ultralytics-opencv-headless 8.4.3__py3-none-any.whl → 8.4.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. tests/test_cli.py +10 -3
  2. tests/test_exports.py +64 -43
  3. tests/test_python.py +40 -11
  4. ultralytics/__init__.py +1 -1
  5. ultralytics/cfg/__init__.py +6 -5
  6. ultralytics/cfg/datasets/coco12-formats.yaml +101 -0
  7. ultralytics/cfg/default.yaml +2 -1
  8. ultralytics/data/augment.py +8 -0
  9. ultralytics/data/converter.py +32 -9
  10. ultralytics/data/utils.py +2 -2
  11. ultralytics/engine/exporter.py +11 -8
  12. ultralytics/engine/predictor.py +5 -0
  13. ultralytics/engine/results.py +8 -3
  14. ultralytics/engine/trainer.py +6 -4
  15. ultralytics/engine/tuner.py +2 -2
  16. ultralytics/engine/validator.py +5 -0
  17. ultralytics/models/sam/predict.py +2 -2
  18. ultralytics/models/yolo/classify/train.py +14 -1
  19. ultralytics/models/yolo/detect/train.py +8 -4
  20. ultralytics/models/yolo/pose/train.py +2 -1
  21. ultralytics/models/yolo/segment/predict.py +1 -1
  22. ultralytics/models/yolo/segment/val.py +1 -3
  23. ultralytics/models/yolo/world/train_world.py +21 -1
  24. ultralytics/models/yolo/yoloe/train.py +1 -2
  25. ultralytics/nn/autobackend.py +2 -2
  26. ultralytics/nn/modules/head.py +13 -2
  27. ultralytics/nn/tasks.py +18 -0
  28. ultralytics/solutions/security_alarm.py +1 -1
  29. ultralytics/trackers/byte_tracker.py +7 -7
  30. ultralytics/utils/benchmarks.py +3 -9
  31. ultralytics/utils/callbacks/platform.py +2 -1
  32. ultralytics/utils/callbacks/tensorboard.py +2 -0
  33. ultralytics/utils/callbacks/wb.py +6 -1
  34. ultralytics/utils/dist.py +1 -0
  35. ultralytics/utils/export/imx.py +21 -9
  36. ultralytics/utils/loss.py +18 -9
  37. ultralytics/utils/patches.py +42 -0
  38. ultralytics/utils/tal.py +15 -5
  39. ultralytics/utils/torch_utils.py +1 -1
  40. {ultralytics_opencv_headless-8.4.3.dist-info → ultralytics_opencv_headless-8.4.8.dist-info}/METADATA +12 -13
  41. {ultralytics_opencv_headless-8.4.3.dist-info → ultralytics_opencv_headless-8.4.8.dist-info}/RECORD +45 -44
  42. {ultralytics_opencv_headless-8.4.3.dist-info → ultralytics_opencv_headless-8.4.8.dist-info}/WHEEL +1 -1
  43. {ultralytics_opencv_headless-8.4.3.dist-info → ultralytics_opencv_headless-8.4.8.dist-info}/entry_points.txt +0 -0
  44. {ultralytics_opencv_headless-8.4.3.dist-info → ultralytics_opencv_headless-8.4.8.dist-info}/licenses/LICENSE +0 -0
  45. {ultralytics_opencv_headless-8.4.3.dist-info → ultralytics_opencv_headless-8.4.8.dist-info}/top_level.txt +0 -0
ultralytics/utils/loss.py CHANGED
@@ -512,9 +512,19 @@ class v8SegmentationLoss(v8DetectionLoss):
512
512
  )
513
513
  if pred_semseg is not None:
514
514
  sem_masks = batch["sem_masks"].to(self.device) # NxHxW
515
- mask_zero = sem_masks == 0 # NxHxW
516
515
  sem_masks = F.one_hot(sem_masks.long(), num_classes=self.nc).permute(0, 3, 1, 2).float() # NxCxHxW
517
- sem_masks[mask_zero.unsqueeze(1).expand_as(sem_masks)] = 0
516
+
517
+ if self.overlap:
518
+ mask_zero = masks == 0 # NxHxW
519
+ sem_masks[mask_zero.unsqueeze(1).expand_as(sem_masks)] = 0
520
+ else:
521
+ batch_idx = batch["batch_idx"].view(-1) # [total_instances]
522
+ for i in range(batch_size):
523
+ instance_mask_i = masks[batch_idx == i] # [num_instances_i, H, W]
524
+ if len(instance_mask_i) == 0:
525
+ continue
526
+ sem_masks[i, :, instance_mask_i.sum(dim=0) == 0] = 0
527
+
518
528
  loss[4] = self.bcedice_loss(pred_semseg, sem_masks)
519
529
  loss[4] *= self.hyp.box # seg gain
520
530
 
@@ -798,7 +808,7 @@ class PoseLoss26(v8PoseLoss):
798
808
  loss[0], loss[3], loss[4] = det_loss[0], det_loss[1], det_loss[2]
799
809
 
800
810
  batch_size = pred_kpts.shape[0]
801
- imgsz = torch.tensor(batch["resized_shape"][0], device=self.device, dtype=pred_kpts.dtype) # image size (h,w)
811
+ imgsz = torch.tensor(preds["feats"][0].shape[2:], device=self.device, dtype=pred_kpts.dtype) * self.stride[0]
802
812
 
