ultralytics-opencv-headless 8.4.7__py3-none-any.whl → 8.4.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. tests/test_cli.py +10 -3
  2. tests/test_cuda.py +1 -1
  3. tests/test_exports.py +64 -43
  4. tests/test_python.py +16 -12
  5. ultralytics/__init__.py +1 -1
  6. ultralytics/cfg/__init__.py +1 -0
  7. ultralytics/cfg/default.yaml +1 -0
  8. ultralytics/data/augment.py +2 -2
  9. ultralytics/data/converter.py +11 -0
  10. ultralytics/engine/exporter.py +13 -16
  11. ultralytics/engine/predictor.py +5 -0
  12. ultralytics/engine/trainer.py +3 -3
  13. ultralytics/engine/tuner.py +2 -2
  14. ultralytics/engine/validator.py +5 -0
  15. ultralytics/models/sam/predict.py +2 -2
  16. ultralytics/models/yolo/classify/train.py +14 -1
  17. ultralytics/models/yolo/detect/train.py +4 -2
  18. ultralytics/models/yolo/pose/train.py +2 -1
  19. ultralytics/models/yolo/world/train_world.py +21 -1
  20. ultralytics/models/yolo/yoloe/train.py +1 -2
  21. ultralytics/nn/autobackend.py +22 -6
  22. ultralytics/nn/modules/head.py +13 -2
  23. ultralytics/nn/tasks.py +18 -0
  24. ultralytics/solutions/security_alarm.py +1 -1
  25. ultralytics/utils/benchmarks.py +3 -9
  26. ultralytics/utils/checks.py +18 -3
  27. ultralytics/utils/dist.py +9 -3
  28. ultralytics/utils/loss.py +4 -5
  29. ultralytics/utils/tal.py +15 -5
  30. ultralytics/utils/torch_utils.py +2 -1
  31. {ultralytics_opencv_headless-8.4.7.dist-info → ultralytics_opencv_headless-8.4.9.dist-info}/METADATA +3 -3
  32. {ultralytics_opencv_headless-8.4.7.dist-info → ultralytics_opencv_headless-8.4.9.dist-info}/RECORD +36 -36
  33. {ultralytics_opencv_headless-8.4.7.dist-info → ultralytics_opencv_headless-8.4.9.dist-info}/WHEEL +1 -1
  34. {ultralytics_opencv_headless-8.4.7.dist-info → ultralytics_opencv_headless-8.4.9.dist-info}/entry_points.txt +0 -0
  35. {ultralytics_opencv_headless-8.4.7.dist-info → ultralytics_opencv_headless-8.4.9.dist-info}/licenses/LICENSE +0 -0
  36. {ultralytics_opencv_headless-8.4.7.dist-info → ultralytics_opencv_headless-8.4.9.dist-info}/top_level.txt +0 -0
tests/test_cli.py CHANGED
@@ -34,19 +34,26 @@ def test_train(task: str, model: str, data: str) -> None:
34
34
  @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
35
35
  def test_val(task: str, model: str, data: str) -> None:
36
36
  """Test YOLO validation process for specified task, model, and data using a shell command."""
37
- run(f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json visualize")
37
+ for end2end in {False, True}:
38
+ run(
39
+ f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json visualize end2end={end2end} max_det=100 agnostic_nms"
40
+ )
38
41
 
39
42
 
40
43
  @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
41
44
  def test_predict(task: str, model: str, data: str) -> None:
42
45
  """Test YOLO prediction on provided sample assets for specified task and model."""
43
- run(f"yolo {task} predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt visualize")
46
+ for end2end in {False, True}:
47
+ run(
48
+ f"yolo {task} predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt visualize end2end={end2end} max_det=100"
49
+ )
44
50
 
45
51
 
46
52
  @pytest.mark.parametrize("model", MODELS)
47
53
  def test_export(model: str) -> None:
48
54
  """Test exporting a YOLO model to TorchScript format."""
49
- run(f"yolo export model={model} format=torchscript imgsz=32")
55
+ for end2end in {False, True}:
56
+ run(f"yolo export model={model} format=torchscript imgsz=32 end2end={end2end} max_det=100")
50
57
 
