ultralytics-opencv-headless 8.3.253__py3-none-any.whl → 8.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +2 -2
- tests/conftest.py +1 -1
- tests/test_cuda.py +8 -2
- tests/test_engine.py +6 -6
- tests/test_exports.py +10 -3
- tests/test_integrations.py +9 -9
- tests/test_python.py +14 -14
- tests/test_solutions.py +3 -3
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +6 -6
- ultralytics/cfg/default.yaml +3 -1
- ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
- ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
- ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
- ultralytics/cfg/models/26/yolo26-p6.yaml +60 -0
- ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
- ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
- ultralytics/cfg/models/26/yolo26.yaml +52 -0
- ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
- ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
- ultralytics/data/augment.py +7 -0
- ultralytics/data/dataset.py +1 -1
- ultralytics/engine/exporter.py +10 -3
- ultralytics/engine/model.py +1 -1
- ultralytics/engine/trainer.py +40 -15
- ultralytics/engine/tuner.py +15 -7
- ultralytics/models/fastsam/predict.py +1 -1
- ultralytics/models/yolo/detect/train.py +3 -2
- ultralytics/models/yolo/detect/val.py +6 -0
- ultralytics/models/yolo/model.py +1 -1
- ultralytics/models/yolo/obb/predict.py +1 -1
- ultralytics/models/yolo/obb/train.py +1 -1
- ultralytics/models/yolo/pose/train.py +1 -1
- ultralytics/models/yolo/segment/predict.py +1 -1
- ultralytics/models/yolo/segment/train.py +1 -1
- ultralytics/models/yolo/segment/val.py +3 -1
- ultralytics/models/yolo/yoloe/train.py +6 -1
- ultralytics/models/yolo/yoloe/train_seg.py +6 -1
- ultralytics/nn/autobackend.py +7 -3
- ultralytics/nn/modules/__init__.py +8 -0
- ultralytics/nn/modules/block.py +127 -8
- ultralytics/nn/modules/head.py +818 -205
- ultralytics/nn/tasks.py +74 -29
- ultralytics/nn/text_model.py +5 -2
- ultralytics/optim/__init__.py +5 -0
- ultralytics/optim/muon.py +338 -0
- ultralytics/utils/benchmarks.py +1 -0
- ultralytics/utils/callbacks/platform.py +9 -7
- ultralytics/utils/downloads.py +3 -1
- ultralytics/utils/export/engine.py +19 -10
- ultralytics/utils/export/imx.py +22 -11
- ultralytics/utils/export/tensorflow.py +1 -41
- ultralytics/utils/loss.py +584 -203
- ultralytics/utils/metrics.py +1 -0
- ultralytics/utils/ops.py +11 -2
- ultralytics/utils/tal.py +98 -19
- {ultralytics_opencv_headless-8.3.253.dist-info → ultralytics_opencv_headless-8.4.0.dist-info}/METADATA +31 -39
- {ultralytics_opencv_headless-8.3.253.dist-info → ultralytics_opencv_headless-8.4.0.dist-info}/RECORD +62 -51
- {ultralytics_opencv_headless-8.3.253.dist-info → ultralytics_opencv_headless-8.4.0.dist-info}/WHEEL +0 -0
- {ultralytics_opencv_headless-8.3.253.dist-info → ultralytics_opencv_headless-8.4.0.dist-info}/entry_points.txt +0 -0
- {ultralytics_opencv_headless-8.3.253.dist-info → ultralytics_opencv_headless-8.4.0.dist-info}/licenses/LICENSE +0 -0
- {ultralytics_opencv_headless-8.3.253.dist-info → ultralytics_opencv_headless-8.4.0.dist-info}/top_level.txt +0 -0
ultralytics/utils/metrics.py
CHANGED
ultralytics/utils/ops.py
CHANGED
|
@@ -344,7 +344,7 @@ def xyxyxyxy2xywhr(x):
|
|
|
344
344
|
|
|
345
345
|
Returns:
|
|
346
346
|
(np.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format with shape (N, 5). Rotation
|
|
347
|
-
values are in radians from
|
|
347
|
+
values are in radians from [-pi/4, 3pi/4).
|
|
348
348
|
"""
|
|
349
349
|
is_torch = isinstance(x, torch.Tensor)
|
|
350
350
|
points = x.cpu().numpy() if is_torch else x
|
|
@@ -354,7 +354,16 @@ def xyxyxyxy2xywhr(x):
|
|
|
354
354
|
# NOTE: Use cv2.minAreaRect to get accurate xywhr,
|
|
355
355
|
# especially some objects are cut off by augmentations in dataloader.
|
|
356
356
|
(cx, cy), (w, h), angle = cv2.minAreaRect(pts)
|
|
357
|
-
|
|
357
|
+
# convert angle to radian and normalize to [-pi/4, 3pi/4)
|
|
358
|
+
theta = angle / 180 * np.pi
|
|
359
|
+
if w < h:
|
|
360
|
+
w, h = h, w
|
|
361
|
+
theta += np.pi / 2
|
|
362
|
+
while theta >= 3 * np.pi / 4:
|
|
363
|
+
theta -= np.pi
|
|
364
|
+
while theta < -np.pi / 4:
|
|
365
|
+
theta += np.pi
|
|
366
|
+
rboxes.append([cx, cy, w, h, theta])
|
|
358
367
|
return torch.tensor(rboxes, device=x.device, dtype=x.dtype) if is_torch else np.asarray(rboxes)
|
|
359
368
|
|
|
360
369
|
|
ultralytics/utils/tal.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
3
5
|
import torch
|
|
4
6
|
import torch.nn as nn
|
|
5
7
|
|
|
6
8
|
from . import LOGGER
|
|
7
9
|
from .metrics import bbox_iou, probiou
|
|
8
|
-
from .ops import xywhr2xyxyxyxy
|
|
10
|
+
from .ops import xywh2xyxy, xywhr2xyxyxyxy, xyxy2xywh
|
|
9
11
|
from .torch_utils import TORCH_1_11
|
|
10
12
|
|
|
11
13
|
|
|
@@ -17,13 +19,24 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
17
19
|
|
|
18
20
|
Attributes:
|
|
19
21
|
topk (int): The number of top candidates to consider.
|
|
22
|
+
topk2 (int): Secondary topk value for additional filtering.
|
|
20
23
|
num_classes (int): The number of object classes.
|
|
21
24
|
alpha (float): The alpha parameter for the classification component of the task-aligned metric.
|
|
22
25
|
beta (float): The beta parameter for the localization component of the task-aligned metric.
|
|
26
|
+
stride (list): List of stride values for different feature levels.
|
|
23
27
|
eps (float): A small value to prevent division by zero.
|
|
24
28
|
"""
|
|
25
29
|
|
|
26
|
-
def __init__(
|
|
30
|
+
def __init__(
|
|
31
|
+
self,
|
|
32
|
+
topk: int = 13,
|
|
33
|
+
num_classes: int = 80,
|
|
34
|
+
alpha: float = 1.0,
|
|
35
|
+
beta: float = 6.0,
|
|
36
|
+
stride: list = [8, 16, 32],
|
|
37
|
+
eps: float = 1e-9,
|
|
38
|
+
topk2=None,
|
|
39
|
+
):
|
|
27
40
|
"""Initialize a TaskAlignedAssigner object with customizable hyperparameters.
|
|
28
41
|
|
|
29
42
|
Args:
|
|
@@ -31,13 +44,17 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
31
44
|
num_classes (int, optional): The number of object classes.
|
|
32
45
|
alpha (float, optional): The alpha parameter for the classification component of the task-aligned metric.
|
|
33
46
|
beta (float, optional): The beta parameter for the localization component of the task-aligned metric.
|
|
47
|
+
stride (list, optional): List of stride values for different feature levels.
|
|
34
48
|
eps (float, optional): A small value to prevent division by zero.
|
|
49
|
+
topk2 (int, optional): Secondary topk value for additional filtering.
|
|
35
50
|
"""
|
|
36
51
|
super().__init__()
|
|
37
52
|
self.topk = topk
|
|
53
|
+
self.topk2 = topk2 or topk
|
|
38
54
|
self.num_classes = num_classes
|
|
39
55
|
self.alpha = alpha
|
|
40
56
|
self.beta = beta
|
|
57
|
+
self.stride = stride
|
|
41
58
|
self.eps = eps
|
|
42
59
|
|
|
43
60
|
@torch.no_grad()
|
|
@@ -77,12 +94,14 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
77
94
|
|
|
78
95
|
try:
|
|
79
96
|
return self._forward(pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt)
|
|
80
|
-
except
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
97
|
+
except RuntimeError as e:
|
|
98
|
+
if "out of memory" in str(e).lower():
|
|
99
|
+
# Move tensors to CPU, compute, then move back to original device
|
|
100
|
+
LOGGER.warning("CUDA OutOfMemoryError in TaskAlignedAssigner, using CPU")
|
|
101
|
+
cpu_tensors = [t.cpu() for t in (pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt)]
|
|
102
|
+
result = self._forward(*cpu_tensors)
|
|
103
|
+
return tuple(t.to(device) for t in result)
|
|
104
|
+
raise
|
|
86
105
|
|
|
87
106
|
def _forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
|
|
88
107
|
"""Compute the task-aligned assignment.
|
|
@@ -106,7 +125,9 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
106
125
|
pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt
|
|
107
126
|
)
|
|
108
127
|
|
|
109
|
-
target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(
|
|
128
|
+
target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(
|
|
129
|
+
mask_pos, overlaps, self.n_max_boxes, align_metric
|
|
130
|
+
)
|
|
110
131
|
|
|
111
132
|
# Assigned target
|
|
112
133
|
target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
|
|
@@ -136,7 +157,7 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
136
157
|
align_metric (torch.Tensor): Alignment metric with shape (bs, max_num_obj, h*w).
|
|
137
158
|
overlaps (torch.Tensor): Overlaps between predicted vs ground truth boxes with shape (bs, max_num_obj, h*w).
|
|
138
159
|
"""
|
|
139
|
-
mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)
|
|
160
|
+
mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes, mask_gt)
|
|
140
161
|
# Get anchor_align metric, (b, max_num_obj, h*w)
|
|
141
162
|
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
|
|
142
163
|
# Get topk_metric mask, (b, max_num_obj, h*w)
|
|
@@ -263,13 +284,13 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
263
284
|
|
|
264
285
|
return target_labels, target_bboxes, target_scores
|
|
265
286
|
|
|
266
|
-
|
|
267
|
-
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
|
|
287
|
+
def select_candidates_in_gts(self, xy_centers, gt_bboxes, mask_gt, eps=1e-9):
|
|
268
288
|
"""Select positive anchor centers within ground truth bounding boxes.
|
|
269
289
|
|
|
270
290
|
Args:
|
|
271
291
|
xy_centers (torch.Tensor): Anchor center coordinates, shape (h*w, 2).
|
|
272
292
|
gt_bboxes (torch.Tensor): Ground truth bounding boxes, shape (b, n_boxes, 4).
|
|
293
|
+
mask_gt (torch.Tensor): Mask for valid ground truth boxes, shape (b, n_boxes, 1).
|
|
273
294
|
eps (float, optional): Small value for numerical stability.
|
|
274
295
|
|
|
275
296
|
Returns:
|
|
@@ -279,20 +300,26 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
279
300
|
- b: batch size, n_boxes: number of ground truth boxes, h: height, w: width.
|
|
280
301
|
- Bounding box format: [x_min, y_min, x_max, y_max].
|
|
281
302
|
"""
|
|
303
|
+
gt_bboxes_xywh = xyxy2xywh(gt_bboxes)
|
|
304
|
+
wh_mask = gt_bboxes_xywh[..., 2:] < self.stride[0] # the smallest stride
|
|
305
|
+
stride_val = torch.tensor(self.stride[1], dtype=gt_bboxes_xywh.dtype, device=gt_bboxes_xywh.device)
|
|
306
|
+
gt_bboxes_xywh[..., 2:] = torch.where((wh_mask * mask_gt).bool(), stride_val, gt_bboxes_xywh[..., 2:])
|
|
307
|
+
gt_bboxes = xywh2xyxy(gt_bboxes_xywh)
|
|
308
|
+
|
|
282
309
|
n_anchors = xy_centers.shape[0]
|
|
283
310
|
bs, n_boxes, _ = gt_bboxes.shape
|
|
284
311
|
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
|
|
285
312
|
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
|
|
286
313
|
return bbox_deltas.amin(3).gt_(eps)
|
|
287
314
|
|
|
288
|
-
|
|
289
|
-
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
|
|
315
|
+
def select_highest_overlaps(self, mask_pos, overlaps, n_max_boxes, align_metric):
|
|
290
316
|
"""Select anchor boxes with highest IoU when assigned to multiple ground truths.
|
|
291
317
|
|
|
292
318
|
Args:
|
|
293
319
|
mask_pos (torch.Tensor): Positive mask, shape (b, n_max_boxes, h*w).
|
|
294
320
|
overlaps (torch.Tensor): IoU overlaps, shape (b, n_max_boxes, h*w).
|
|
295
321
|
n_max_boxes (int): Maximum number of ground truth boxes.
|
|
322
|
+
align_metric (torch.Tensor): Alignment metric for selecting best matches.
|
|
296
323
|
|
|
297
324
|
Returns:
|
|
298
325
|
target_gt_idx (torch.Tensor): Indices of assigned ground truths, shape (b, h*w).
|
|
@@ -303,12 +330,20 @@ class TaskAlignedAssigner(nn.Module):
|
|
|
303
330
|
fg_mask = mask_pos.sum(-2)
|
|
304
331
|
if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
|
|
305
332
|
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
|
|
306
|
-
max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
|
|
307
333
|
|
|
334
|
+
max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
|
|
308
335
|
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
|
|
309
336
|
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
|
|
310
|
-
|
|
311
337
|
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
|
|
338
|
+
|
|
339
|
+
fg_mask = mask_pos.sum(-2)
|
|
340
|
+
|
|
341
|
+
if self.topk2 != self.topk:
|
|
342
|
+
align_metric = align_metric * mask_pos # update overlaps
|
|
343
|
+
max_overlaps_idx = torch.topk(align_metric, self.topk2, dim=-1, largest=True).indices # (b, n_max_boxes)
|
|
344
|
+
topk_idx = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device) # update mask_pos
|
|
345
|
+
topk_idx.scatter_(-1, max_overlaps_idx, 1.0)
|
|
346
|
+
mask_pos *= topk_idx
|
|
312
347
|
fg_mask = mask_pos.sum(-2)
|
|
313
348
|
# Find each grid serve which gt(index)
|
|
314
349
|
target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
|
|
@@ -323,12 +358,14 @@ class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
|
|
|
323
358
|
return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)
|
|
324
359
|
|
|
325
360
|
@staticmethod
|
|
326
|
-
def select_candidates_in_gts(xy_centers, gt_bboxes):
|
|
361
|
+
def select_candidates_in_gts(xy_centers, gt_bboxes, mask_gt):
|
|
327
362
|
"""Select the positive anchor center in gt for rotated bounding boxes.
|
|
328
363
|
|
|
329
364
|
Args:
|
|
330
365
|
xy_centers (torch.Tensor): Anchor center coordinates with shape (h*w, 2).
|
|
331
366
|
gt_bboxes (torch.Tensor): Ground truth bounding boxes with shape (b, n_boxes, 5).
|
|
367
|
+
mask_gt (torch.Tensor): Mask for valid ground truth boxes with shape (b, n_boxes, 1).
|
|
368
|
+
stride (list[int]): List of stride values for each feature map level.
|
|
332
369
|
|
|
333
370
|
Returns:
|
|
334
371
|
(torch.Tensor): Boolean mask of positive anchors with shape (b, n_boxes, h*w).
|
|
@@ -377,10 +414,13 @@ def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
|
|
|
377
414
|
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
|
|
378
415
|
|
|
379
416
|
|
|
380
|
-
def bbox2dist(anchor_points, bbox, reg_max):
|
|
417
|
+
def bbox2dist(anchor_points: torch.Tensor, bbox: torch.Tensor, reg_max: int | None = None) -> torch.Tensor:
|
|
381
418
|
"""Transform bbox(xyxy) to dist(ltrb)."""
|
|
382
419
|
x1y1, x2y2 = bbox.chunk(2, -1)
|
|
383
|
-
|
|
420
|
+
dist = torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1)
|
|
421
|
+
if reg_max is not None:
|
|
422
|
+
dist = dist.clamp_(0, reg_max - 0.01) # dist (lt, rb)
|
|
423
|
+
return dist
|
|
384
424
|
|
|
385
425
|
|
|
386
426
|
def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
|
|
@@ -402,3 +442,42 @@ def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
|
|
|
402
442
|
x, y = xf * cos - yf * sin, xf * sin + yf * cos
|
|
403
443
|
xy = torch.cat([x, y], dim=dim) + anchor_points
|
|
404
444
|
return torch.cat([xy, lt + rb], dim=dim)
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
def rbox2dist(
|
|
448
|
+
target_bboxes: torch.Tensor,
|
|
449
|
+
anchor_points: torch.Tensor,
|
|
450
|
+
target_angle: torch.Tensor,
|
|
451
|
+
dim: int = -1,
|
|
452
|
+
reg_max: int | None = None,
|
|
453
|
+
):
|
|
454
|
+
"""Decode rotated bounding box (xywh) to distance(ltrb). This is the inverse of dist2rbox.
|
|
455
|
+
|
|
456
|
+
Args:
|
|
457
|
+
target_bboxes (torch.Tensor): Target rotated bounding boxes with shape (bs, h*w, 4), format [x, y, w, h].
|
|
458
|
+
anchor_points (torch.Tensor): Anchor points with shape (h*w, 2).
|
|
459
|
+
target_angle (torch.Tensor): Target angle with shape (bs, h*w, 1).
|
|
460
|
+
dim (int, optional): Dimension along which to split.
|
|
461
|
+
reg_max (int, optional): Maximum regression value for clamping.
|
|
462
|
+
|
|
463
|
+
Returns:
|
|
464
|
+
(torch.Tensor): Predicted rotated distance with shape (bs, h*w, 4), format [l, t, r, b].
|
|
465
|
+
"""
|
|
466
|
+
xy, wh = target_bboxes.split(2, dim=dim)
|
|
467
|
+
offset = xy - anchor_points # (bs, h*w, 2)
|
|
468
|
+
offset_x, offset_y = offset.split(1, dim=dim)
|
|
469
|
+
cos, sin = torch.cos(target_angle), torch.sin(target_angle)
|
|
470
|
+
xf = offset_x * cos + offset_y * sin
|
|
471
|
+
yf = -offset_x * sin + offset_y * cos
|
|
472
|
+
|
|
473
|
+
w, h = wh.split(1, dim=dim)
|
|
474
|
+
target_l = w / 2 - xf
|
|
475
|
+
target_t = h / 2 - yf
|
|
476
|
+
target_r = w / 2 + xf
|
|
477
|
+
target_b = h / 2 + yf
|
|
478
|
+
|
|
479
|
+
dist = torch.cat([target_l, target_t, target_r, target_b], dim=dim)
|
|
480
|
+
if reg_max is not None:
|
|
481
|
+
dist = dist.clamp_(0, reg_max - 0.01)
|
|
482
|
+
|
|
483
|
+
return dist
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ultralytics-opencv-headless
|
|
3
|
-
Version: 8.
|
|
3
|
+
Version: 8.4.0
|
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -98,7 +98,6 @@ Dynamic: license-file
|
|
|
98
98
|
<div>
|
|
99
99
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
|
|
100
100
|
<a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
|
|
101
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
102
101
|
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
103
102
|
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
104
103
|
<a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
|
@@ -166,8 +165,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
|
|
|
166
165
|
You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
|
|
167
166
|
|
|
168
167
|
```bash
|
|
169
|
-
# Predict using a pretrained YOLO model (e.g.,
|
|
170
|
-
yolo predict model=
|
|
168
|
+
# Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
|
|
169
|
+
yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
171
170
|
```
|
|
172
171
|
|
|
173
172
|
The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
|
|
@@ -179,8 +178,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
|
|
|
179
178
|
```python
|
|
180
179
|
from ultralytics import YOLO
|
|
181
180
|
|
|
182
|
-
# Load a pretrained
|
|
183
|
-
model = YOLO("
|
|
181
|
+
# Load a pretrained YOLO26n model
|
|
182
|
+
model = YOLO("yolo26n.pt")
|
|
184
183
|
|
|
185
184
|
# Train the model on the COCO8 dataset for 100 epochs
|
|
186
185
|
train_results = model.train(
|
|
@@ -207,7 +206,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
|
|
|
207
206
|
|
|
208
207
|
## ✨ Models
|
|
209
208
|
|
|
210
|
-
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [
|
|
209
|
+
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
|
|
211
210
|
|
|
212
211
|
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
|
213
212
|
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
|
@@ -221,11 +220,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
221
220
|
|
|
222
221
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
223
222
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
224
|
-
| [
|
|
225
|
-
| [
|
|
226
|
-
| [
|
|
227
|
-
| [
|
|
228
|
-
| [
|
|
223
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
224
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
225
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
226
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
227
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
229
228
|
|
|
230
229
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
231
230
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -238,11 +237,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
238
237
|
|
|
239
238
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
240
239
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
241
|
-
| [
|
|
242
|
-
| [
|
|
243
|
-
| [
|
|
244
|
-
| [
|
|
245
|
-
| [
|
|
240
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.8 | 9.1 |
|
|
241
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.7 | 34.2 |
|
|
242
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 24.8 | 121.5 |
|
|
243
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 29.2 | 139.8 |
|
|
244
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 65.5 | 313.5 |
|
|
246
245
|
|
|
247
246
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
248
247
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -255,11 +254,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
255
254
|
|
|
256
255
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
257
256
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
258
|
-
| [
|
|
259
|
-
| [
|
|
260
|
-
| [
|
|
261
|
-
| [
|
|
262
|
-
| [
|
|
257
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
258
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
259
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
260
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
261
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
263
262
|
|
|
264
263
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
265
264
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -272,11 +271,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
272
271
|
|
|
273
272
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
274
273
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
275
|
-
| [
|
|
276
|
-
| [
|
|
277
|
-
| [
|
|
278
|
-
| [
|
|
279
|
-
| [
|
|
274
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 56.9 | 83.0 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
275
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.1 | 86.8 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
276
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.9 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
277
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.8 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
278
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.7 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
280
279
|
|
|
281
280
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
282
281
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -289,11 +288,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
|
|
|
289
288
|
|
|
290
289
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
291
290
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
292
|
-
| [
|
|
293
|
-
| [
|
|
294
|
-
| [
|
|
295
|
-
| [
|
|
296
|
-
| [
|
|
291
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
292
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 79.8 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
293
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
294
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.4 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
295
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 82.1 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
297
296
|
|
|
298
297
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
299
298
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -328,13 +327,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
328
327
|
| :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
|
|
329
328
|
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
|
|
330
329
|
|
|
331
|
-
## 🌟 Ultralytics HUB
|
|
332
|
-
|
|
333
|
-
Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
|
|
334
|
-
|
|
335
|
-
<a href="https://www.ultralytics.com/hub" target="_blank">
|
|
336
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
337
|
-
|
|
338
330
|
## 🤝 Contribute
|
|
339
331
|
|
|
340
332
|
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
|