803
813
  pred_kpts = pred_kpts.view(batch_size, -1, *self.kpt_shape) # (b, h*w, 17, 3)
804
814
 
@@ -992,7 +1002,7 @@ class v8OBBLoss(v8DetectionLoss):
992
1002
  batch_size = pred_angle.shape[0] # batch size, number of masks, mask height, mask width
993
1003
 
994
1004
  dtype = pred_scores.dtype
995
- imgsz = torch.tensor(batch["resized_shape"][0], device=self.device, dtype=dtype) # image size (h,w)
1005
+ imgsz = torch.tensor(preds["feats"][0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]
996
1006
 
997
1007
  # targets
998
1008
  try:
@@ -1095,7 +1105,7 @@ class v8OBBLoss(v8DetectionLoss):
1095
1105
  pred_theta = pred_bboxes[..., 4]
1096
1106
  target_theta = target_bboxes[..., 4]
1097
1107
 
1098
- log_ar = torch.log(w_gt / h_gt)
1108
+ log_ar = torch.log((w_gt + 1e-9) / (h_gt + 1e-9))
1099
1109
  scale_weight = torch.exp(-(log_ar**2) / (lambda_val**2))
1100
1110
 
1101
1111
  delta_theta = pred_theta - target_theta
@@ -1164,9 +1174,9 @@ class E2ELoss:
1164
1174
  class TVPDetectLoss:
1165
1175
  """Criterion class for computing training losses for text-visual prompt detection."""
1166
1176
 
1167
- def __init__(self, model, tal_topk=10):
1177
+ def __init__(self, model, tal_topk=10, tal_topk2: int | None = None):
1168
1178
  """Initialize TVPDetectLoss with task-prompt and visual-prompt criteria using the provided model."""
1169
- self.vp_criterion = v8DetectionLoss(model, tal_topk)
1179
+ self.vp_criterion = v8DetectionLoss(model, tal_topk, tal_topk2)
1170
1180
  # NOTE: store following info as it's changeable in __call__
1171
1181
  self.hyp = self.vp_criterion.hyp
1172
1182
  self.ori_nc = self.vp_criterion.nc
@@ -1196,8 +1206,7 @@ class TVPDetectLoss:
1196
1206
 
1197
1207
  def _get_vp_features(self, preds: dict[str, torch.Tensor]) -> list[torch.Tensor]:
1198
1208
  """Extract visual-prompt features from the model output."""
1199
- # NOTE: remove empty placeholder
1200
- scores = preds["scores"][:, self.ori_nc :, :]
1209
+ scores = preds["scores"]
1201
1210
  vnc = scores.shape[1]
1202
1211
 
1203
1212
  self.vp_criterion.nc = vnc
@@ -40,9 +40,51 @@ def imread(filename: str, flags: int = cv2.IMREAD_COLOR) -> np.ndarray | None:
40
40
  return None
41
41
  else:
42
42
  im = cv2.imdecode(file_bytes, flags)
43
+ # Fallback for formats OpenCV imdecode may not support (AVIF, HEIC)
44
+ if im is None and filename.lower().endswith((".avif", ".heic")):
45
+ im = _imread_pil(filename, flags)
43
46
  return im[..., None] if im is not None and im.ndim == 2 else im # Always ensure 3 dimensions
44
47
 
45
48
 
49
+ _pil_plugins_registered = False
50
+
51
+
52
+ def _imread_pil(filename: str, flags: int = cv2.IMREAD_COLOR) -> np.ndarray | None:
53
+ """Read an image using PIL as fallback for formats not supported by OpenCV.
54
+
55
+ Args:
56
+ filename (str): Path to the file to read.
57
+ flags (int, optional): OpenCV imread flags (used to determine grayscale conversion).
58
+
59
+ Returns:
60
+ (np.ndarray | None): The read image array in BGR format, or None if reading fails.
61
+ """
62
+ global _pil_plugins_registered
63
+ try:
64
+ from PIL import Image
65
+
66
+ # Register HEIF/AVIF plugins once
67
+ if not _pil_plugins_registered:
68
+ try:
69
+ import pillow_heif
70
+
71
+ pillow_heif.register_heif_opener()
72
+ except ImportError:
73
+ pass
74
+ try:
75
+ import pillow_avif # noqa: F401
76
+ except ImportError:
77
+ pass
78
+ _pil_plugins_registered = True
79
+
80
+ with Image.open(filename) as img:
81
+ if flags == cv2.IMREAD_GRAYSCALE:
82
+ return np.asarray(img.convert("L"))
83
+ return cv2.cvtColor(np.asarray(img.convert("RGB")), cv2.COLOR_RGB2BGR)
84
+ except Exception:
85
+ return None
86
+
87
+
46
88
  def imwrite(filename: str, img: np.ndarray, params: list[int] | None = None) -> bool:
47
89
  """Write an image to a file with multilanguage filename support.
48
90
 
ultralytics/utils/tal.py CHANGED
@@ -24,6 +24,7 @@ class TaskAlignedAssigner(nn.Module):
24
24
  alpha (float): The alpha parameter for the classification component of the task-aligned metric.
25
25
  beta (float): The beta parameter for the localization component of the task-aligned metric.
26
26
  stride (list): List of stride values for different feature levels.
27
+ stride_val (int): The stride value used for select_candidates_in_gts.
27
28
  eps (float): A small value to prevent division by zero.
28
29
  """
29
30
 