51
58
 
52
59
  @pytest.mark.skipif(not TORCH_1_11, reason="RTDETR requires torch>=1.11")
tests/test_cuda.py CHANGED
@@ -120,7 +120,7 @@ def test_train():
120
120
  device = tuple(DEVICES) if len(DEVICES) > 1 else DEVICES[0]
121
121
  # NVIDIA Jetson only has one GPU and therefore skipping checks
122
122
  if not IS_JETSON:
123
- results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device, batch=15)
123
+ results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device, batch=15, compile=True)
124
124
  results = YOLO(MODEL).train(data="coco128.yaml", imgsz=64, epochs=1, device=device, batch=15, val=False)
125
125
  visible = eval(os.environ["CUDA_VISIBLE_DEVICES"])
126
126
  assert visible == device, f"Passed GPUs '{device}', but used GPUs '{visible}'"
tests/test_exports.py CHANGED
@@ -16,38 +16,42 @@ from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, MACOS_VERSION
16
16
  from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_0, TORCH_2_1, TORCH_2_8, TORCH_2_9
17
17
 
18
18
 
19
- def test_export_torchscript():
19
+ @pytest.mark.parametrize("end2end", [False, True])
20
+ def test_export_torchscript(end2end):
20
21
  """Test YOLO model export to TorchScript format for compatibility and correctness."""
21
- file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
22
+ file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32, end2end=end2end)
22
23
  YOLO(file)(SOURCE, imgsz=32) # exported model inference
23
24
 
24
25
 
25
- def test_export_onnx():
26
+ @pytest.mark.parametrize("end2end", [False, True])
27
+ def test_export_onnx(end2end):
26
28
  """Test YOLO model export to ONNX format with dynamic axes."""
27
- file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
29
+ file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32, end2end=end2end)
28
30
  YOLO(file)(SOURCE, imgsz=32) # exported model inference
29
31
 
30
32
 
31
33
  @pytest.mark.skipif(not TORCH_2_1, reason="OpenVINO requires torch>=2.1")
32
- def test_export_openvino():
34
+ @pytest.mark.parametrize("end2end", [False, True])
35
+ def test_export_openvino(end2end):
33
36
  """Test YOLO export to OpenVINO format for model inference compatibility."""
34
- file = YOLO(MODEL).export(format="openvino", imgsz=32)
37
+ file = YOLO(MODEL).export(format="openvino", imgsz=32, end2end=end2end)
35
38
  YOLO(file)(SOURCE, imgsz=32) # exported model inference
36
39
 
37
40
 
38
41
  @pytest.mark.slow
39
42
  @pytest.mark.skipif(not TORCH_2_1, reason="OpenVINO requires torch>=2.1")
40
43
  @pytest.mark.parametrize(
41
- "task, dynamic, int8, half, batch, nms",
44
+ "task, dynamic, int8, half, batch, nms, end2end",
42
45
  [ # generate all combinations except for exclusion cases
43
- (task, dynamic, int8, half, batch, nms)
44
- for task, dynamic, int8, half, batch, nms in product(
45
- TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False]
46
+ (task, dynamic, int8, half, batch, nms, end2end)
47
+ for task, dynamic, int8, half, batch, nms, end2end in product(
48
+ TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False], [True]
46
49
  )
47
- if not ((int8 and half) or (task == "classify" and nms))
50
+ if not ((int8 and half) or (task == "classify" and nms) or (end2end and nms))
48
51
  ],
49
52
  )
50
- def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
53
+ # disable end2end=False test for now due to github runner OOM during openvino tests
54
+ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms, end2end):
51
55
  """Test YOLO model export to OpenVINO under various configuration matrix conditions."""
52
56
  file = YOLO(TASK2MODEL[task]).export(
53
57
  format="openvino",
@@ -58,6 +62,7 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
58
62
  batch=batch,
59
63
  data=TASK2DATA[task],
60
64
  nms=nms,
65
+ end2end=end2end,
61
66
  )
62
67
  if WINDOWS:
63
68
  # Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
@@ -70,19 +75,27 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
70
75
 
71
76
  @pytest.mark.slow
72
77
  @pytest.mark.parametrize(
73
- "task, dynamic, int8, half, batch, simplify, nms",
78
+ "task, dynamic, int8, half, batch, simplify, nms, end2end",
74
79
  [ # generate all combinations except for exclusion cases
75
- (task, dynamic, int8, half, batch, simplify, nms)
76
- for task, dynamic, int8, half, batch, simplify, nms in product(
77
- TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
80
+ (task, dynamic, int8, half, batch, simplify, nms, end2end)
81
+ for task, dynamic, int8, half, batch, simplify, nms, end2end in product(
82
+ TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False], [True, False]
78
83
  )
79
- if not ((int8 and half) or (task == "classify" and nms) or (nms and not TORCH_1_13))
84
+ if not ((int8 and half) or (task == "classify" and nms) or (nms and not TORCH_1_13) or (end2end and nms))
80
85
  ],
81
86
  )
82
- def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
87
+ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms, end2end):
83
88
  """Test YOLO export to ONNX format with various configurations and parameters."""
84
89
  file = YOLO(TASK2MODEL[task]).export(
85
- format="onnx", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, simplify=simplify, nms=nms
90
+ format="onnx",
91
+ imgsz=32,
92
+ dynamic=dynamic,
93
+ int8=int8,
94
+ half=half,
95
+ batch=batch,
96
+ simplify=simplify,
97
+ nms=nms,
98
+ end2end=end2end,
86
99
  )
87
100
  YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
88
101
  Path(file).unlink() # cleanup
@@ -90,19 +103,19 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
90
103
 
