0].dim_value)
         
     | 
| 
       52 
     | 
    
         
            -
                        diction[str(o.name)] = [dim]
         
     | 
| 
       53 
     | 
    
         
            -
                        if dim.size == 1:
         
     | 
| 
       54 
     | 
    
         
            -
                            diction[str(o.name)] = np.append(1, dim)
         
     | 
| 
       55 
     | 
    
         
            -
                    return diction
         
     | 
| 
       56 
     | 
    
         
            -
             
     | 
| 
       57 
     | 
    
         
            -
                def nodes_counter(self, diction, node):
         
     | 
| 
       58 
     | 
    
         
            -
                    """Count nodes of a specific type in an ONNX graph, returning the count and associated node operation
         
     | 
| 
       59 
     | 
    
         
            -
                    details.
         
     | 
| 
       60 
     | 
    
         
            -
                    """
         
     | 
| 
       61 
     | 
    
         
            -
                    if node.op_type not in onnx_operators:
         
     | 
| 
       62 
     | 
    
         
            -
                        print("Sorry, we haven't add ", node.op_type, "into dictionary.")
         
     | 
| 
       63 
     | 
    
         
            -
                        return 0, None, None
         
     | 
| 
       64 
     | 
    
         
            -
                    else:
         
     | 
| 
       65 
     | 
    
         
            -
                        fn = onnx_operators[node.op_type]
         
     | 
| 
       66 
     | 
    
         
            -
                        return fn(diction, node)
         
     | 
| 
       67 
     | 
    
         
            -
             
     | 
| 
       68 
     | 
    
         
            -
                def calculate_macs(self, model: onnx.ModelProto) -> torch.DoubleTensor:
         
     | 
| 
       69 
     | 
    
         
            -
                    macs = 0
         
     | 
| 
       70 
     | 
    
         
            -
                    name2dims = {}
         
     | 
| 
       71 
     | 
    
         
            -
                    weight = model.graph.initializer
         
     | 
| 
       72 
     | 
    
         
            -
                    nodes = model.graph.node
         
     | 
| 
       73 
     | 
    
         
            -
                    input = model.graph.input
         
     | 
| 
       74 
     | 
    
         
            -
                    output = model.graph.output
         
     | 
| 
       75 
     | 
    
         
            -
                    name2dims = self.create_dict(weight, input, output)
         
     | 
| 
       76 
     | 
    
         
            -
                    macs = 0
         
     | 
| 
       77 
     | 
    
         
            -
                    for n in nodes:
         
     | 
| 
       78 
     | 
    
         
            -
                        macs_adding, out_size, outname = self.nodes_counter(name2dims, n)
         
     | 
| 
       79 
     | 
    
         
            -
             
     | 
| 
       80 
     | 
    
         
            -
                        name2dims[outname] = out_size
         
     | 
| 
       81 
     | 
    
         
            -
                        macs += macs_adding
         
     | 
| 
       82 
     | 
    
         
            -
                    return np.array(macs[0])
         
     | 
    
        thop/vision/efficientnet.py
    DELETED
    
    
    
        thop/vision/onnx_counter.py
    DELETED
    
    | 
         @@ -1,371 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            import numpy as np
         
     | 
| 
       2 
     | 
    
         
            -
            import torch
         
     | 
| 
       3 
     | 
    
         
            -
            from onnx import numpy_helper
         
     | 
| 
       4 
     | 
    
         
            -
             
     | 
| 
       5 
     | 
    
         
            -
            from thop.vision.basic_hooks import zero_ops
         
     | 
| 
       6 
     | 
    
         
            -
             
     | 
| 
       7 
     | 
    
         
            -
            from .calc_func import (
         
     | 
| 
       8 
     | 
    
         
            -
                calculate_avgpool,
         
     | 
| 
       9 
     | 
    
         
            -
                calculate_conv,
         
     | 
| 
       10 
     | 
    
         
            -
                calculate_norm,
         
     | 
| 
       11 
     | 
    
         
            -
                calculate_softmax,
         
     | 
| 
       12 
     | 
    
         
            -
                calculate_zero_ops,
         
     | 
| 
       13 
     | 
    
         
            -
                counter_div,
         
     | 
| 
       14 
     | 
    
         
            -
                counter_matmul,
         
     | 
| 
       15 
     | 
    
         
            -
                counter_mul,
         
     | 
| 
       16 
     | 
    
         
            -
                counter_pow,
         
     | 
| 
       17 
     | 
    
         
            -
                counter_sqrt,
         
     | 
| 
       18 
     | 
    
         
            -
            )
         
     | 
| 
       19 
     | 
    
         
            -
             
     | 
| 
       20 
     | 
    
         
            -
             
     | 
| 
       21 
     | 
    
         
            -
            def onnx_counter_matmul(diction, node):
         
     | 
| 
       22 
     | 
    
         
            -
                """Calculates multiply-accumulate operations and output size for matrix multiplication in an ONNX model node."""
         