@@ -55,6 +56,7 @@ class TaskAlignedAssigner(nn.Module):
55
56
  self.alpha = alpha
56
57
  self.beta = beta
57
58
  self.stride = stride
59
+ self.stride_val = self.stride[1] if len(self.stride) > 1 else self.stride[0]
58
60
  self.eps = eps
59
61
 
60
62
  @torch.no_grad()
@@ -302,8 +304,11 @@ class TaskAlignedAssigner(nn.Module):
302
304
  """
303
305
  gt_bboxes_xywh = xyxy2xywh(gt_bboxes)
304
306
  wh_mask = gt_bboxes_xywh[..., 2:] < self.stride[0] # the smallest stride
305
- stride_val = torch.tensor(self.stride[1], dtype=gt_bboxes_xywh.dtype, device=gt_bboxes_xywh.device)
306
- gt_bboxes_xywh[..., 2:] = torch.where((wh_mask * mask_gt).bool(), stride_val, gt_bboxes_xywh[..., 2:])
307
+ gt_bboxes_xywh[..., 2:] = torch.where(
308
+ (wh_mask * mask_gt).bool(),
309
+ torch.tensor(self.stride_val, dtype=gt_bboxes_xywh.dtype, device=gt_bboxes_xywh.device),
310
+ gt_bboxes_xywh[..., 2:],
311
+ )
307
312
  gt_bboxes = xywh2xyxy(gt_bboxes_xywh)
308
313
 
309
314
  n_anchors = xy_centers.shape[0]
@@ -357,19 +362,24 @@ class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
357
362
  """Calculate IoU for rotated bounding boxes."""
358
363
  return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)
359
364
 
360
- @staticmethod
361
- def select_candidates_in_gts(xy_centers, gt_bboxes, mask_gt):
365
+ def select_candidates_in_gts(self, xy_centers, gt_bboxes, mask_gt):
362
366
  """Select the positive anchor center in gt for rotated bounding boxes.
363
367
 
364
368
  Args:
365
369
  xy_centers (torch.Tensor): Anchor center coordinates with shape (h*w, 2).
366
370
  gt_bboxes (torch.Tensor): Ground truth bounding boxes with shape (b, n_boxes, 5).
367
371
  mask_gt (torch.Tensor): Mask for valid ground truth boxes with shape (b, n_boxes, 1).
368
- stride (list[int]): List of stride values for each feature map level.
369
372
 
370
373
  Returns:
371
374
  (torch.Tensor): Boolean mask of positive anchors with shape (b, n_boxes, h*w).
372
375
  """
376
+ wh_mask = gt_bboxes[..., 2:4] < self.stride[0]
377
+ gt_bboxes[..., 2:4] = torch.where(
378
+ (wh_mask * mask_gt).bool(),
379
+ torch.tensor(self.stride_val, dtype=gt_bboxes.dtype, device=gt_bboxes.device),
380
+ gt_bboxes[..., 2:4],
381
+ )
382
+
373
383
  # (b, n_boxes, 5) --> (b, n_boxes, 4, 2)
374
384
  corners = xywhr2xyxyxyxy(gt_bboxes)
375
385
  # (b, n_boxes, 1, 2)
@@ -78,7 +78,7 @@ def smart_inference_mode():
78
78
  if TORCH_1_9 and torch.is_inference_mode_enabled():
79
79
  return fn # already in inference_mode, act as a pass-through
80
80
  else:
81
- return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
81
+ return (torch.inference_mode if TORCH_1_10 else torch.no_grad)()(fn)
82
82
 
83
83
  return decorate
84
84
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics-opencv-headless
3
- Version: 8.4.3
3
+ Version: 8.4.8
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -39,8 +39,8 @@ Requires-Dist: pillow>=7.1.2
39
39
  Requires-Dist: pyyaml>=5.3.1
40
40
  Requires-Dist: requests>=2.23.0
41
41
  Requires-Dist: scipy>=1.4.1
42
- Requires-Dist: torch>=1.8.0
43
- Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
42
+ Requires-Dist: torch<2.10,>=1.8.0
43
+ Requires-Dist: torch!=2.4.0,<2.10,>=1.8.0; sys_platform == "win32"
44
44
  Requires-Dist: torchvision>=0.9.0
45
45
  Requires-Dist: psutil>=5.8.0
46
46
  Requires-Dist: polars>=0.20.0
@@ -74,7 +74,6 @@ Requires-Dist: wandb; extra == "logging"
74
74
  Requires-Dist: tensorboard; extra == "logging"
75
75
  Requires-Dist: mlflow; extra == "logging"
76
76
  Provides-Extra: extra
77
- Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
78
77
  Requires-Dist: ipython; extra == "extra"
79
78
  Requires-Dist: albumentations>=1.4.6; extra == "extra"
80
79
  Requires-Dist: faster-coco-eval>=1.6.7; extra == "extra"
@@ -89,7 +88,7 @@ Dynamic: license-file
89
88
 
90
89
  <div align="center">
91
90
  <p>
92
- <a href="https://www.ultralytics.com/events/yolovision?utm_source=github&utm_medium=org&utm_campaign=yv25_event" target="_blank">
91
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
93
92
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
94
93
  </p>
95
94
 