91
104
  @pytest.mark.slow
92
105
  @pytest.mark.parametrize(
93
- "task, dynamic, int8, half, batch, nms",
106
+ "task, dynamic, int8, half, batch, nms, end2end",
94
107
  [ # generate all combinations except for exclusion cases
95
- (task, dynamic, int8, half, batch, nms)
96
- for task, dynamic, int8, half, batch, nms in product(
97
- TASKS, [False, True], [False], [False, True], [1, 2], [True, False]
108
+ (task, dynamic, int8, half, batch, nms, end2end)
109
+ for task, dynamic, int8, half, batch, nms, end2end in product(
110
+ TASKS, [False, True], [False], [False, True], [1, 2], [True, False], [True, False]
98
111
  )
99
- if not (task == "classify" and nms)
112
+ if not ((task == "classify" and nms) or (end2end and nms))
100
113
  ],
101
114
  )
102
- def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
115
+ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms, end2end):
103
116
  """Test YOLO model export to TorchScript format under varied configurations."""
104
117
  file = YOLO(TASK2MODEL[task]).export(
105
- format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
118
+ format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms, end2end=end2end
106
119
  )
107
120
  YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
108
121
  Path(file).unlink() # cleanup
@@ -116,19 +129,20 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
116
129
  MACOS and MACOS_VERSION and MACOS_VERSION >= "15", reason="CoreML YOLO26 matrix test crashes on macOS 15+"
117
130
  )
118
131
  @pytest.mark.parametrize(
119
- "task, dynamic, int8, half, nms, batch",
132
+ "task, dynamic, int8, half, nms, batch, end2end",
120
133
  [ # generate all combinations except for exclusion cases
121
- (task, dynamic, int8, half, nms, batch)
122
- for task, dynamic, int8, half, nms, batch in product(
123
- TASKS, [True, False], [True, False], [True, False], [True, False], [1]
134
+ (task, dynamic, int8, half, nms, batch, end2end)
135
+ for task, dynamic, int8, half, nms, batch, end2end in product(
136
+ TASKS, [True, False], [True, False], [True, False], [True, False], [1], [True, False]
124
137
  )
125
138
  if not (int8 and half)
126
139
  and not (task != "detect" and nms)
127
140
  and not (dynamic and nms)
128
141
  and not (task == "classify" and dynamic)
142
+ and not (end2end and nms)
129
143
  ],
130
144
  )
131
- def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
145
+ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch, end2end):
132
146
  """Test YOLO export to CoreML format with various parameter configurations."""
133
147
  file = YOLO(TASK2MODEL[task]).export(
134
148
  format="coreml",
@@ -138,6 +152,7 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
138
152
  half=half,
139
153
  batch=batch,
140
154
  nms=nms,
155
+ end2end=end2end,
141
156
  )
142
157
  YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference
143
158
  shutil.rmtree(file) # cleanup
@@ -152,19 +167,25 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
152
167
  reason="Test disabled as TF suffers from install conflicts on Windows, macOS and Raspberry Pi",
153
168
  )
154
169
  @pytest.mark.parametrize(
155
- "task, dynamic, int8, half, batch, nms",
170
+ "task, dynamic, int8, half, batch, nms, end2end",
156
171
  [ # generate all combinations except for exclusion cases
157
- (task, dynamic, int8, half, batch, nms)
158
- for task, dynamic, int8, half, batch, nms in product(
159
- TASKS, [False], [True, False], [True, False], [1], [True, False]
172
+ (task, dynamic, int8, half, batch, nms, end2end)
173
+ for task, dynamic, int8, half, batch, nms, end2end in product(
174
+ TASKS, [False], [True, False], [True, False], [1], [True, False], [True, False]
175
+ )
176
+ if not (
177
+ (int8 and half)
178
+ or (task == "classify" and nms)
179
+ or (ARM64 and nms)
180
+ or (nms and not TORCH_1_13)
181
+ or (end2end and nms)
160
182
  )
161
- if not ((int8 and half) or (task == "classify" and nms) or (ARM64 and nms) or (nms and not TORCH_1_13))
162
183
  ],
163
184
  )
164
- def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms):
185
+ def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms, end2end):
165
186
  """Test YOLO export to TFLite format considering various export configurations."""
166
187
  file = YOLO(TASK2MODEL[task]).export(
167
- format="tflite", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
188
+ format="tflite", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms, end2end=end2end
168
189
  )
169
190
  YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference
170
191
  Path(file).unlink() # cleanup
@@ -225,16 +246,16 @@ def test_export_mnn():
225
246
  @pytest.mark.slow
226
247
  @pytest.mark.skipif(not TORCH_1_10, reason="MNN export requires torch>=1.10")
227
248
  @pytest.mark.parametrize(
228
- "task, int8, half, batch",
249
+ "task, int8, half, batch, end2end",
229
250
  [ # generate all combinations except for exclusion cases
230
- (task, int8, half, batch)
231
- for task, int8, half, batch in product(TASKS, [True, False], [True, False], [1, 2])
251
+ (task, int8, half, batch, end2end)
252
+ for task, int8, half, batch, end2end in product(TASKS, [True, False], [True, False], [1, 2], [True, False])
232
253
  if not (int8 and half)
233
254
  ],
234
255
  )
235
- def test_export_mnn_matrix(task, int8, half, batch):
256
+ def test_export_mnn_matrix(task, int8, half, batch, end2end):
236
257
  """Test YOLO export to MNN format considering various export configurations."""
237
- file = YOLO(TASK2MODEL[task]).export(format="mnn", imgsz=32, int8=int8, half=half, batch=batch)
258
+ file = YOLO(TASK2MODEL[task]).export(format="mnn", imgsz=32, int8=int8, half=half, batch=batch, end2end=end2end)
238
259
  YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference
239
260
  Path(file).unlink() # cleanup
240
261
 
