ultralytics-opencv-headless 8.4.3__py3-none-any.whl → 8.4.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.4.3"
3
+ __version__ = "8.4.4"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -412,7 +412,7 @@ def get_save_dir(args: SimpleNamespace, name: str | None = None) -> Path:
412
412
  nested = args.project and len(Path(args.project).parts) > 1 # e.g. "user/project" or "org\repo"
413
413
  project = runs / args.project if nested else args.project or runs
414
414
  name = name or args.name or f"{args.mode}"
415
- save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True, mkdir=True)
415
+ save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)
416
416
 
417
417
  return Path(save_dir).resolve() # resolve to display full path in console
418
418
 
@@ -614,12 +614,11 @@ class Exporter:
614
614
  f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
615
615
  )
616
616
  imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
617
- predict_data = f"data={data}" if model.task == "segment" and pb else ""
618
617
  q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization
619
618
  LOGGER.info(
620
619
  f"\nExport complete ({time.time() - t:.1f}s)"
621
620
  f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
622
- f"\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}"
621
+ f"\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q}"
623
622
  f"\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}"
624
623
  f"\nVisualize: https://netron.app"
625
624
  )
@@ -984,7 +984,7 @@ class BaseTrainer:
984
984
  g[2] = {"params": g[2], **optim_args, "param_group": "bias"}
985
985
  g[0] = {"params": g[0], **optim_args, "weight_decay": decay, "param_group": "weight"}
986
986
  g[1] = {"params": g[1], **optim_args, "weight_decay": 0.0, "param_group": "bn"}
987
- muon, sgd = (0.5, 0.5) if iterations > 10000 else (0.1, 1.0) # scale factor for MuSGD
987
+ muon, sgd = (0.1, 1.0) if iterations > 10000 else (0.5, 0.5) # scale factor for MuSGD
988
988
  if use_muon:
989
989
  g[3] = {"params": g[3], **optim_args, "weight_decay": decay, "use_muon": True, "param_group": "muon"}
990
990
  import re
@@ -60,7 +60,7 @@ class SegmentationPredictor(DetectionPredictor):
60
60
  >>> results = predictor.postprocess(preds, img, orig_img)
61
61
  """
62
62
  # Extract protos - tuple if PyTorch model or array if exported
63
- protos = preds[0][-1] if isinstance(preds[0], tuple) else preds[-1]
63
+ protos = preds[0][1] if isinstance(preds[0], tuple) else preds[1]
64
64
  return super().postprocess(preds[0], img, orig_imgs, protos=protos)
65
65
 
66
66
  def construct_results(self, preds, img, orig_imgs, protos):
@@ -99,9 +99,7 @@ class SegmentationValidator(DetectionValidator):
99
99
  Returns:
100
100
  list[dict[str, torch.Tensor]]: Processed detection predictions with masks.
101
101
  """
102
- proto = (
103
- preds[0][-1] if isinstance(preds[0], tuple) else preds[-1]
104
- ) # second output is len 3 if pt, but only 1 if exported
102
+ proto = preds[0][1] if isinstance(preds[0], tuple) else preds[1]
105
103
  preds = super().postprocess(preds[0])
106
104
  imgsz = [4 * x for x in proto.shape[2:]] # get image size from proto
107
105
  for i, pred in enumerate(preds):
@@ -887,7 +887,7 @@ class AutoBackend(nn.Module):
887
887
  x[:, 6::3] *= h
888
888
  y.append(x)
889
889
  # TF segment fixes: export is reversed vs ONNX export and protos are transposed
890
- if len(y) == 2: # segment with (det, proto) output order reversed
890
+ if self.task == "segment": # segment with (det, proto) output order reversed
891
891
  if len(y[1].shape) != 4:
892
892
  y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
893
893
  if y[1].shape[-1] == 6: # end-to-end model
@@ -160,6 +160,8 @@ def benchmark(
160
160
  assert cpu, "inference not supported on CPU"
161
161
  if "cuda" in device.type:
162
162
  assert gpu, "inference not supported on GPU"
163
+ if format == "ncnn":
164
+ assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
163
165
 
164
166
  # Export
165
167
  if format == "-":
@@ -178,8 +180,6 @@ def benchmark(
178
180
  assert model.task != "pose" or format != "executorch", "ExecuTorch Pose inference is not supported"
179
181
  assert format not in {"edgetpu", "tfjs"}, "inference not supported"
180
182
  assert format != "coreml" or platform.system() == "Darwin", "inference only supported on macOS>=10.13"
181
- if format == "ncnn":
182
- assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
183
183
  exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half, verbose=False)
184
184
 
185
185
  # Validate
@@ -1,6 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr, torch_utils
4
+ from ultralytics.utils.torch_utils import smart_inference_mode
4
5
 
5
6
  try:
6
7
  assert not TESTS_RUNNING # do not log pytest
@@ -38,6 +39,7 @@ def _log_scalars(scalars: dict, step: int = 0) -> None:
38
39
  WRITER.add_scalar(k, v, step)
39
40
 
40
41
 
42
+ @smart_inference_mode()
41
43
  def _log_tensorboard_graph(trainer) -> None:
42
44
  """Log model graph to TensorBoard.
43
45
 
@@ -23,25 +23,37 @@ MCT_CONFIG = {
23
23
  "detect": {
24
24
  "layer_names": ["sub", "mul_2", "add_14", "cat_19"],
25
25
  "weights_memory": 2585350.2439,
26
- "n_layers": 238,
26
+ "n_layers": {238, 239},
27
27
  },
28
28
  "pose": {
29
29
  "layer_names": ["sub", "mul_2", "add_14", "cat_21", "cat_22", "mul_4", "add_15"],
30
30
  "weights_memory": 2437771.67,
31
- "n_layers": 257,
31
+ "n_layers": {257, 258},
32
+ },
33
+ "classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": {112}},
34
+ "segment": {
35
+ "layer_names": ["sub", "mul_2", "add_14", "cat_21"],
36
+ "weights_memory": 2466604.8,
37
+ "n_layers": {265, 266},
32
38
  },
33
- "classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": 112},
34
- "segment": {"layer_names": ["sub", "mul_2", "add_14", "cat_21"], "weights_memory": 2466604.8, "n_layers": 265},
35
39
  },
36
40
  "YOLOv8": {
37
- "detect": {"layer_names": ["sub", "mul", "add_6", "cat_15"], "weights_memory": 2550540.8, "n_layers": 168},
41
+ "detect": {
42
+ "layer_names": ["sub", "mul", "add_6", "cat_15"],
43
+ "weights_memory": 2550540.8,
44
+ "n_layers": {168, 169},
45
+ },
38
46
  "pose": {
39
47
  "layer_names": ["add_7", "mul_2", "cat_17", "mul", "sub", "add_6", "cat_18"],
40
48
  "weights_memory": 2482451.85,
41
- "n_layers": 187,
49
+ "n_layers": {187, 188},
50
+ },
51
+ "classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": {73}},
52
+ "segment": {
53
+ "layer_names": ["sub", "mul", "add_6", "cat_17"],
54
+ "weights_memory": 2580060.0,
55
+ "n_layers": {195, 196},
42
56
  },
43
- "classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": 73},
44
- "segment": {"layer_names": ["sub", "mul", "add_6", "cat_17"], "weights_memory": 2580060.0, "n_layers": 195},
45
57
  },
46
58
  }
47
59
 
@@ -251,7 +263,7 @@ def torch2imx(
251
263
  mct_config = MCT_CONFIG["YOLO11" if "C2PSA" in model.__str__() else "YOLOv8"][model.task]
252
264
 
253
265
  # Check if the model has the expected number of layers
254
- if len(list(model.modules())) != mct_config["n_layers"]:
266
+ if len(list(model.modules())) not in mct_config["n_layers"]:
255
267
  raise ValueError("IMX export only supported for YOLOv8n and YOLO11n models.")
256
268
 
257
269
  for layer_name in mct_config["layer_names"]:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics-opencv-headless
3
- Version: 8.4.3
3
+ Version: 8.4.4
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -89,7 +89,7 @@ Dynamic: license-file
89
89
 
90
90
  <div align="center">
91
91
  <p>
92
- <a href="https://www.ultralytics.com/events/yolovision?utm_source=github&utm_medium=org&utm_campaign=yv25_event" target="_blank">
92
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
93
93
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
94
94
  </p>
95
95
 
@@ -116,8 +116,8 @@ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.c
116
116
 
117
117
  Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
118
118
 
119
- <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
120
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
119
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
120
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO26 performance plots">
121
121
  </a>
122
122
 
123
123
  <div align="center">
@@ -310,8 +310,8 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
310
310
  <br>
311
311
 
312
312
  <div align="center">
313
- <a href="https://www.ultralytics.com/hub">
314
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
313
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26">
314
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics Platform logo"></a>
315
315
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
316
316
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
317
317
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
@@ -323,9 +323,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
323
323
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
324
324
  </div>
325
325
 
326
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
327
- | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
328
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
326
+ | Ultralytics Platform 🌟 | Weights & Biases | Comet | Neural Magic |
327
+ | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
328
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics Platform](https://platform.ultralytics.com/ultralytics/yolo26). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
329
329
 
330
330
  ## 🤝 Contribute
331
331
 
@@ -7,11 +7,11 @@ tests/test_exports.py,sha256=Toy4u-4bsoyAbzNhc9kbMuKqvMKywZxNj5jlFNTzFWs,14670
7
7
  tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
8
8
  tests/test_python.py,sha256=np6on3Sa0NNi5pquvilekjKxxedAJMpLOQEthGaIalQ,29284
9
9
  tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
10
- ultralytics/__init__.py,sha256=cei9ajuLEweE4RyDoGwvanjvIJe8Z347vRJatW87-JI,1300
10
+ ultralytics/__init__.py,sha256=sJYUdz1Qx-pwzIz34CD4B1PgspkWiGojpY2uQ6D5lE0,1300
11
11
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=w-ZCBR5lbL2ef0UhQfK7IvySIOhtPcJTJF0-3tAXObw,40300
14
+ ultralytics/cfg/__init__.py,sha256=_LkOX0ZG8AlWr_NG2KW7E8SQ7DqVeD_vSiYUd2EKXA4,40288
15
15
  ultralytics/cfg/default.yaml,sha256=E__q2msvK9XCQngf0YFLpueCer_1tRcMJM0p3ahBdbA,9015
16
16
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
17
17
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
@@ -132,11 +132,11 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
132
132
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
133
133
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
134
134
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
135
- ultralytics/engine/exporter.py,sha256=RCViSGpUjFyUEW6GxhbKfURBW5vCOgCcXtLJKKI8ceM,73429
135
+ ultralytics/engine/exporter.py,sha256=n_DtRhD0jT9sTFb8oQ_TYdQYTQJbsQzwqdISwR-mQY4,73330
136
136
  ultralytics/engine/model.py,sha256=euDHUy7J5vVBvS_d-KbGZd_0BP5bF6Y3cTQ7VXtwZ4k,53210
137
137
  ultralytics/engine/predictor.py,sha256=tXrHSTHJ-rDQ3lrPW9P5_ei_ewTwbY2sji6MExybJ28,22838
138
138
  ultralytics/engine/results.py,sha256=uvD7WqaePkuYbcf-iFqh3DIy5_ZSyHeDiKIzY5VjePM,68181
139
- ultralytics/engine/trainer.py,sha256=8kAqel2aF2_GZ9Bi-lyf7ykWW_vkGD6dx8z5bPU6zlM,47219
139
+ ultralytics/engine/trainer.py,sha256=lvYPaEkaGXuGnH8j19aMIB2BML3b0LhEqt-HyZ_I6nU,47219
140
140
  ultralytics/engine/tuner.py,sha256=F4fyQaC5_GT74TULRO0VhzTv2S_a54cZDc3FjFoqaHE,21840
141
141
  ultralytics/engine/validator.py,sha256=DiKsygbNJdRdwXoKoYOJA6bP_T7vMW3Syj_Qc_l7xTM,17761
142
142
  ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
@@ -207,9 +207,9 @@ ultralytics/models/yolo/pose/predict.py,sha256=6EW9palcAoWX-gu5ROQvO6AxBSm719934
207
207
  ultralytics/models/yolo/pose/train.py,sha256=IlmsFlb0TsWZVy6PL3Trr_aXfwwGMBKAHyxnP7VPp_g,4747
208
208
  ultralytics/models/yolo/pose/val.py,sha256=0luDccEPb_lUMjzaBb5VMsh9RdXVAbxb3Br57VKWNdc,12004
209
209
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
210
- ultralytics/models/yolo/segment/predict.py,sha256=9CAAjkghFYdGaXYUOcpGZilhwNSnYL2U1Qu_Qc6UtFY,5430
210
+ ultralytics/models/yolo/segment/predict.py,sha256=zLhmSTVEnaUumIX9SbjZH09kr2VrNdYWEss7FvseVuY,5428
211
211
  ultralytics/models/yolo/segment/train.py,sha256=nS3qrT7Y3swCwjGZzeDQ2EunC9ilMsOiWs6LaTUCAE4,3021
212
- ultralytics/models/yolo/segment/val.py,sha256=EDcwcfwgc9eUKgUL9NIlh_rGhlqcNEAWcRT7KtQj6AQ,13286
212
+ ultralytics/models/yolo/segment/val.py,sha256=AvPS4rhV2PFpi0yixUfJhdczXctmZQSKgTjh7qVH0To,13204
213
213
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
214
214
  ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
215
215
  ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
@@ -219,7 +219,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykT
219
219
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
220
220
  ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
221
221
  ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
222
- ultralytics/nn/autobackend.py,sha256=ib-4b7nxFpnU7EHZytKrMt4p8la94ZV02_FF8-ifh1c,45057
222
+ ultralytics/nn/autobackend.py,sha256=MLS68iMNv6U0HyBK8nGjcyLOyImYIGEjP4398KqOkV0,45068
223
223
  ultralytics/nn/tasks.py,sha256=PmlYScI7qTRCmYRR90Mw1QnqeRzvY0ojAMrgStBr11g,72010
224
224
  ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
225
225
  ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
@@ -264,7 +264,7 @@ ultralytics/trackers/utils/matching.py,sha256=x6uZOIx0O9oVmAcfY6tYMTJQE2cDTUlRR6
264
264
  ultralytics/utils/__init__.py,sha256=XLEK_pvptzNWhJaO8x0MWghREIyEDei0LOGnUnmU1Kg,55145
265
265
  ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
266
266
  ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
267
- ultralytics/utils/benchmarks.py,sha256=x0kLvVCRSRx0nEI_suiKM5R-RXLfxhs6pRiA6qwofcg,32293
267
+ ultralytics/utils/benchmarks.py,sha256=f4RykrjO1oEBxrTbH6qM_9vMxYKXO9F0ruFcM4xKF7A,32293
268
268
  ultralytics/utils/checks.py,sha256=NWc0J-Nk4qHSVEXFDWfJkI7IjTNHFXajKjsSodDroBk,39411
269
269
  ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
270
270
  ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
@@ -296,15 +296,15 @@ ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNe
296
296
  ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
297
297
  ultralytics/utils/callbacks/platform.py,sha256=Ufws7Kp_MHh3jrz-Sx5q1KKQ-l1hoDnLi1_thZJsHPQ,16091
298
298
  ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
299
- ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
299
+ ultralytics/utils/callbacks/tensorboard.py,sha256=K7b6KtC7rimfzqFu-NDZ_55Tbd7eC6TckqQdTNPuQ6U,5039
300
300
  ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
301
301
  ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
302
302
  ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
303
- ultralytics/utils/export/imx.py,sha256=Sj3xKLV6APulltaitauSs3oas_ndbtiHkP-KRI-bxoY,13553
303
+ ultralytics/utils/export/imx.py,sha256=VnMDO7c8ezBs91UDoLg9rR0oY8Uc7FujKpbdGxrzV18,13744
304
304
  ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
305
- ultralytics_opencv_headless-8.4.3.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
306
- ultralytics_opencv_headless-8.4.3.dist-info/METADATA,sha256=4K427q3e_GOdYacXqp96mGJO9CfO_73MyFSZwwioHoY,38981
307
- ultralytics_opencv_headless-8.4.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
- ultralytics_opencv_headless-8.4.3.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
309
- ultralytics_opencv_headless-8.4.3.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
310
- ultralytics_opencv_headless-8.4.3.dist-info/RECORD,,
305
+ ultralytics_opencv_headless-8.4.4.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
306
+ ultralytics_opencv_headless-8.4.4.dist-info/METADATA,sha256=p8SHjqAdfBIRK6mOv5XP6uD98eRZQTQsJDcL-ODt9Ck,39047
307
+ ultralytics_opencv_headless-8.4.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
+ ultralytics_opencv_headless-8.4.4.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
309
+ ultralytics_opencv_headless-8.4.4.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
310
+ ultralytics_opencv_headless-8.4.4.dist-info/RECORD,,