     | 
| 
       23 
     | 
    
         
            -
                input1 = node.input[0]
         
     | 
| 
       24 
     | 
    
         
            -
                input2 = node.input[1]
         
     | 
| 
       25 
     | 
    
         
            -
                input1_dim = diction[input1]
         
     | 
| 
       26 
     | 
    
         
            -
                input2_dim = diction[input2]
         
     | 
| 
       27 
     | 
    
         
            -
                out_size = np.append(input1_dim[0:-1], input2_dim[-1])
         
     | 
| 
       28 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       29 
     | 
    
         
            -
                macs = counter_matmul(input1_dim, out_size[-2:])
         
     | 
| 
       30 
     | 
    
         
            -
                return macs, out_size, output_name
         
     | 
| 
       31 
     | 
    
         
            -
             
     | 
| 
       32 
     | 
    
         
            -
             
     | 
| 
       33 
     | 
    
         
            -
            def onnx_counter_add(diction, node):
         
     | 
| 
       34 
     | 
    
         
            -
                """Calculate multiply-accumulate operations (MACs), output size, and output name for ONNX addition nodes."""
         
     | 
| 
       35 
     | 
    
         
            -
                if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size:
         
     | 
| 
       36 
     | 
    
         
            -
                    out_size = diction[node.input[1]]
         
     | 
| 
       37 
     | 
    
         
            -
                else:
         
     | 
| 
       38 
     | 
    
         
            -
                    out_size = diction[node.input[0]]
         
     | 
| 
       39 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       40 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       41 
     | 
    
         
            -
                # if '140' in diction:
         
     | 
| 
       42 
     | 
    
         
            -
                #     print(diction['140'],output_name)
         
     | 
| 
       43 
     | 
    
         
            -
                return macs, out_size, output_name
         
     | 
| 
       44 
     | 
    
         
            -
             
     | 
| 
       45 
     | 
    
         
            -
             
     | 
| 
       46 
     | 
    
         
            -
            def onnx_counter_conv(diction, node):
         
     | 
| 
       47 
     | 
    
         
            -
                """Calculates MACs, output size, and name for an ONNX convolution node based on input tensor dimensions and node
         
     | 
| 
       48 
     | 
    
         
            -
                attributes.
         
     | 
| 
       49 
     | 
    
         
            -
                """
         
     | 
| 
       50 
     | 
    
         
            -
                # bias,kernelsize,outputsize
         
     | 
| 
       51 
     | 
    
         
            -
                dim_bias = 0
         
     | 
| 
       52 
     | 
    
         
            -
                input_count = 0
         
     | 
| 
       53 
     | 
    
         
            -
                for i in node.input:
         
     | 
| 
       54 
     | 
    
         
            -
                    input_count += 1
         
     | 
| 
       55 
     | 
    
         
            -
                if input_count == 3:
         
     | 
| 
       56 
     | 
    
         
            -
                    dim_bias = 1
         
     | 
| 
       57 
     | 
    
         
            -
                    dim_weight = diction[node.input[1]]
         
     | 
| 
       58 
     | 
    
         
            -
                else:
         
     | 
| 
       59 
     | 
    
         
            -
                    dim_weight = diction[node.input[1]]
         
     | 
| 
       60 
     | 
    
         
            -
                for attr in node.attribute:
         
     | 
| 
       61 
     | 
    
         
            -
                    # print(attr)
         
     | 
| 
       62 
     | 
    
         
            -
                    if attr.name == "kernel_shape":
         
     | 
| 
       63 
     | 
    
         
            -
                        dim_kernel = attr.ints  # kw,kh
         
     | 
| 
       64 
     | 
    
         
            -
                    if attr.name == "strides":
         
     | 
| 
       65 
     | 
    
         
            -
                        dim_stride = attr.ints
         
     | 
| 
       66 
     | 
    
         
            -
                    if attr.name == "pads":
         
     | 
| 
       67 
     | 
    
         
            -
                        dim_pad = attr.ints
         
     | 
| 
       68 
     | 
    
         
            -
                    if attr.name == "dilations":
         