tests/test_python.py CHANGED
@@ -168,13 +168,13 @@ def test_predict_all_image_formats():
168
168
  dataset_path = Path(data["path"])
169
169
 
170
170
  # Collect all images from train and val
171
- images = list((dataset_path / "images" / "train").glob("*.*"))
172
- images += list((dataset_path / "images" / "val").glob("*.*"))
171
+ expected = {"avif", "bmp", "dng", "heic", "jp2", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp"}
172
+ images = [im for im in (dataset_path / "images" / "train").glob("*.*") if im.suffix.lower().lstrip(".") in expected]
173
+ images += [im for im in (dataset_path / "images" / "val").glob("*.*") if im.suffix.lower().lstrip(".") in expected]
173
174
  assert len(images) == 12, f"Expected 12 images, found {len(images)}"
174
175
 
175
176
  # Verify all format extensions are represented
176
177
  extensions = {img.suffix.lower().lstrip(".") for img in images}
177
- expected = {"avif", "bmp", "dng", "heic", "jp2", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp"}
178
178
  assert extensions == expected, f"Missing formats: {expected - extensions}"
179
179
 
180
180
  # Run inference on all images
@@ -697,7 +697,7 @@ def test_yolo_world():
697
697
  checks.IS_PYTHON_3_8 and LINUX and ARM64,
698
698
  reason="YOLOE with CLIP is not supported in Python 3.8 and aarch64 Linux",
699
699
  )
700
- def test_yoloe():
700
+ def test_yoloe(tmp_path):
701
701
  """Test YOLOE models with MobileClip support."""
702
702
  # Predict
703
703
  # text-prompts
@@ -739,14 +739,18 @@ def test_yoloe():
739
739
  imgsz=32,
740
740
  )
741
741
  # Train, from scratch
742
- model = YOLOE("yoloe-11s-seg.yaml")
743
- model.train(
744
- data=dict(train=dict(yolo_data=["coco128-seg.yaml"]), val=dict(yolo_data=["coco128-seg.yaml"])),
745
- epochs=1,
746
- close_mosaic=1,
747
- trainer=YOLOESegTrainerFromScratch,
748
- imgsz=32,
749
- )
742
+ data_dict = dict(train=dict(yolo_data=["coco128-seg.yaml"]), val=dict(yolo_data=["coco128-seg.yaml"]))
743
+ data_yaml = tmp_path / "yoloe-data.yaml"
744
+ YAML.save(data=data_dict, file=data_yaml)
745
+ for data in [data_dict, data_yaml]:
746
+ model = YOLOE("yoloe-11s-seg.yaml")
747
+ model.train(
748
+ data=data,
749
+ epochs=1,
750
+ close_mosaic=1,
751
+ trainer=YOLOESegTrainerFromScratch,
752
+ imgsz=32,
753
+ )
750
754
 