@@ -104,7 +103,7 @@ Dynamic: license-file
104
103
  <br>
105
104
  <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
106
105
  <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
107
- <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
106
+ <a href="https://www.kaggle.com/models/ultralytics/yolo26"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
108
107
  <a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
109
108
  </div>
110
109
  </div>
@@ -116,8 +115,8 @@ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.c
116
115
 
117
116
  Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
118
117
 
119
- <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
120
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
118
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
119
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO26 performance plots">
121
120
  </a>
122
121
 
123
122
  <div align="center">
@@ -310,8 +309,8 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
310
309
  <br>
311
310
 
312
311
  <div align="center">
313
- <a href="https://www.ultralytics.com/hub">
314
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
312
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26">
313
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics Platform logo"></a>
315
314
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
316
315
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
317
316
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
@@ -323,9 +322,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
323
322
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
324
323
  </div>
325
324
 
326
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
327
- | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
328
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
325
+ | Ultralytics Platform 🌟 | Weights & Biases | Comet | Neural Magic |
326
+ | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
327
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics Platform](https://platform.ultralytics.com/ultralytics/yolo26). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
329
328
 
330
329
  ## 🤝 Contribute
331
330
 
@@ -1,18 +1,18 @@
1
1
  tests/__init__.py,sha256=hfUXxYLJB3846OCzWV94ZKEZsi8vq9Pqrdd2mMgjjck,804
2
2
  tests/conftest.py,sha256=rlKyDuOC_3ptXrWS8Q19bNEGOupUmYXHj3nB6o1GBGY,2318
3
- tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
3
+ tests/test_cli.py,sha256=-OrAcZlcJ07UPagjSOlR8qXP5gNFHaTYcW3paOTURAE,5725
4
4
  tests/test_cuda.py,sha256=2TBe-ZkecMOGPWLdHcbsAjH3m9c5SQJ2KeyICgS0aeo,8426
5
5
  tests/test_engine.py,sha256=ufSn3X4kL_Lpn2O25jKAfw_9QwHTMRjP9shDdpgBqnY,5740
6
- tests/test_exports.py,sha256=Toy4u-4bsoyAbzNhc9kbMuKqvMKywZxNj5jlFNTzFWs,14670
6
+ tests/test_exports.py,sha256=pZZJBN2uM5QdQMjnjIC-xZkKPOBbnnX8b5d5q90otl4,15651
7
7
  tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
8
- tests/test_python.py,sha256=np6on3Sa0NNi5pquvilekjKxxedAJMpLOQEthGaIalQ,29284
8
+ tests/test_python.py,sha256=BTyRn29boDKu4n0v1_5D3_7wvADs077NU9RFdTZktHo,30774
9
9
  tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
10
- ultralytics/__init__.py,sha256=cei9ajuLEweE4RyDoGwvanjvIJe8Z347vRJatW87-JI,1300
10
+ ultralytics/__init__.py,sha256=jfmOTtuFV9ofd_zpWZoaGtHeh3SmmK1zHx1iu3QnbI4,1300
11
11
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=w-ZCBR5lbL2ef0UhQfK7IvySIOhtPcJTJF0-3tAXObw,40300
15
- ultralytics/cfg/default.yaml,sha256=E__q2msvK9XCQngf0YFLpueCer_1tRcMJM0p3ahBdbA,9015
14
+ ultralytics/cfg/__init__.py,sha256=bpSqIVZLUmwiI-3n4915oBTBgpGTsGmuaTkSXygAXt4,40231
15
+ ultralytics/cfg/default.yaml,sha256=2eH6bsCK10V68o2Y3B2kCOnhXvQ64A_2HmrDYP71dKw,9149
16
16
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
17
17
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
18
18
  ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
@@ -29,6 +29,7 @@ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=qrxPO_t9wxbn2kHFwP3vGTzSWj2ELTL
29
29
  ultralytics/cfg/datasets/carparts-seg.yaml,sha256=A4e9hM1unTY2jjZIXGiKSarF6R-Ad9R99t57OgRJ37w,1253