     | 
| 
       69 
     | 
    
         
            -
                        dim_dil = attr.ints
         
     | 
| 
       70 
     | 
    
         
            -
                    if attr.name == "group":
         
     | 
| 
       71 
     | 
    
         
            -
                        group = attr.i
         
     | 
| 
       72 
     | 
    
         
            -
                        # print(dim_dil)
         
     | 
| 
       73 
     | 
    
         
            -
                dim_input = diction[node.input[0]]
         
     | 
| 
       74 
     | 
    
         
            -
                output_size = np.append(dim_input[0 : -np.array(dim_kernel).size - 1], dim_weight[0])
         
     | 
| 
       75 
     | 
    
         
            -
                hw = np.array(dim_input[-np.array(dim_kernel).size :])
         
     | 
| 
       76 
     | 
    
         
            -
                for i in range(hw.size):
         
     | 
| 
       77 
     | 
    
         
            -
                    hw[i] = int((hw[i] + 2 * dim_pad[i] - dim_dil[i] * (dim_kernel[i] - 1) - 1) / dim_stride[i] + 1)
         
     | 
| 
       78 
     | 
    
         
            -
                output_size = np.append(output_size, hw)
         
     | 
| 
       79 
     | 
    
         
            -
                macs = calculate_conv(dim_bias, np.prod(dim_kernel), np.prod(output_size), dim_weight[1], group)
         
     | 
| 
       80 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       81 
     | 
    
         
            -
             
     | 
| 
       82 
     | 
    
         
            -
                # if '140' in diction:
         
     | 
| 
       83 
     | 
    
         
            -
                #     print("conv",diction['140'],output_name)
         
     | 
| 
       84 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       85 
     | 
    
         
            -
             
     | 
| 
       86 
     | 
    
         
            -
             
     | 
| 
       87 
     | 
    
         
            -
            def onnx_counter_constant(diction, node):
         
     | 
| 
       88 
     | 
    
         
            -
                """Calculate MACs, output size, and output name for a constant operation in an ONNX model."""
         
     | 
| 
       89 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       90 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       91 
     | 
    
         
            -
                output_size = [1]
         
     | 
| 
       92 
     | 
    
         
            -
                # print(macs, output_size, output_name)
         
     | 
| 
       93 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       94 
     | 
    
         
            -
             
     | 
| 
       95 
     | 
    
         
            -
             
     | 
| 
       96 
     | 
    
         
            -
            def onnx_counter_mul(diction, node):
         
     | 
| 
       97 
     | 
    
         
            -
                """Calculate MACs, output size, and output name for a multiplication operation in an ONNX model."""
         
     | 
| 
       98 
     | 
    
         
            -
                if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size:
         
     | 
| 
       99 
     | 
    
         
            -
                    input_size = diction[node.input[1]]
         
     | 
| 
       100 
     | 
    
         
            -
                else:
         
     | 
| 
       101 
     | 
    
         
            -
                    input_size = diction[node.input[0]]
         
     | 
| 
       102 
     | 
    
         
            -
                macs = counter_mul(np.prod(input_size))
         
     | 
| 
       103 
     | 
    
         
            -
                output_size = diction[node.input[0]]
         
     | 
| 
       104 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       105 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       106 
     | 
    
         
            -
             
     | 
| 
       107 
     | 
    
         
            -
             
     | 
| 
       108 
     | 
    
         
            -
            def onnx_counter_bn(diction, node):
         
     | 
| 
       109 
     | 
    
         
            -
                """Calculates MACs, output size, and output name for batch normalization layers in an ONNX model."""
         
     | 
| 
       110 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       111 
     | 
    
         
            -
                macs = calculate_norm(np.prod(input_size))
         
     | 
| 
       112 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       113 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       114 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       115 
     | 
    
         
            -
             
     | 
| 
       116 
     | 
    
         
            -
             
     | 
| 
       117 
     | 
    
         
            -
            def onnx_counter_relu(diction, node):
         
     | 
| 
       118 
     | 
    
         
            -
                """Calculates MACs, output size, and output name for ReLU layers in an ONNX model."""
         
     | 
| 
       119 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       120 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       121 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       122 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       123 
     | 
    
         
            -
                # print(macs, output_size, output_name)
         
     | 
| 
       124 
     | 
    
         
            -
                # if '140' in diction:
         
     | 
| 
       125 
     | 
    
         
            -
                #     print("relu",diction['140'],output_name)
         
     | 
| 
       126 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       127 
     | 
    