751
755
  # prompt-free
752
756
  # predict
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.4.7"
3
+ __version__ = "8.4.9"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -238,6 +238,7 @@ CFG_BOOL_KEYS = frozenset(
238
238
  "simplify",
239
239
  "nms",
240
240
  "profile",
241
+ "end2end",
241
242
  }
242
243
  )
243
244
 
@@ -56,6 +56,7 @@ max_det: 300 # (int) maximum number of detections per image
56
56
  half: False # (bool) use half precision (FP16) if supported
57
57
  dnn: False # (bool) use OpenCV DNN for ONNX inference
58
58
  plots: True # (bool) save plots and images during train/val
59
+ end2end: # (bool, optional) whether to use end2end head(YOLO26, YOLOv10) for predict/val/export
59
60
 
60
61
  # Predict settings -----------------------------------------------------------------------------------------------------
61
62
  source: # (str, optional) path/dir/URL/stream for images or videos; e.g. 'ultralytics/assets' or '0' for webcam
@@ -1745,7 +1745,7 @@ class CopyPaste(BaseMixTransform):
1745
1745
  instances.convert_bbox(format="xyxy")
1746
1746
  instances.denormalize(w, h)
1747
1747
 
1748
- im_new = np.zeros(im.shape, np.uint8)
1748
+ im_new = np.zeros(im.shape[:2], np.uint8)
1749
1749
  instances2 = labels2.pop("instances", None)
1750
1750
  if instances2 is None:
1751
1751
  instances2 = deepcopy(instances)
@@ -1758,7 +1758,7 @@ class CopyPaste(BaseMixTransform):
1758
1758
  for j in indexes[: round(self.p * n)]:
1759
1759
  cls = np.concatenate((cls, labels2.get("cls", cls)[[j]]), axis=0)
1760
1760
  instances = Instances.concatenate((instances, instances2[[j]]), axis=0)
1761
- cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
1761
+ cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, 1, cv2.FILLED)
1762
1762
 
1763
1763
  result = labels2.get("img", cv2.flip(im, 1)) # augment segments
1764
1764
  if result.ndim == 2: # cv2.flip would eliminate the last dimension for grayscale images
@@ -796,6 +796,17 @@ async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Pat
796
796
  # Check if this is a classification dataset
797
797
  is_classification = dataset_record.get("task") == "classify"
798
798
  class_names = {int(k): v for k, v in dataset_record.get("class_names", {}).items()}
799
+ len(class_names)
800
+
801
+ # Validate required fields before downloading images
802
+ task = dataset_record.get("task", "detect")
803
+ if not is_classification:
804
+ if "train" not in splits:
805
+ raise ValueError(f"Dataset missing required 'train' split. Found splits: {sorted(splits)}")
806
+ if "val" not in splits and "test" not in splits:
807
+ raise ValueError(f"Dataset missing required 'val' split. Found splits: {sorted(splits)}")
808
+ if task == "pose" and "kpt_shape" not in dataset_record:
809
+ raise ValueError("Pose dataset missing required 'kpt_shape'. See https://docs.ultralytics.com/datasets/pose/")
799
810
 