30
30
  ultralytics/cfg/datasets/coco-pose.yaml,sha256=rl1Pcnn8Hmst-Ian0-HvP6WQ2PKZxr1AjBEA406vwWw,1928
31
31
  ultralytics/cfg/datasets/coco.yaml,sha256=woUMk6L3G3DMQDcThIKouZMcjTI5vP9XUdEVrzYGL50,2584
32
+ ultralytics/cfg/datasets/coco12-formats.yaml,sha256=Zd-41pX4PEUVIehyE4829QK_fUxiyZ79JVQSH-1UJVM,1953
32
33
  ultralytics/cfg/datasets/coco128-seg.yaml,sha256=JsXu197vJX1YRuFvbEjsXyv4LUWIET-ruWZ9KqX6hYk,1986
33
34
  ultralytics/cfg/datasets/coco128.yaml,sha256=ok_dzaBUzSd0DWfe531GT_uYTEoF5mIQcgoMHZyIVIA,1965
34
35
  ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=8v6G6mOzZHQNdQM1YwdTBW_lsWWkLRnAimwZBHKtJg8,1961
@@ -118,27 +119,27 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMg
118
119
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
119
120
  ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
120
121
  ultralytics/data/annotator.py,sha256=iu1En-LzlR4RyR3ocftthnAog_peQHV9ForPRo_QcX8,2985
121
- ultralytics/data/augment.py,sha256=4xtggkuysYcbK5pYwNuAaoCzshb5wwD9KN6_pP4uSFU,128003
122
+ ultralytics/data/augment.py,sha256=XR52_BEmwFOrdMxEVRypm_kz6ROkTBgVped05R2xZWs,128566
122
123
  ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
123
124
  ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
124
- ultralytics/data/converter.py,sha256=KUFVQuesnABjm7nW90kxQ6WeYavbo7AC7ZtfuxGvPE4,33107
125
+ ultralytics/data/converter.py,sha256=4SwrEKzsdKK3YcoCcEhu0_UmFyaUuQEVPIWENFxlAC4,34520
125
126
  ultralytics/data/dataset.py,sha256=r_BZy4FwMZ-dYkaJiz1E3jr2pI6dn7V3hZwf2RM9_RQ,36536
126
127
  ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
127
128
  ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
128
129
  ultralytics/data/split_dota.py,sha256=Qp9vGB2lzb5fQOrpNupKc8KN9ulqZoco9d4gRcx7JZk,12873
129
- ultralytics/data/utils.py,sha256=WkMWje6JTEA-ndOO1PBuDlklD9GEPgH9K1_cLBMqbIQ,36824
130
+ ultralytics/data/utils.py,sha256=QfypAt0fGCfb5PGw9o9Za-xnH5MUVTsETk-_ZBhtLko,36818
130
131
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
131
132
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
132
133
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
133
134
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
134
135
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
135
- ultralytics/engine/exporter.py,sha256=RCViSGpUjFyUEW6GxhbKfURBW5vCOgCcXtLJKKI8ceM,73429
136
+ ultralytics/engine/exporter.py,sha256=y76PH93ULLplU8YvKh2reDJ9QWXjCkQRlusD6p9-NPg,73566
136
137
  ultralytics/engine/model.py,sha256=euDHUy7J5vVBvS_d-KbGZd_0BP5bF6Y3cTQ7VXtwZ4k,53210
137
- ultralytics/engine/predictor.py,sha256=tXrHSTHJ-rDQ3lrPW9P5_ei_ewTwbY2sji6MExybJ28,22838
138
- ultralytics/engine/results.py,sha256=uvD7WqaePkuYbcf-iFqh3DIy5_ZSyHeDiKIzY5VjePM,68181
139
- ultralytics/engine/trainer.py,sha256=8kAqel2aF2_GZ9Bi-lyf7ykWW_vkGD6dx8z5bPU6zlM,47219
140
- ultralytics/engine/tuner.py,sha256=F4fyQaC5_GT74TULRO0VhzTv2S_a54cZDc3FjFoqaHE,21840
141
- ultralytics/engine/validator.py,sha256=DiKsygbNJdRdwXoKoYOJA6bP_T7vMW3Syj_Qc_l7xTM,17761
138
+ ultralytics/engine/predictor.py,sha256=x3xzVlfj92HgLdxPvoKFKpyzp1wSsNVCahpbO5sse80,23102
139
+ ultralytics/engine/results.py,sha256=Lg-Ke8TU6qaxu0wQtOH26unORj4FRYxd8RL0VxV74Zw,68333
140
+ ultralytics/engine/trainer.py,sha256=xjWm1ar-ua7nVOcRoAwjNVUH-QWPYAFRqCg6jB6PiG8,47250
141
+ ultralytics/engine/tuner.py,sha256=RDiEWqADVutVDXRHvZIes8QqLUFnffXFXkXk4clfEuQ,21881
142
+ ultralytics/engine/validator.py,sha256=BoQ8mc-OLdAKCaS6ikL0MJf2LQVkNP1oN44ZCqkOx-g,18045
142
143
  ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
143
144
  ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
144
145
  ultralytics/hub/session.py,sha256=OzBXAL9R135gRDdfNYUqyiSrxOyaiMFCVYSZua99sF0,18364
@@ -164,7 +165,7 @@ ultralytics/models/sam/amg.py,sha256=aYvJ7jQMkTR3X9KV7SHi3qP3yNchQggWNUurTRZwxQg
164
165
  ultralytics/models/sam/build.py,sha256=rEaFXA4R1nyutSonIenRKcuNtO1FgEojnkcayo0FTP4,12867
165
166
  ultralytics/models/sam/build_sam3.py,sha256=Gg_LiqNrCDTYaDWrob05vj-ln2AhkfMa5KkKhyk5wdE,11976
166
167