         
            -
             
     | 
| 
       128 
     | 
    
         
            -
             
     | 
| 
       129 
     | 
    
         
            -
            def onnx_counter_reducemean(diction, node):
         
     | 
| 
       130 
     | 
    
         
            -
                """Compute MACs, output size, and name for the ReduceMean ONNX node, adjusting dimensions based on the 'axes' and
         
     | 
| 
       131 
     | 
    
         
            -
                'keepdims' attributes.
         
     | 
| 
       132 
     | 
    
         
            -
                """
         
     | 
| 
       133 
     | 
    
         
            -
                keep_dim = 0
         
     | 
| 
       134 
     | 
    
         
            -
                for attr in node.attribute:
         
     | 
| 
       135 
     | 
    
         
            -
                    if "axes" in attr.name:
         
     | 
| 
       136 
     | 
    
         
            -
                        dim_axis = np.array(attr.ints)
         
     | 
| 
       137 
     | 
    
         
            -
                    elif "keepdims" in attr.name:
         
     | 
| 
       138 
     | 
    
         
            -
                        keep_dim = attr.i
         
     | 
| 
       139 
     | 
    
         
            -
             
     | 
| 
       140 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       141 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       142 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       143 
     | 
    
         
            -
                if keep_dim == 1:
         
     | 
| 
       144 
     | 
    
         
            -
                    output_size = input_size
         
     | 
| 
       145 
     | 
    
         
            -
                else:
         
     | 
| 
       146 
     | 
    
         
            -
                    output_size = np.delete(input_size, dim_axis)
         
     | 
| 
       147 
     | 
    
         
            -
                # output_size = input_size
         
     | 
| 
       148 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       149 
     | 
    
         
            -
             
     | 
| 
       150 
     | 
    
         
            -
             
     | 
| 
       151 
     | 
    
         
            -
            def onnx_counter_sub(diction, node):
         
     | 
| 
       152 
     | 
    
         
            -
                """Computes MACs, output size, and output name for a given ONNX node with specified input size."""
         
     | 
| 
       153 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       154 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       155 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       156 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       157 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       158 
     | 
    
         
            -
             
     | 
| 
       159 
     | 
    
         
            -
             
     | 
| 
       160 
     | 
    
         
            -
            def onnx_counter_pow(diction, node):
         
     | 
| 
       161 
     | 
    
         
            -
                """Calculates MACs, output size, and output name for a given ONNX 'Pow' node with specified input size."""
         
     | 
| 
       162 
     | 
    
         
            -
                if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size:
         
     | 
| 
       163 
     | 
    
         
            -
                    input_size = diction[node.input[1]]
         
     | 
| 
       164 
     | 
    
         
            -
                else:
         
     | 
| 
       165 
     | 
    
         
            -
                    input_size = diction[node.input[0]]
         
     | 
| 
       166 
     | 
    
         
            -
                macs = counter_pow(np.prod(input_size))
         
     | 
| 
       167 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       168 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       169 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       170 
     | 
    
         
            -
             
     | 
| 
       171 
     | 
    
         
            -
             
     | 
| 
       172 
     | 
    
         
            -
            def onnx_counter_sqrt(diction, node):
         
     | 
| 
       173 
     | 
    
         
            -
                """Calculate MACs and output information for the SQRT operation in an ONNX node."""
         
     | 
| 
       174 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       175 
     | 
    
         
            -
                macs = counter_sqrt(np.prod(input_size))
         
     | 
| 
       176 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       177 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       178 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       179 
     | 
    
         
            -
             
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
            def onnx_counter_div(diction, node):
         
     | 
| 
       182 
     | 
    
         
            -
                """Calculate MACs and output information for the DIV operation in an ONNX node."""
         
     | 
| 
       183 
     | 
    
         
            -
                if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size:
         
     | 
| 
       184 
     | 
    
         
            -
                    input_size = diction[node.input[1]]
         
     | 
| 
       185 
     | 
    
         
            -
                else:
         
     | 
| 
       186 
     | 
    
         
            -
                    input_size = diction[node.input[0]]
         
     | 
| 
       187 
     | 
    
         
            -
                macs = counter_div(np.prod(input_size))
         
     | 
| 
       188 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       189 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       190 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       191 
     | 
    
         
            -
             
     | 
| 
       192 
     | 
    
         
            -
             
     | 
| 
       193 
     | 
    
         
            -
            def onnx_counter_instance(diction, node):
         
     | 
| 
       194 
     | 
    
         
            -
                """Calculate MACs, output size, and name for an ONNX node instance."""
         