800
811
  # Create base directories
801
812
  dataset_dir.mkdir(parents=True, exist_ok=True)
@@ -87,7 +87,6 @@ from ultralytics.utils import (
87
87
  IS_COLAB,
88
88
  IS_DEBIAN_BOOKWORM,
89
89
  IS_DEBIAN_TRIXIE,
90
- IS_DOCKER,
91
90
  IS_JETSON,
92
91
  IS_RASPBERRYPI,
93
92
  IS_UBUNTU,
@@ -108,6 +107,7 @@ from ultralytics.utils.checks import (
108
107
  IS_PYTHON_3_10,
109
108
  IS_PYTHON_MINIMUM_3_9,
110
109
  check_apt_requirements,
110
+ check_executorch_requirements,
111
111
  check_imgsz,
112
112
  check_requirements,
113
113
  check_version,
@@ -404,6 +404,13 @@ class Exporter:
404
404
  if not hasattr(model, "names"):
405
405
  model.names = default_class_names()
406
406
  model.names = check_class_names(model.names)
407
+ if hasattr(model, "end2end"):
408
+ if self.args.end2end is not None:
409
+ model.end2end = self.args.end2end
410
+ if rknn or ncnn or executorch or paddle or imx:
411
+ # Disable end2end branch for certain export formats as they does not support topk
412
+ model.end2end = False
413
+ LOGGER.warning(f"{fmt.upper()} export does not support end2end models, disabling end2end branch.")
407
414
  if self.args.half and self.args.int8:
408
415
  LOGGER.warning("half=True and int8=True are mutually exclusive, setting half=False.")
409
416
  self.args.half = False
@@ -463,9 +470,6 @@ class Exporter:
463
470
  )
464
471
  if tfjs and (ARM64 and LINUX):
465
472
  raise SystemError("TF.js exports are not currently supported on ARM64 Linux")
466
- if ncnn and hasattr(model.model[-1], "one2one_cv2"):
467
- del model.model[-1].one2one_cv2 # Disable end2end branch for NCNN export as it does not support topk
468
- LOGGER.warning("NCNN export does not support end2end models, disabling end2end branch.")
469
473
  # Recommend OpenVINO if export and Intel CPU
470
474
  if SETTINGS.get("openvino_msg"):
471
475
  if is_intel():
@@ -509,6 +513,7 @@ class Exporter:
509
513
  # Clamp max_det to anchor count for small image sizes (required for TensorRT compatibility)
510
514
  anchors = sum(int(self.imgsz[0] / s) * int(self.imgsz[1] / s) for s in model.stride.tolist())
511
515
  m.max_det = min(self.args.max_det, anchors)
516
+ m.agnostic_nms = self.args.agnostic_nms
512
517
  m.xyxy = self.args.nms and not coreml
513
518
  m.shape = None # reset cached shape for new export input size
514
519
  if hasattr(model, "pe") and hasattr(m, "fuse"): # for YOLOE models
@@ -549,6 +554,7 @@ class Exporter:
549
554
  "names": model.names,
550
555
  "args": {k: v for k, v in self.args if k in fmt_keys},
551
556
  "channels": model.yaml.get("channels", 3),
557
+ "end2end": getattr(model, "end2end", False),
552
558
  } # model metadata
553
559
  if dla is not None:
554
560
  self.metadata["dla"] = dla # make sure `AutoBackend` uses correct dla device if it has one
@@ -556,8 +562,6 @@ class Exporter:
556
562
  self.metadata["kpt_shape"] = model.model[-1].kpt_shape
557
563
  if hasattr(model, "kpt_names"):
558
564
  self.metadata["kpt_names"] = model.kpt_names
559
- if getattr(model.model[-1], "end2end", False):
560
- self.metadata["end2end"] = True
561
565
 
562
566
  LOGGER.info(
563
567
  f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
@@ -1045,7 +1049,7 @@ class Exporter:
1045
1049
  "onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package
1046
1050
  "ai-edge-litert>=1.2.0" + (",<1.4.0" if MACOS else ""), # required by 'onnx2tf' package
1047
1051
  "onnx>=1.12.0,<2.0.0",
1048
- "onnx2tf>=1.26.3",
1052
+ "onnx2tf>=1.26.3,<1.29.0", # pin to avoid h5py build issues on aarch64
1049
1053
  "onnxslim>=0.1.71",
1050
1054
  "onnxruntime-gpu" if cuda else "onnxruntime",
1051
1055
  "protobuf>=5",
@@ -1193,16 +1197,9 @@ class Exporter:
1193
1197
  following Ultralytics conventions.
1194
1198
  """
1195
1199
  LOGGER.info(f"\n{prefix} starting export with ExecuTorch...")
1196
- assert TORCH_2_9, f"ExecuTorch export requires torch>=2.9.0 but torch=={TORCH_VERSION} is installed"
1200
+ assert TORCH_2_9, f"ExecuTorch requires torch>=2.9.0 but torch=={TORCH_VERSION} is installed"
1197
1201
 
1198
- # BUG executorch build on arm64 Docker requires packaging>=22.0 https://github.com/pypa/setuptools/issues/4483
1199
- if LINUX and ARM64 and IS_DOCKER:
1200
- check_requirements("packaging>=22.0")
1201
-
1202
- check_requirements("ruamel.yaml<0.19.0")
1203
- check_requirements("executorch==1.0.1", "flatbuffers")
1204
- # Pin numpy to avoid coremltools errors with numpy>=2.4.0, must be separate
1205
- check_requirements("numpy<=2.3.5")
1202
+ check_executorch_requirements()
1206
1203
 