  ultralytics/models/sam/model.py,sha256=cOawDSkFqJPbt3455aTZ8tjaoWshFWFHQGGqxzsL_QQ,7372
167
- ultralytics/models/sam/predict.py,sha256=Y6JEP3WGAF1gzTg8Z4eCgdtPFFbexSEA75F7zd8Cp_c,203689
168
+ ultralytics/models/sam/predict.py,sha256=k4eTU3g7ihvAn-moBpzR4ox1GUlOEHVQDzywbnheFFM,203651
168
169
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
169
170
  ultralytics/models/sam/modules/blocks.py,sha256=ZU2aY4h6fmosj5pZ5EOEuO1O8Cl8UYeH11eOxkqCt8M,44570
170
171
  ultralytics/models/sam/modules/decoders.py,sha256=G4li37ahUe5rTTNTKibWMsAoz6G3R18rI8OPvfunVX8,25045
@@ -192,11 +193,11 @@ ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehl
192
193
  ultralytics/models/yolo/model.py,sha256=HXkglzJQqW1x7MJaKavI5aasA-0lSH21Xcv_dac3SFU,18504
193
194
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
194
195
  ultralytics/models/yolo/classify/predict.py,sha256=HCStYkSqeg32SNTWfr4FDCkUMQ4wnKqceUK3T995us4,4137
195
- ultralytics/models/yolo/classify/train.py,sha256=41ZxaIJkzkRxfgq6VffFX5Xfsrm9tNv3i3bdtUPAocE,8958
196
+ ultralytics/models/yolo/classify/train.py,sha256=xPlpioQFPeH32Frhy9ZbbGV_wcpn9hPB4EB4N0Kw-DE,9614
196
197
  ultralytics/models/yolo/classify/val.py,sha256=akH2P3nff4oiZtV2toKB3Z9HIbsVcwsb1uvDwhamszw,10503
197
198
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
198
199
  ultralytics/models/yolo/detect/predict.py,sha256=2nxlMyw_zVKq1aeJFRTgb4EGL2vOFq4pLT9tArHBfF8,5385
199
- ultralytics/models/yolo/detect/train.py,sha256=ffM3ULnR9Kbw_1yBq2I6BWa7V124lfQtU0_C_GHhwRI,10519
200
+ ultralytics/models/yolo/detect/train.py,sha256=N6Sdjnue9-bpnBMP5KGwsH9BFgjL23N9kDaHiXTBj9c,10757
200
201
  ultralytics/models/yolo/detect/val.py,sha256=54AOR6r3istE0pILJ1v4xzPdv7UcvtTEZ6E5OGj3Jgc,22818
201
202
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
202
203
  ultralytics/models/yolo/obb/predict.py,sha256=I7hWDr1zuy2WuwGom9uzXqomfr7qVMWb7iRl18xdTYw,2577
@@ -204,29 +205,29 @@ ultralytics/models/yolo/obb/train.py,sha256=HEDdPiP-yBbrUQWllcD1rc3gGrbzQmT6RBMT
204
205
  ultralytics/models/yolo/obb/val.py,sha256=qYNe7ZcW3rhTLYPw15OeGfBaqaa_f1ADs4FF21h32e4,14513
205
206
  ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
206
207
  ultralytics/models/yolo/pose/predict.py,sha256=6EW9palcAoWX-gu5ROQvO6AxBSm719934hhqF-9OGjM,3118
207
- ultralytics/models/yolo/pose/train.py,sha256=IlmsFlb0TsWZVy6PL3Trr_aXfwwGMBKAHyxnP7VPp_g,4747
208
+ ultralytics/models/yolo/pose/train.py,sha256=pXYpkPU3SmPqw_gVONUFsikhlO4aw-j6Ry17ep5SlqI,4816
208
209
  ultralytics/models/yolo/pose/val.py,sha256=0luDccEPb_lUMjzaBb5VMsh9RdXVAbxb3Br57VKWNdc,12004
209
210
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
210
- ultralytics/models/yolo/segment/predict.py,sha256=9CAAjkghFYdGaXYUOcpGZilhwNSnYL2U1Qu_Qc6UtFY,5430
211
+ ultralytics/models/yolo/segment/predict.py,sha256=zLhmSTVEnaUumIX9SbjZH09kr2VrNdYWEss7FvseVuY,5428
211
212
  ultralytics/models/yolo/segment/train.py,sha256=nS3qrT7Y3swCwjGZzeDQ2EunC9ilMsOiWs6LaTUCAE4,3021
212
- ultralytics/models/yolo/segment/val.py,sha256=EDcwcfwgc9eUKgUL9NIlh_rGhlqcNEAWcRT7KtQj6AQ,13286
213
+ ultralytics/models/yolo/segment/val.py,sha256=AvPS4rhV2PFpi0yixUfJhdczXctmZQSKgTjh7qVH0To,13204
213
214
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
214
215
  ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
215
- ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
216
+ ultralytics/models/yolo/world/train_world.py,sha256=se78I38c7rC2W76Fe0cg9axsK3JixMOafM1PpPZf1cE,9437
216
217
  ultralytics/models/yolo/yoloe/__init__.py,sha256=zaZo1_ommaxNv7mD7xpdSomNF4s8mpOcCVTXspg0ncY,760
217
218
  ultralytics/models/yolo/yoloe/predict.py,sha256=zeu_whH4e2SIWXV8MmJ1NNzoM_cNsiI2kOTjlAhV4qg,7065
218
- ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykTul8bo4xFo,13303
219
+ ultralytics/models/yolo/yoloe/train.py,sha256=q7K1fiqKrpbjfrrd3F3FiVMPtQAVuVzQinIh0i1yz1g,13284
219
220
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
220
221
  ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
221
222
  ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
222
- ultralytics/nn/autobackend.py,sha256=ib-4b7nxFpnU7EHZytKrMt4p8la94ZV02_FF8-ifh1c,45057
223
- ultralytics/nn/tasks.py,sha256=PmlYScI7qTRCmYRR90Mw1QnqeRzvY0ojAMrgStBr11g,72010
223
+ ultralytics/nn/autobackend.py,sha256=c3FzMw-0h5wEoxg0-n7rMWrIcR6C1WTNjF1AUpW07rM,45079
224
+ ultralytics/nn/tasks.py,sha256=xclS6E6OIBDurrDscTVmVafvmd8JOIiagIT4iEGwD4M,72588
224
225
  ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
225
226
  ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
226
227
  ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
227
228
  ultralytics/nn/modules/block.py,sha256=9d1eelj3uRnf-HWTHYTjsBqLSpMCrwBQuX52MjeapN4,74499
228
229
  ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
229
- ultralytics/nn/modules/head.py,sha256=eJvXtr_ONGqQVdtsUpJtslplgVblti5sMxP9nkoSa0Y,78057
230
+ ultralytics/nn/modules/head.py,sha256=yeXKv9P6gxC7Zkvdu7ndQ8H7WDKnnoJ9yYyV6FkpUcY,78487
230
231
  ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
231
232
  ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
232
233
  ultralytics/optim/__init__.py,sha256=Sl3Dx2eiaJd_u4VbmqcBqWWDF8FHnO5W0nBEL8_M_C4,130
@@ -244,7 +245,7 @@ ultralytics/solutions/object_cropper.py,sha256=WRbrfXAR5aD6PQBqJ-BvcVaiaqta_9YeT
244
245
  ultralytics/solutions/parking_management.py,sha256=Q0fEFKlv6dKKWuw_4jmWaeHQVXGppzuU7Vr_HqVYqHM,13770
245
246
  ultralytics/solutions/queue_management.py,sha256=NlVX6PMEaffjoZjfQrVyayaDUdtc0JF8GzTQrZFjpCg,4371
246
247
  ultralytics/solutions/region_counter.py,sha256=IAvlFwEYoNftDzfBbdo5MzLwcuidOHW9oTGyRCDzMRc,6025
247
- ultralytics/solutions/security_alarm.py,sha256=QjUIVBWcy094VTcOkk_zOq3BmKKOeIaHpVi_QMWo_3Q,6293
248
+ ultralytics/solutions/security_alarm.py,sha256=ep53mA6h5a4pzPmVgoxBmRRgv6u9RDC7lG1H7Ipjko0,6293
248
249
  ultralytics/solutions/similarity_search.py,sha256=Q2FOBUtEokegiJHlfDbPP0bKxr5F-sHN3-IvskDoe00,9644
249
250
  ultralytics/solutions/solutions.py,sha256=ktLwDhC0y4k2FbNd0sk7Y8GcEvBu9wL3rXyFGwlbnIQ,36984
250
251
  ultralytics/solutions/speed_estimation.py,sha256=WrZECxKAq6P4QpeTbhkp3-Rqjnox7tdR25fUxzozlpU,5861
@@ -255,7 +256,7 @@ ultralytics/solutions/templates/similarity-search.html,sha256=mYuJI8H84cmu4kwPq2
255
256
  ultralytics/trackers/__init__.py,sha256=n3BOO0TR-Sz5ANDYOkKDipM9nSHOePMEwqafbk-YEPs,255
256
257
  ultralytics/trackers/basetrack.py,sha256=F-EW29F9E8GwXr5vzwLqW2rNwItu4KIx2MKce5pQXxI,4374
257
258
  ultralytics/trackers/bot_sort.py,sha256=WImn-BOzGrK9dgMFfMPzKFE5awhXEB2VOi7AbOf_Cdc,11831
258
- ultralytics/trackers/byte_tracker.py,sha256=Twmbe3EyqnIds211M84vtuuM1WgHXDykjTMeiAJZzC0,21117
259
+ ultralytics/trackers/byte_tracker.py,sha256=Ye8cwEPAitVpUsz4Yc8YXj9TEwyfk4zwitSKkIuKIu8,21061
259
260
  ultralytics/trackers/track.py,sha256=xte5lkVBbOnrZ_tVLsHUmzvtNjbdksTVeSFQtLCLt_M,4742
260
261
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
261
262
  ultralytics/trackers/utils/gmc.py,sha256=cvvhNXOhylVQti4pJQSNPx4yPqhhhw1k2yzY0JFl7Zo,13760
@@ -264,10 +265,10 @@ ultralytics/trackers/utils/matching.py,sha256=x6uZOIx0O9oVmAcfY6tYMTJQE2cDTUlRR6
264
265
  ultralytics/utils/__init__.py,sha256=XLEK_pvptzNWhJaO8x0MWghREIyEDei0LOGnUnmU1Kg,55145
265
266
  ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
266
267
  ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
267
- ultralytics/utils/benchmarks.py,sha256=x0kLvVCRSRx0nEI_suiKM5R-RXLfxhs6pRiA6qwofcg,32293
268
+ ultralytics/utils/benchmarks.py,sha256=y3aZ05qQhS2C3WI-iPeByOfmcaLLfXabsEufvXIv8lI,31819
268
269
  ultralytics/utils/checks.py,sha256=NWc0J-Nk4qHSVEXFDWfJkI7IjTNHFXajKjsSodDroBk,39411
269
270
  ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
270
- ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
271
+ ultralytics/utils/dist.py,sha256=sktf2a_uh-vLg6piQyiuRJ5JcMggFYmhS8Wepnb88WM,4220
271
272
  ultralytics/utils/downloads.py,sha256=TWXkYwR5hEpVMWL6fbjdywDmZe02WhyL_8YuLVce-uM,23069
272
273
  ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
273
274
  ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
@@ -275,14 +276,14 @@ ultralytics/utils/files.py,sha256=u7pjz13wgkLSBfe_beeZrzar32_gaJWoIVa3nvY3mh8,81
275
276
  ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
276
277
  ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
277
278
  ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
278
- ultralytics/utils/loss.py,sha256=pb4NIzG-vz9MvH4EfdPc6hKFAnEIe6E4dhUZPtTXPHc,56559
279
+ ultralytics/utils/loss.py,sha256=7Z-CDlgsRldDart8j7ZjKot7TSj57IIwGj8C6QjTLx0,57003
279
280
  ultralytics/utils/metrics.py,sha256=puMGn1LfVIlDvx5K7US4RtK8HYW6cRl9OznfV0nUPvk,69261
280
281
  ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
281
282
  ultralytics/utils/ops.py,sha256=4xqb7kwrAWm8c_zxOWP5JoXozgsA1Slk2s4XFwmEZCs,26089
282
- ultralytics/utils/patches.py,sha256=mD3slAMAhcezzP42_fOWmacNMU6zXB68Br4_EBCyIjs,7117
283
+ ultralytics/utils/patches.py,sha256=yXkznJNo3M74gvvzWmHoZYbWFu-KnO3KK4usbmey8H0,8521
283
284
  ultralytics/utils/plotting.py,sha256=_iXs4gs8tzMSgiKxCriD4un-MJkOsC3lGSy0wn7qZGk,48433
284
- ultralytics/utils/tal.py,sha256=vfcfSy78zdtHbGzlvo5UDx-sCwHLRdGBqDO3CX7ZiR0,24182
285
- ultralytics/utils/torch_utils.py,sha256=dHvLaQopIOr9NcIWkLWPX36f5OAFR4thcqm379Zayfc,40278
285
+ ultralytics/utils/tal.py,sha256=9BSRgsYj0Llq7r5vOzkXDKUjfoTZsxiH92U09c6DtoU,24540
286
+ ultralytics/utils/torch_utils.py,sha256=W6OX8p3fI44gF0TUdPTLV5NZlTE03YdwDbcZXy_e05k,40279
286
287
  ultralytics/utils/tqdm.py,sha256=f2W608Qpvgu6tFi28qylaZpcRv3IX8wTGY_8lgicaqY,16343
287
288
  ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
288
289
  ultralytics/utils/tuner.py,sha256=nRMmnyp0B0gVJzAXcpCxQUnwXjVp0WNiSJwxyR2xvQM,7303
@@ -294,17 +295,17 @@ ultralytics/utils/callbacks/dvc.py,sha256=YT0Sa5P8Huj8Fn9jM2P6MYzUY3PIVxsa5BInVi
294
295
  ultralytics/utils/callbacks/hub.py,sha256=fVLqqr3ZM6hoYFlVMEeejfq1MWDrkWCskPFOG3HGILQ,4159
295
296
  ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNeo9dA7t_g,5323
296
297
  ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
297
- ultralytics/utils/callbacks/platform.py,sha256=Ufws7Kp_MHh3jrz-Sx5q1KKQ-l1hoDnLi1_thZJsHPQ,16091
298
+ ultralytics/utils/callbacks/platform.py,sha256=Utc9X3SDEGcvyQLaujQs3IA8UpFvmJcQC6HmLnTV4XA,16202
298
299
  ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
299
- ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
300
- ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
300
+ ultralytics/utils/callbacks/tensorboard.py,sha256=K7b6KtC7rimfzqFu-NDZ_55Tbd7eC6TckqQdTNPuQ6U,5039
301
+ ultralytics/utils/callbacks/wb.py,sha256=ci6lYVRneKTRC5CL6FRf9_iOYznwU74p9_fV3s9AbfQ,7907
301
302
  ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
302
303
  ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
303
- ultralytics/utils/export/imx.py,sha256=Sj3xKLV6APulltaitauSs3oas_ndbtiHkP-KRI-bxoY,13553
304
+ ultralytics/utils/export/imx.py,sha256=VnMDO7c8ezBs91UDoLg9rR0oY8Uc7FujKpbdGxrzV18,13744
304
305
  ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
305
- ultralytics_opencv_headless-8.4.3.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
306
- ultralytics_opencv_headless-8.4.3.dist-info/METADATA,sha256=4K427q3e_GOdYacXqp96mGJO9CfO_73MyFSZwwioHoY,38981
307
- ultralytics_opencv_headless-8.4.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
- ultralytics_opencv_headless-8.4.3.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
309
- ultralytics_opencv_headless-8.4.3.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
310
- ultralytics_opencv_headless-8.4.3.dist-info/RECORD,,
306
+ ultralytics_opencv_headless-8.4.8.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
307
+ ultralytics_opencv_headless-8.4.8.dist-info/METADATA,sha256=XWxJ6mbIh2en0TbYqu7HVB4CNE-e8CkI_D8-aDojToM,39010
308
+ ultralytics_opencv_headless-8.4.8.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
309
+ ultralytics_opencv_headless-8.4.8.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
310
+ ultralytics_opencv_headless-8.4.8.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
311
+ ultralytics_opencv_headless-8.4.8.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5