     | 
| 
       195 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       196 
     | 
    
         
            -
                macs = calculate_norm(np.prod(input_size))
         
     | 
| 
       197 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       198 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       199 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       200 
     | 
    
         
            -
             
     | 
| 
       201 
     | 
    
         
            -
             
     | 
| 
       202 
     | 
    
         
            -
            def onnx_counter_softmax(diction, node):
         
     | 
| 
       203 
     | 
    
         
            -
                """Calculate MACs, output size, and name for an ONNX softmax node instance."""
         
     | 
| 
       204 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       205 
     | 
    
         
            -
                dim = node.attribute[0].i
         
     | 
| 
       206 
     | 
    
         
            -
                nfeatures = input_size[dim]
         
     | 
| 
       207 
     | 
    
         
            -
                batch_size = np.prod(input_size) / nfeatures
         
     | 
| 
       208 
     | 
    
         
            -
                macs = calculate_softmax(nfeatures, batch_size)
         
     | 
| 
       209 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       210 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       211 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       212 
     | 
    
         
            -
             
     | 
| 
       213 
     | 
    
         
            -
             
     | 
| 
       214 
     | 
    
         
            -
            def onnx_counter_pad(diction, node):
         
     | 
| 
       215 
     | 
    
         
            -
                """Compute memory access cost (MACs), output size, and output name for ONNX pad operation."""
         
     | 
| 
       216 
     | 
    
         
            -
                # if
         
     | 
| 
       217 
     | 
    
         
            -
                # if (np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size):
         
     | 
| 
       218 
     | 
    
         
            -
                #     input_size = diction[node.input[1]]
         
     | 
| 
       219 
     | 
    
         
            -
                # else:
         
     | 
| 
       220 
     | 
    
         
            -
                #     input_size = diction[node.input[0]]
         
     | 
| 
       221 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       222 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       223 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       224 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       225 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       226 
     | 
    
         
            -
             
     | 
| 
       227 
     | 
    
         
            -
             
     | 
| 
       228 
     | 
    
         
            -
            def onnx_counter_averagepool(diction, node):
         
     | 
| 
       229 
     | 
    
         
            -
                """Calculate MACs and output size for an AveragePool ONNX operation based on input dimensions and attributes."""
         
     | 
| 
       230 
     | 
    
         
            -
                macs = calculate_avgpool(np.prod(diction[node.input[0]]))
         
     | 
| 
       231 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       232 
     | 
    
         
            -
                dim_pad = None
         
     | 
| 
       233 
     | 
    
         
            -
                for attr in node.attribute:
         
     | 
| 
       234 
     | 
    
         
            -
                    # print(attr)
         
     | 
| 
       235 
     | 
    
         
            -
                    if attr.name == "kernel_shape":
         
     | 
| 
       236 
     | 
    
         
            -
                        dim_kernel = attr.ints  # kw,kh
         
     | 
| 
       237 
     | 
    
         
            -
                    elif attr.name == "strides":
         
     | 
| 
       238 
     | 
    
         
            -
                        dim_stride = attr.ints
         
     | 
| 
       239 
     | 
    
         
            -
                    elif attr.name == "pads":
         
     | 
| 
       240 
     | 
    
         
            -
                        dim_pad = attr.ints
         
     | 
| 
       241 
     | 
    
         
            -
                    elif attr.name == "dilations":
         
     | 
| 
       242 
     | 
    
         
            -
                        dim_dil = attr.ints
         
     | 
| 
       243 
     | 
    
         
            -
                        # print(dim_dil)
         
     | 
| 
       244 
     | 
    
         
            -
                dim_input = diction[node.input[0]]
         
     | 
| 
       245 
     | 
    
         
            -
                hw = dim_input[-np.array(dim_kernel).size :]
         
     | 
| 
       246 
     | 
    
         
            -
                if dim_pad is not None:
         
     | 
| 
       247 
     | 
    
         
            -
                    for i in range(hw.size):
         
     | 
| 
       248 
     | 
    
         
            -
                        hw[i] = int((hw[i] + 2 * dim_pad[i] - dim_kernel[i]) / dim_stride[i] + 1)
         
     | 
| 
       249 
     | 
    
         
            -
                    output_size = np.append(dim_input[0 : -np.array(dim_kernel).size], hw)
         
     | 
| 
       250 
     | 
    
         
            -
                else:
         
     | 
| 
       251 
     | 
    
         
            -
                    for i in range(hw.size):
         
     | 
| 
       252 
     | 
    
         
            -
                        hw[i] = int((hw[i] - dim_kernel[i]) / dim_stride[i] + 1)
         
     | 
| 
       253 
     | 
    
         
            -
                    output_size = np.append(dim_input[0 : -np.array(dim_kernel).size], hw)
         
     | 
| 
       254 
     | 
    
         
            -
                # print(macs, output_size, output_name)
         
     | 
| 
       255 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       256 
     | 
    