1207
1204
  from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
1208
1205
  from executorch.exir import to_edge_transform_and_lower
@@ -387,6 +387,11 @@ class BasePredictor:
387
387
  model (str | Path | torch.nn.Module, optional): Model to load or use.
388
388
  verbose (bool): Whether to print verbose output.
389
389
  """
390
+ if hasattr(model, "end2end"):
391
+ if self.args.end2end is not None:
392
+ model.end2end = self.args.end2end
393
+ if model.end2end:
394
+ model.set_head_attr(max_det=self.args.max_det, agnostic_nms=self.args.agnostic_nms)
390
395
  self.model = AutoBackend(
391
396
  model=model or self.args.model,
392
397
  device=select_device(self.args.device, verbose=verbose),
@@ -948,7 +948,7 @@ class BaseTrainer:
948
948
  )
949
949
  nc = self.data.get("nc", 10) # number of classes
950
950
  lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places
951
- name, lr, momentum = ("MuSGD", 0.01 if iterations > 10000 else lr_fit, 0.9)
951
+ name, lr, momentum = ("MuSGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9)
952
952
  self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam
953
953
 
954
954
  use_muon = name == "MuSGD"
@@ -985,14 +985,14 @@ class BaseTrainer:
985
985
  g[2] = {"params": g[2], **optim_args, "param_group": "bias"}
986
986
  g[0] = {"params": g[0], **optim_args, "weight_decay": decay, "param_group": "weight"}
987
987
  g[1] = {"params": g[1], **optim_args, "weight_decay": 0.0, "param_group": "bn"}
988
- muon, sgd = (0.1, 1.0) if iterations > 10000 else (0.5, 0.5) # scale factor for MuSGD
988
+ muon, sgd = (0.2, 1.0)
989
989
  if use_muon:
990
990
  num_params[0] = len(g[3]) # update number of params
991
991
  g[3] = {"params": g[3], **optim_args, "weight_decay": decay, "use_muon": True, "param_group": "muon"}
992
992
  import re
993
993
 
994
994
  # higher lr for certain parameters in MuSGD when funetuning
995
- pattern = re.compile(r"(?=.*23)(?=.*cv3)|proto\.semseg|flow_model")
995
+ pattern = re.compile(r"(?=.*23)(?=.*cv3)|proto\.semseg")
996
996
  g_ = [] # new param groups
997
997
  for x in g:
998
998
  p = x.pop("params")
@@ -26,7 +26,7 @@ from datetime import datetime
26
26
  import numpy as np
27
27
  import torch
28
28
 
29
- from ultralytics.cfg import get_cfg, get_save_dir
29
+ from ultralytics.cfg import CFG_INT_KEYS, get_cfg, get_save_dir
30
30
  from ultralytics.utils import DEFAULT_CFG, LOGGER, YAML, callbacks, colorstr, remove_colorstr
31
31
  from ultralytics.utils.checks import check_requirements
32
32
  from ultralytics.utils.patches import torch_load
@@ -448,7 +448,7 @@ class Tuner:
448
448
  f"{self.prefix}Best fitness model is {best_save_dir}"
449
449
  )
450
450
  LOGGER.info("\n" + header)
451
- data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
451
+ data = {k: int(v) if k in CFG_INT_KEYS else float(v) for k, v in zip(self.space.keys(), x[best_idx, 1:])}
452
452
  YAML.save(
453
453
  self.tune_dir / "best_hyperparameters.yaml",
454
454
  data=data,
@@ -156,6 +156,11 @@ class BaseValidator:
156
156
  if str(self.args.model).endswith(".yaml") and model is None:
157
157
  LOGGER.warning("validating an untrained model YAML will result in 0 mAP.")
158
158
  callbacks.add_integration_callbacks(self)
159
+ if hasattr(model, "end2end"):
160
+ if self.args.end2end is not None:
161
+ model.end2end = self.args.end2end
162
+ if model.end2end:
163
+ model.set_head_attr(max_det=self.args.max_det, agnostic_nms=self.args.agnostic_nms)
159
164
  model = AutoBackend(
160
165
  model=model or self.args.model,
161
166
  device=select_device(self.args.device) if RANK == -1 else torch.device("cuda", RANK),
@@ -2619,6 +2619,7 @@ class SAM3VideoSemanticPredictor(SAM3SemanticPredictor):
2619
2619
  if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
2620
2620
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
2621
2621
 
2622
+ names = []
2622
2623
  if len(curr_obj_ids) == 0:
2623
2624
  pred_masks, pred_boxes = None, torch.zeros((0, 7), device=self.device)
2624
2625
  else:
@@ -2656,9 +2657,8 @@ class SAM3VideoSemanticPredictor(SAM3SemanticPredictor):
2656
2657
  background_value=0,
2657
2658
  ).squeeze(1)
2658
2659
  ) > 0
2660
+ names = self.model.names or dict(enumerate(str(i) for i in range(pred_boxes[:, 6].int().max())))
2659
2661
 