         
            -
             
     | 
| 
       257 
     | 
    
         
            -
             
     | 
| 
       258 
     | 
    
         
            -
            def onnx_counter_flatten(diction, node):
         
     | 
| 
       259 
     | 
    
         
            -
                """Returns MACs, output size, and output name for an ONNX Flatten node."""
         
     | 
| 
       260 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       261 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       262 
     | 
    
         
            -
                axis = node.attribute[0].i
         
     | 
| 
       263 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       264 
     | 
    
         
            -
                output_size = np.append(input_size[axis - 1], np.prod(input_size[axis:]))
         
     | 
| 
       265 
     | 
    
         
            -
                # print("flatten",output_size)
         
     | 
| 
       266 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       267 
     | 
    
         
            -
             
     | 
| 
       268 
     | 
    
         
            -
             
     | 
| 
       269 
     | 
    
         
            -
            def onnx_counter_gemm(diction, node):
         
     | 
| 
       270 
     | 
    
         
            -
                """Calculate multiply–accumulate operations (MACs), output size, and name for ONNX Gemm node."""
         
     | 
| 
       271 
     | 
    
         
            -
                # Compute Y = alpha * A' * B' + beta * C
         
     | 
| 
       272 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       273 
     | 
    
         
            -
                dim_weight = diction[node.input[1]]
         
     | 
| 
       274 
     | 
    
         
            -
                # print(input_size,dim_weight)
         
     | 
| 
       275 
     | 
    
         
            -
                macs = np.prod(input_size) * dim_weight[1] + dim_weight[0]
         
     | 
| 
       276 
     | 
    
         
            -
                output_size = np.append(input_size[0:-1], dim_weight[0])
         
     | 
| 
       277 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       278 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       279 
     | 
    
         
            -
                pass
         
     | 
| 
       280 
     | 
    
         
            -
             
     | 
| 
       281 
     | 
    
         
            -
             
     | 
| 
       282 
     | 
    
         
            -
            def onnx_counter_maxpool(diction, node):
         
     | 
| 
       283 
     | 
    
         
            -
                """Calculate MACs and output size for ONNX MaxPool operation based on input node attributes and dimensions."""
         
     | 
| 
       284 
     | 
    
         
            -
                # print(node)
         
     | 
| 
       285 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       286 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       287 
     | 
    
         
            -
                dim_pad = None
         
     | 
| 
       288 
     | 
    
         
            -
                for attr in node.attribute:
         
     | 
| 
       289 
     | 
    
         
            -
                    # print(attr)
         
     | 
| 
       290 
     | 
    
         
            -
                    if attr.name == "kernel_shape":
         
     | 
| 
       291 
     | 
    
         
            -
                        dim_kernel = attr.ints  # kw,kh
         
     | 
| 
       292 
     | 
    
         
            -
                    elif attr.name == "strides":
         
     | 
| 
       293 
     | 
    
         
            -
                        dim_stride = attr.ints
         
     | 
| 
       294 
     | 
    
         
            -
                    elif attr.name == "pads":
         
     | 
| 
       295 
     | 
    
         
            -
                        dim_pad = attr.ints
         
     | 
| 
       296 
     | 
    
         
            -
                    elif attr.name == "dilations":
         
     | 
| 
       297 
     | 
    
         
            -
                        dim_dil = attr.ints
         
     | 
| 
       298 
     | 
    
         
            -
                        # print(dim_dil)
         
     | 
| 
       299 
     | 
    
         
            -
                dim_input = diction[node.input[0]]
         
     | 
| 
       300 
     | 
    
         
            -
                hw = dim_input[-np.array(dim_kernel).size :]
         
     | 
| 
       301 
     | 
    
         
            -
                if dim_pad is not None:
         
     | 
| 
       302 
     | 
    
         
            -
                    for i in range(hw.size):
         
     | 
| 
       303 
     | 
    
         
            -
                        hw[i] = int((hw[i] + 2 * dim_pad[i] - dim_kernel[i]) / dim_stride[i] + 1)
         
     | 
| 
       304 
     | 
    
         
            -
                    output_size = np.append(dim_input[0 : -np.array(dim_kernel).size], hw)
         
     | 
| 
       305 
     | 
    
         
            -
                else:
         
     | 
| 
       306 
     | 
    
         
            -
                    for i in range(hw.size):
         
     | 
| 
       307 
     | 
    
         
            -
                        hw[i] = int((hw[i] - dim_kernel[i]) / dim_stride[i] + 1)
         
     | 
| 
       308 
     | 
    
         
            -
                    output_size = np.append(dim_input[0 : -np.array(dim_kernel).size], hw)
         
     | 
| 
       309 
     | 
    
         
            -
                # print(macs, output_size, output_name)
         
     | 
| 
       310 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       311 
     | 
    
         
            -
             
     | 
| 
       312 
     | 
    
         
            -
             
     | 
| 
       313 
     | 
    
         
            -
            def onnx_counter_globalaveragepool(diction, node):
         
     | 
| 
       314 
     | 
    
         
            -
                """Counts MACs and computes output size for a global average pooling layer in an ONNX model."""
         
     | 
| 
       315 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       316 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       317 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       318 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       319 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       320 
     | 
    
         
            -
             
     | 
| 
       321 
     | 
    
         
            -
             
     | 
| 
       322 
     | 
    
         
            -
            def onnx_counter_concat(diction, node):
         
     | 
| 
       323 
     | 
    
         
            -
                """Counts MACs and computes output size for a concatenation layer along a specified axis in an ONNX model."""
         
     | 
| 
       324 
     | 
    
         
            -
                # print(diction[node.input[0]])
         
     | 
| 
       325 
     | 
    
         
            -
                axis = node.attribute[0].i
         
     | 
| 
       326 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       327 
     | 
    
         
            -
                for i in node.input:
         
     | 
| 
       328 
     | 
    
         
            -
                    dim_concat = diction[i][axis]
         
     | 
| 
       329 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       330 
     | 
    
         
            -
                output_size[axis] = dim_concat
         
     | 
| 
       331 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       332 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       333 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       334 
     | 
    
         
            -
             
     | 
| 
       335 
     | 
    
         
            -
             
     | 
| 
       336 
     | 
    
         
            -
            def onnx_counter_clip(diction, node):
         
     | 
| 
       337 
     | 
    
         
            -
                """Calculate MACs, output size, and output name for an ONNX node clip operation using provided dimensions and input
         
     | 
| 
       338 
     | 
    
         
            -
                size.
         
     | 
| 
       339 
     | 
    
         
            -
                """
         
     | 
| 
       340 
     | 
    
         
            -
                macs = calculate_zero_ops()
         
     | 
| 
       341 
     | 
    
         
            -
                output_name = node.output[0]
         
     | 
| 
       342 
     | 
    
         
            -
                input_size = diction[node.input[0]]
         
     | 
| 
       343 
     | 
    
         
            -
                output_size = input_size
         
     | 
| 
       344 
     | 
    
         
            -
                return macs, output_size, output_name
         
     | 
| 
       345 
     | 
    
         
            -
             
     | 
| 
       346 
     | 
    
         
            -
             
     | 
| 
       347 
     | 
    
         
            -
            onnx_operators = {
         
     | 
| 
       348 
     | 
    
         
            -
                "MatMul": onnx_counter_matmul,
         
     | 
| 
       349 
     | 
    
         
            -
                "Add": onnx_counter_add,
         
     | 
| 
       350 
     | 
    
         
            -
                "Conv": onnx_counter_conv,
         
     | 
| 
       351 
     | 
    
         
            -
                "Mul": onnx_counter_mul,
         
     | 
| 
       352 
     | 
    
         
            -
                "Constant": onnx_counter_constant,
         
     | 
| 
       353 
     | 
    
         
            -
                "BatchNormalization": onnx_counter_bn,
         
     | 
| 
       354 
     | 
    
         
            -
                "Relu": onnx_counter_relu,
         
     | 
| 
       355 
     | 
    
         
            -
                "ReduceMean": onnx_counter_reducemean,
         
     | 
| 
       356 
     | 
    
         
            -
                "Sub": onnx_counter_sub,
         
     | 
| 
       357 
     | 
    
         
            -
                "Pow": onnx_counter_pow,
         
     | 
| 
       358 
     | 
    
         
            -
                "Sqrt": onnx_counter_sqrt,
         
     | 
| 
       359 
     | 
    
         
            -
                "Div": onnx_counter_div,
         
     | 
| 
       360 
     | 
    
         
            -
                "InstanceNormalization": onnx_counter_instance,
         
     | 
| 
       361 
     | 
    
         
            -
                "Softmax": onnx_counter_softmax,
         
     | 
| 
       362 
     | 
    
         
            -
                "Pad": onnx_counter_pad,
         
     | 
| 
       363 
     | 
    
         
            -
                "AveragePool": onnx_counter_averagepool,
         
     | 
| 
       364 
     | 
    
         
            -
                "MaxPool": onnx_counter_maxpool,
         
     | 
| 
       365 
     | 
    
         
            -
                "Flatten": onnx_counter_flatten,
         
     | 
| 
       366 
     | 
    
         
            -
                "Gemm": onnx_counter_gemm,
         
     | 
| 
       367 
     | 
    
         
            -
                "GlobalAveragePool": onnx_counter_globalaveragepool,
         
     | 
| 
       368 
     | 
    
         
            -
                "Concat": onnx_counter_concat,
         
     | 
| 
       369 
     | 
    
         
            -
                "Clip": onnx_counter_clip,
         
     | 
| 
       370 
     | 
    
         
            -
                None: None,
         
     | 
| 
       371 
     | 
    
         
            -
            }
         
     | 
| 
         @@ -1,16 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            thop/__init__.py,sha256=pRAdUWtCnYHu_R9TebDcuWzS5ztqcQWwSd3S08-zkUk,146
         
     | 
| 
       2 
     | 
    
         
            -
            thop/fx_profile.py,sha256=GpkQ4pfOUsBs3iDwdhnN_8tAmrrJgxAtQSF_anSXyMI,8360
         
     | 
| 
       3 
     | 
    
         
            -
            thop/onnx_profile.py,sha256=esRx3lF76VuSpZAThVZKEfHLol1D1QbBr5Lraw61eUA,2917
         
     | 
| 
       4 
     | 
    
         
            -
            thop/profile.py,sha256=YbAQd9vXQENhUqdSDhoXogN7zcLRGoODWHi_msBl2B4,7965
         
     | 
| 
       5 
     | 
    
         
            -
            thop/rnn_hooks.py,sha256=gCdMBKcFMwAm3IvcSKuzaY36CdISTKRuLfjeiY1MEEs,6581
         
     | 
| 
       6 
     | 
    
         
            -
            thop/utils.py,sha256=SxYCGEmwHmAJXreaco9C7R2RWLOS9mLsCmFHburQWl0,1653
         
     | 
| 
       7 
     | 
    
         
            -
            thop/vision/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
         
     | 
| 
       8 
     | 
    
         
            -
            thop/vision/basic_hooks.py,sha256=A8_JNDKiZF4FsfAdifbU9uKApWKNKitX_rnVXwXmqBE,4896
         
     | 
| 
       9 
     | 
    
         
            -
            thop/vision/calc_func.py,sha256=1BbNWjj9IpsBs9axopKwP0mCDIJO4Vr-ZiW4ubcYofs,4364
         
     | 
| 
       10 
     | 
    
         
            -
            thop/vision/efficientnet.py,sha256=QqtLajIeCOT1KXBvfbXDRA5WI7yJXvGTOn3JwSQAfo8,219
         
     | 
| 
       11 
     | 
    
         
            -
            thop/vision/onnx_counter.py,sha256=cb3-acpzblWjj9gMi787_BilVU0KA0Rx4vdQYFVcarQ,13298
         
     | 
| 
       12 
     | 
    
         
            -
            ultralytics_thop-0.2.3.dist-info/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
         
     | 
| 
       13 
     | 
    
         
            -
            ultralytics_thop-0.2.3.dist-info/METADATA,sha256=05-zs1fjDuaCLvH8PehL7F4wG79f5wy8MN2cM123CQQ,8229
         
     | 
| 
       14 
     | 
    
         
            -
            ultralytics_thop-0.2.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
         
     | 
| 
       15 
     | 
    
         
            -
            ultralytics_thop-0.2.3.dist-info/top_level.txt,sha256=HQ7D0gSvDJ31CNR-f0EuXNVve05RYBmwyIkHQKiEhU8,5
         
     | 
| 
       16 
     | 
    
         
            -
            ultralytics_thop-0.2.3.dist-info/RECORD,,
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     |