2660
- # names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
2661
- names = dict(enumerate(str(i) for i in range(pred_boxes.shape[0])))
2662
2662
  results = []
2663
2663
  for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
2664
2664
  results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
@@ -11,7 +11,7 @@ from ultralytics.data import ClassificationDataset, build_dataloader
11
11
  from ultralytics.engine.trainer import BaseTrainer
12
12
  from ultralytics.models import yolo
13
13
  from ultralytics.nn.tasks import ClassificationModel
14
- from ultralytics.utils import DEFAULT_CFG, RANK
14
+ from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK
15
15
  from ultralytics.utils.plotting import plot_images
16
16
  from ultralytics.utils.torch_utils import is_parallel, torch_distributed_zero_first
17
17
 
@@ -138,6 +138,19 @@ class ClassificationTrainer(BaseTrainer):
138
138
  with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
139
139
  dataset = self.build_dataset(dataset_path, mode)
140
140
 
141
+ # Filter out samples with class indices >= nc (prevents CUDA assertion errors)
142
+ nc = self.data.get("nc", 0)
143
+ dataset_nc = len(dataset.base.classes)
144
+ if nc and dataset_nc > nc:
145
+ extra_classes = dataset.base.classes[nc:]
146
+ original_count = len(dataset.samples)
147
+ dataset.samples = [s for s in dataset.samples if s[1] < nc]
148
+ skipped = original_count - len(dataset.samples)
149
+ LOGGER.warning(
150
+ f"{mode} split has {dataset_nc} classes but model expects {nc}. "
151
+ f"Skipping {skipped} samples from extra classes: {extra_classes}"
152
+ )
153
+
141
154
  loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank, drop_last=self.args.compile)
142
155
  # Attach inference transforms
143
156
  if mode != "train":
@@ -73,7 +73,7 @@ class DetectionTrainer(BaseTrainer):
73
73
  Returns:
74
74
  (Dataset): YOLO dataset object configured for the specified mode.
75
75
  """
76
- gs = max(int(unwrap_model(self.model).stride.max() if self.model else 0), 32)
76
+ gs = max(int(unwrap_model(self.model).stride.max()), 32)
77
77
  return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
78
78
 
79
79
  def get_dataloader(self, dataset_path: str, batch_size: int = 16, rank: int = 0, mode: str = "train"):
@@ -92,7 +92,7 @@ class DetectionTrainer(BaseTrainer):
92
92
  with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
93
93
  dataset = self.build_dataset(dataset_path, mode, batch_size)
94
94
  shuffle = mode == "train"
95
- if getattr(dataset, "rect", False) and shuffle:
95
+ if getattr(dataset, "rect", False) and shuffle and not np.all(dataset.batch_shapes == dataset.batch_shapes[0]):
96
96
  LOGGER.warning("'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
97
97
  shuffle = False
98
98
  return build_dataloader(
@@ -145,6 +145,8 @@ class DetectionTrainer(BaseTrainer):
145
145
  self.model.nc = self.data["nc"] # attach number of classes to model
146
146
  self.model.names = self.data["names"] # attach class names to model
147
147
  self.model.args = self.args # attach hyperparameters to model
148
+ if getattr(self.model, "end2end"):
149
+ self.model.set_head_attr(max_det=self.args.max_det)
148
150
  # TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
149
151
 
150
152
  def get_model(self, cfg: str | None = None, weights: str | None = None, verbose: bool = True):
@@ -9,6 +9,7 @@ from typing import Any
9
9
  from ultralytics.models import yolo
10
10
  from ultralytics.nn.tasks import PoseModel
11
11
  from ultralytics.utils import DEFAULT_CFG
12
+ from ultralytics.utils.torch_utils import unwrap_model
12
13
 
13
14
 
14
15
  class PoseTrainer(yolo.detect.DetectionTrainer):
@@ -91,7 +92,7 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
91
92
  def get_validator(self):
92
93
  """Return an instance of the PoseValidator class for validation."""
93
94
  self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss"
94
- if getattr(self.model.model[-1], "flow_model", None) is not None:
95
+ if getattr(unwrap_model(self.model).model[-1], "flow_model", None) is not None:
95
96
  self.loss_names += ("rle_loss",)
96
97
  return yolo.pose.PoseValidator(
97
98
  self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks