uipath-langchain 0.1.34__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. uipath_langchain/_cli/_templates/langgraph.json.template +2 -4
  2. uipath_langchain/_cli/cli_new.py +1 -2
  3. uipath_langchain/agent/guardrails/actions/escalate_action.py +252 -108
  4. uipath_langchain/agent/guardrails/actions/filter_action.py +247 -12
  5. uipath_langchain/agent/guardrails/guardrail_nodes.py +47 -12
  6. uipath_langchain/agent/guardrails/guardrails_factory.py +40 -15
  7. uipath_langchain/agent/guardrails/utils.py +64 -33
  8. uipath_langchain/agent/react/agent.py +4 -2
  9. uipath_langchain/agent/react/file_type_handler.py +123 -0
  10. uipath_langchain/agent/react/guardrails/guardrails_subgraph.py +67 -12
  11. uipath_langchain/agent/react/init_node.py +16 -1
  12. uipath_langchain/agent/react/job_attachments.py +125 -0
  13. uipath_langchain/agent/react/json_utils.py +183 -0
  14. uipath_langchain/agent/react/jsonschema_pydantic_converter.py +76 -0
  15. uipath_langchain/agent/react/llm_with_files.py +76 -0
  16. uipath_langchain/agent/react/types.py +4 -0
  17. uipath_langchain/agent/react/utils.py +29 -3
  18. uipath_langchain/agent/tools/__init__.py +5 -1
  19. uipath_langchain/agent/tools/context_tool.py +151 -1
  20. uipath_langchain/agent/tools/escalation_tool.py +46 -15
  21. uipath_langchain/agent/tools/integration_tool.py +20 -16
  22. uipath_langchain/agent/tools/internal_tools/__init__.py +5 -0
  23. uipath_langchain/agent/tools/internal_tools/analyze_files_tool.py +113 -0
  24. uipath_langchain/agent/tools/internal_tools/internal_tool_factory.py +54 -0
  25. uipath_langchain/agent/tools/process_tool.py +8 -1
  26. uipath_langchain/agent/tools/static_args.py +18 -40
  27. uipath_langchain/agent/tools/tool_factory.py +13 -5
  28. uipath_langchain/agent/tools/tool_node.py +133 -4
  29. uipath_langchain/agent/tools/utils.py +31 -0
  30. uipath_langchain/agent/wrappers/__init__.py +6 -0
  31. uipath_langchain/agent/wrappers/job_attachment_wrapper.py +62 -0
  32. uipath_langchain/agent/wrappers/static_args_wrapper.py +34 -0
  33. uipath_langchain/chat/mapper.py +60 -42
  34. uipath_langchain/runtime/factory.py +10 -5
  35. uipath_langchain/runtime/runtime.py +38 -35
  36. uipath_langchain/runtime/storage.py +178 -71
  37. {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/METADATA +5 -4
  38. {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/RECORD +41 -30
  39. {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/WHEEL +0 -0
  40. {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/entry_points.txt +0 -0
  41. {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,54 @@
1
+ """Factory for creating internal agent tools.
2
+
3
+ This module provides a factory pattern for creating internal tools used by agents.
4
+ Internal tools are built-in tools that provide core functionality for agents, such as
5
+ file analysis, data processing, or other utilities that don't require external integrations.
6
+
7
+ Supported Internal Tools:
8
+ - ANALYZE_FILES: Tool for analyzing file contents and extracting information
9
+
10
+ Example:
11
+ >>> from uipath.agent.models.agent import AgentInternalToolResourceConfig
12
+ >>> resource = AgentInternalToolResourceConfig(...)
13
+ >>> tool = create_internal_tool(resource)
14
+ >>> # Use the tool in your agent workflow
15
+ """
16
+
17
+ from typing import Callable
18
+
19
+ from langchain_core.language_models import BaseChatModel
20
+ from langchain_core.tools import StructuredTool
21
+ from uipath.agent.models.agent import (
22
+ AgentInternalToolResourceConfig,
23
+ AgentInternalToolType,
24
+ )
25
+
26
+ from .analyze_files_tool import create_analyze_file_tool
27
+
28
+ _INTERNAL_TOOL_HANDLERS: dict[
29
+ AgentInternalToolType,
30
+ Callable[[AgentInternalToolResourceConfig, BaseChatModel], StructuredTool],
31
+ ] = {
32
+ AgentInternalToolType.ANALYZE_FILES: create_analyze_file_tool,
33
+ }
34
+
35
+
36
+ def create_internal_tool(
37
+ resource: AgentInternalToolResourceConfig, llm: BaseChatModel
38
+ ) -> StructuredTool:
39
+ """Create an internal tool based on the resource configuration.
40
+
41
+ Raises:
42
+ ValueError: If the tool type is not supported (no handler exists for it).
43
+
44
+ """
45
+ tool_type = resource.properties.tool_type
46
+
47
+ handler = _INTERNAL_TOOL_HANDLERS.get(tool_type)
48
+ if handler is None:
49
+ raise ValueError(
50
+ f"Unsupported internal tool type: {tool_type}. "
51
+ f"Supported types: {list[AgentInternalToolType](_INTERNAL_TOOL_HANDLERS.keys())}"
52
+ )
53
+
54
+ return handler(resource, llm)
@@ -2,13 +2,14 @@
2
2
 
3
3
  from typing import Any
4
4
 
5
- from jsonschema_pydantic_converter import transform as create_model
6
5
  from langchain_core.tools import StructuredTool
7
6
  from langgraph.types import interrupt
8
7
  from uipath.agent.models.agent import AgentProcessToolResourceConfig
9
8
  from uipath.eval.mocks import mockable
10
9
  from uipath.platform.common import InvokeProcess
11
10
 
11
+ from uipath_langchain.agent.react.jsonschema_pydantic_converter import create_model
12
+
12
13
  from .structured_tool_with_output_type import StructuredToolWithOutputType
13
14
  from .utils import sanitize_tool_name
14
15
 
@@ -27,6 +28,7 @@ def create_process_tool(resource: AgentProcessToolResourceConfig) -> StructuredT
27
28
  description=resource.description,
28
29
  input_schema=input_model.model_json_schema(),
29
30
  output_schema=output_model.model_json_schema(),
31
+ example_calls=resource.properties.example_calls,
30
32
  )
31
33
  async def process_tool_fn(**kwargs: Any):
32
34
  return interrupt(
@@ -44,6 +46,11 @@ def create_process_tool(resource: AgentProcessToolResourceConfig) -> StructuredT
44
46
  args_schema=input_model,
45
47
  coroutine=process_tool_fn,
46
48
  output_type=output_model,
49
+ metadata={
50
+ "tool_type": "process",
51
+ "display_name": process_name,
52
+ "folder_path": folder_path,
53
+ },
47
54
  )
48
55
 
49
56
  return tool
@@ -1,25 +1,27 @@
1
1
  """Handles static arguments for tool calls."""
2
2
 
3
- from typing import Any, Dict, List
3
+ from typing import Any
4
4
 
5
5
  from jsonpath_ng import parse # type: ignore[import-untyped]
6
- from langchain.tools import ToolRuntime
6
+ from pydantic import BaseModel
7
7
  from uipath.agent.models.agent import (
8
8
  AgentIntegrationToolParameter,
9
9
  AgentIntegrationToolResourceConfig,
10
10
  BaseAgentResourceConfig,
11
11
  )
12
12
 
13
+ from .utils import sanitize_dict_for_serialization
14
+
13
15
 
14
16
  def resolve_static_args(
15
17
  resource: BaseAgentResourceConfig,
16
- agent_input: Dict[str, Any],
17
- ) -> Dict[str, Any]:
18
+ agent_input: dict[str, Any],
19
+ ) -> dict[str, Any]:
18
20
  """Resolves static arguments for a given resource with a given input.
19
21
 
20
22
  Args:
21
23
  resource: The agent resource configuration.
22
- input: Othe input arguments passed to the agent.
24
+ input: The input arguments passed to the agent.
23
25
 
24
26
  Returns:
25
27
  A dictionary of expanded arguments to be used in the tool call.
@@ -35,9 +37,9 @@ def resolve_static_args(
35
37
 
36
38
 
37
39
  def resolve_integration_static_args(
38
- parameters: List[AgentIntegrationToolParameter],
39
- agent_input: Dict[str, Any],
40
- ) -> Dict[str, Any]:
40
+ parameters: list[AgentIntegrationToolParameter],
41
+ agent_input: dict[str, Any],
42
+ ) -> dict[str, Any]:
41
43
  """Resolves static arguments for an integration tool resource.
42
44
 
43
45
  Args:
@@ -48,7 +50,7 @@ def resolve_integration_static_args(
48
50
  A dictionary of expanded static arguments for the integration tool.
49
51
  """
50
52
 
51
- static_args: Dict[str, Any] = {}
53
+ static_args: dict[str, Any] = {}
52
54
  for param in parameters:
53
55
  value = None
54
56
 
@@ -75,34 +77,10 @@ def resolve_integration_static_args(
75
77
  return static_args
76
78
 
77
79
 
78
- def sanitize_for_serialization(args: Dict[str, Any]) -> Dict[str, Any]:
79
- """Convert Pydantic models in args to dicts."""
80
- converted_args: Dict[str, Any] = {}
81
- for key, value in args.items():
82
- # handle Pydantic model
83
- if hasattr(value, "model_dump"):
84
- converted_args[key] = value.model_dump()
85
-
86
- elif isinstance(value, list):
87
- # handle list of Pydantic models
88
- converted_list = []
89
- for item in value:
90
- if hasattr(item, "model_dump"):
91
- converted_list.append(item.model_dump())
92
- else:
93
- converted_list.append(item)
94
- converted_args[key] = converted_list
95
-
96
- # handle regular value or unexpected type
97
- else:
98
- converted_args[key] = value
99
- return converted_args
100
-
101
-
102
80
  def apply_static_args(
103
- static_args: Dict[str, Any],
104
- kwargs: Dict[str, Any],
105
- ) -> Dict[str, Any]:
81
+ static_args: dict[str, Any],
82
+ kwargs: dict[str, Any],
83
+ ) -> dict[str, Any]:
106
84
  """Applies static arguments to the given input arguments.
107
85
 
108
86
  Args:
@@ -113,7 +91,7 @@ def apply_static_args(
113
91
  Merged input arguments with static arguments applied.
114
92
  """
115
93
 
116
- sanitized_args = sanitize_for_serialization(kwargs)
94
+ sanitized_args = sanitize_dict_for_serialization(kwargs)
117
95
  for json_path, value in static_args.items():
118
96
  expr = parse(json_path)
119
97
  expr.update_or_create(sanitized_args, value)
@@ -122,8 +100,8 @@ def apply_static_args(
122
100
 
123
101
 
124
102
  def handle_static_args(
125
- resource: BaseAgentResourceConfig, runtime: ToolRuntime, input_args: Dict[str, Any]
126
- ) -> Dict[str, Any]:
103
+ resource: BaseAgentResourceConfig, state: BaseModel, input_args: dict[str, Any]
104
+ ) -> dict[str, Any]:
127
105
  """Resolves and applies static arguments for a tool call.
128
106
  Args:
129
107
  resource: The agent resource configuration.
@@ -133,6 +111,6 @@ def handle_static_args(
133
111
  A dictionary of input arguments with static arguments applied.
134
112
  """
135
113
 
136
- static_args = resolve_static_args(resource, dict(runtime.state))
114
+ static_args = resolve_static_args(resource, dict(state))
137
115
  merged_args = apply_static_args(static_args, input_args)
138
116
  return merged_args
@@ -1,10 +1,12 @@
1
1
  """Factory functions for creating tools from agent resources."""
2
2
 
3
- from langchain_core.tools import BaseTool, StructuredTool
3
+ from langchain_core.language_models import BaseChatModel
4
+ from langchain_core.tools import BaseTool
4
5
  from uipath.agent.models.agent import (
5
6
  AgentContextResourceConfig,
6
7
  AgentEscalationResourceConfig,
7
8
  AgentIntegrationToolResourceConfig,
9
+ AgentInternalToolResourceConfig,
8
10
  AgentProcessToolResourceConfig,
9
11
  BaseAgentResourceConfig,
10
12
  LowCodeAgentDefinition,
@@ -13,14 +15,17 @@ from uipath.agent.models.agent import (
13
15
  from .context_tool import create_context_tool
14
16
  from .escalation_tool import create_escalation_tool
15
17
  from .integration_tool import create_integration_tool
18
+ from .internal_tools import create_internal_tool
16
19
  from .process_tool import create_process_tool
17
20
 
18
21
 
19
- async def create_tools_from_resources(agent: LowCodeAgentDefinition) -> list[BaseTool]:
22
+ async def create_tools_from_resources(
23
+ agent: LowCodeAgentDefinition, llm: BaseChatModel
24
+ ) -> list[BaseTool]:
20
25
  tools: list[BaseTool] = []
21
26
 
22
27
  for resource in agent.resources:
23
- tool = await _build_tool_for_resource(resource)
28
+ tool = await _build_tool_for_resource(resource, llm)
24
29
  if tool is not None:
25
30
  tools.append(tool)
26
31
 
@@ -28,8 +33,8 @@ async def create_tools_from_resources(agent: LowCodeAgentDefinition) -> list[Bas
28
33
 
29
34
 
30
35
  async def _build_tool_for_resource(
31
- resource: BaseAgentResourceConfig,
32
- ) -> StructuredTool | None:
36
+ resource: BaseAgentResourceConfig, llm: BaseChatModel
37
+ ) -> BaseTool | None:
33
38
  if isinstance(resource, AgentProcessToolResourceConfig):
34
39
  return create_process_tool(resource)
35
40
 
@@ -42,4 +47,7 @@ async def _build_tool_for_resource(
42
47
  elif isinstance(resource, AgentIntegrationToolResourceConfig):
43
48
  return create_integration_tool(resource)
44
49
 
50
+ elif isinstance(resource, AgentInternalToolResourceConfig):
51
+ return create_internal_tool(resource, llm)
52
+
45
53
  return None
@@ -1,22 +1,151 @@
1
1
  """Tool node factory wiring directly to LangGraph's ToolNode."""
2
2
 
3
3
  from collections.abc import Sequence
4
+ from inspect import signature
5
+ from typing import Any, Awaitable, Callable, Literal
4
6
 
7
+ from langchain_core.messages.ai import AIMessage
8
+ from langchain_core.messages.tool import ToolCall, ToolMessage
9
+ from langchain_core.runnables.config import RunnableConfig
5
10
  from langchain_core.tools import BaseTool
6
- from langgraph.prebuilt import ToolNode
11
+ from langgraph._internal._runnable import RunnableCallable
12
+ from langgraph.types import Command
13
+ from pydantic import BaseModel
7
14
 
15
+ # the type safety can be improved with generics
16
+ ToolWrapperType = Callable[
17
+ [BaseTool, ToolCall, Any], dict[str, Any] | Command[Any] | None
18
+ ]
19
+ AsyncToolWrapperType = Callable[
20
+ [BaseTool, ToolCall, Any],
21
+ Awaitable[dict[str, Any] | Command[Any] | None],
22
+ ]
23
+ OutputType = dict[Literal["messages"], list[ToolMessage]] | Command[Any] | None
8
24
 
9
- def create_tool_node(tools: Sequence[BaseTool]) -> dict[str, ToolNode]:
25
+
26
+ class UiPathToolNode(RunnableCallable):
27
+ """
28
+ A ToolNode that can be used in a React agent graph.
29
+ It extracts the tool call from the state messages and invokes the tool.
30
+ It supports optional synchronous and asynchronous wrappers for custom processing.
31
+ Generic over the state model.
32
+ Args:
33
+ tool: The tool to invoke.
34
+ wrapper: An optional synchronous wrapper for custom processing.
35
+ awrapper: An optional asynchronous wrapper for custom processing.
36
+
37
+ Returns:
38
+ A dict with ToolMessage or a Command.
39
+ """
40
+
41
+ def __init__(
42
+ self,
43
+ tool: BaseTool,
44
+ wrapper: ToolWrapperType | None = None,
45
+ awrapper: AsyncToolWrapperType | None = None,
46
+ ):
47
+ super().__init__(func=self._func, afunc=self._afunc, name=tool.name)
48
+ self.tool = tool
49
+ self.wrapper = wrapper
50
+ self.awrapper = awrapper
51
+
52
+ def _func(self, state: Any, config: RunnableConfig | None = None) -> OutputType:
53
+ call = self._extract_tool_call(state)
54
+ if call is None:
55
+ return None
56
+ if self.wrapper:
57
+ filtered_state = self._filter_state(state, self.wrapper)
58
+ result = self.wrapper(self.tool, call, filtered_state)
59
+ else:
60
+ result = self.tool.invoke(call["args"])
61
+ return self._process_result(call, result)
62
+
63
+ async def _afunc(
64
+ self, state: Any, config: RunnableConfig | None = None
65
+ ) -> OutputType:
66
+ call = self._extract_tool_call(state)
67
+ if call is None:
68
+ return None
69
+ if self.awrapper:
70
+ filtered_state = self._filter_state(state, self.awrapper)
71
+ result = await self.awrapper(self.tool, call, filtered_state)
72
+ else:
73
+ result = await self.tool.ainvoke(call["args"])
74
+ return self._process_result(call, result)
75
+
76
+ def _extract_tool_call(self, state: Any) -> ToolCall | None:
77
+ """Extract the tool call from the state messages."""
78
+
79
+ if not hasattr(state, "messages"):
80
+ raise ValueError("State does not have messages key")
81
+
82
+ last_message = state.messages[-1]
83
+ if not isinstance(last_message, AIMessage):
84
+ raise ValueError("Last message in message stack is not an AIMessage.")
85
+
86
+ for tool_call in last_message.tool_calls:
87
+ if tool_call["name"] == self.tool.name:
88
+ return tool_call
89
+ return None
90
+
91
+ def _process_result(
92
+ self, call: ToolCall, result: dict[str, Any] | Command[Any] | None
93
+ ) -> OutputType:
94
+ """Process the tool result into a message format or return a Command."""
95
+ if isinstance(result, Command):
96
+ return result
97
+ else:
98
+ message = ToolMessage(
99
+ content=str(result), name=call["name"], tool_call_id=call["id"]
100
+ )
101
+ return {"messages": [message]}
102
+
103
+ def _filter_state(
104
+ self, state: Any, wrapper: ToolWrapperType | AsyncToolWrapperType
105
+ ) -> BaseModel:
106
+ """Filter the state to the expected model type."""
107
+ model_type = list(signature(wrapper).parameters.values())[2].annotation
108
+ if not issubclass(model_type, BaseModel):
109
+ raise ValueError(
110
+ "Wrapper state parameter must be a pydantic BaseModel subclass."
111
+ )
112
+ return model_type.model_validate(state, from_attributes=True)
113
+
114
+
115
+ class ToolWrapperMixin:
116
+ wrapper: ToolWrapperType | None = None
117
+ awrapper: AsyncToolWrapperType | None = None
118
+
119
+ def set_tool_wrappers(
120
+ self,
121
+ wrapper: ToolWrapperType | None = None,
122
+ awrapper: AsyncToolWrapperType | None = None,
123
+ ) -> None:
124
+ """Define wrappers for the tool execution."""
125
+ self.wrapper = wrapper
126
+ self.awrapper = awrapper
127
+
128
+
129
+ def create_tool_node(tools: Sequence[BaseTool]) -> dict[str, UiPathToolNode]:
10
130
  """Create individual ToolNode for each tool.
11
131
 
12
132
  Args:
13
133
  tools: Sequence of tools to create nodes for.
134
+ agentState: The type of the agent state model.
14
135
 
15
136
  Returns:
16
- Dict mapping tool.name -> ToolNode([tool]).
137
+ Dict mapping tool.name -> ReactToolNode([tool]).
17
138
  Each tool gets its own dedicated node for middleware composition.
18
139
 
19
140
  Note:
20
141
  handle_tool_errors=False delegates error handling to LangGraph's error boundary.
21
142
  """
22
- return {tool.name: ToolNode([tool], handle_tool_errors=False) for tool in tools}
143
+ dict_mapping: dict[str, UiPathToolNode] = {}
144
+ for tool in tools:
145
+ if isinstance(tool, ToolWrapperMixin):
146
+ dict_mapping[tool.name] = UiPathToolNode(
147
+ tool, wrapper=tool.wrapper, awrapper=tool.awrapper
148
+ )
149
+ else:
150
+ dict_mapping[tool.name] = UiPathToolNode(tool, wrapper=None, awrapper=None)
151
+ return dict_mapping
@@ -1,6 +1,7 @@
1
1
  """Tool-related utility functions."""
2
2
 
3
3
  import re
4
+ from typing import Any
4
5
 
5
6
 
6
7
  def sanitize_tool_name(name: str) -> str:
@@ -9,3 +10,33 @@ def sanitize_tool_name(name: str) -> str:
9
10
  sanitized_tool_name = re.sub(r"[^a-zA-Z0-9_-]", "", trim_whitespaces)
10
11
  sanitized_tool_name = sanitized_tool_name[:64]
11
12
  return sanitized_tool_name
13
+
14
+
15
+ def sanitize_dict_for_serialization(args: dict[str, Any]) -> dict[str, Any]:
16
+ """Convert Pydantic models in args to dicts."""
17
+ converted_args: dict[str, Any] = {}
18
+ for key, value in args.items():
19
+ # handle Pydantic model
20
+ if hasattr(value, "model_dump"):
21
+ converted_args[key] = value.model_dump()
22
+
23
+ elif isinstance(value, list):
24
+ # handle list of Pydantic models
25
+ converted_list = []
26
+ for item in value:
27
+ if hasattr(item, "model_dump"):
28
+ converted_list.append(item.model_dump())
29
+ elif hasattr(item, "value"):
30
+ converted_list.append(item.value)
31
+ else:
32
+ converted_list.append(item)
33
+ converted_args[key] = converted_list
34
+
35
+ # handle enum-like objects with value attribute
36
+ elif hasattr(value, "value"):
37
+ converted_args[key] = value.value
38
+
39
+ # handle regular value or unexpected type
40
+ else:
41
+ converted_args[key] = value
42
+ return converted_args
@@ -0,0 +1,6 @@
1
+ """Wrappers to add behavior to tools while keeping them graph agnostic."""
2
+
3
+ from .job_attachment_wrapper import get_job_attachment_wrapper
4
+ from .static_args_wrapper import get_static_args_wrapper
5
+
6
+ __all__ = ["get_static_args_wrapper", "get_job_attachment_wrapper"]
@@ -0,0 +1,62 @@
1
+ from typing import Any
2
+
3
+ from langchain_core.messages.tool import ToolCall
4
+ from langchain_core.tools import BaseTool
5
+ from langgraph.types import Command
6
+ from pydantic import BaseModel
7
+
8
+ from uipath_langchain.agent.react.job_attachments import (
9
+ get_job_attachment_paths,
10
+ replace_job_attachment_ids,
11
+ )
12
+ from uipath_langchain.agent.react.types import AgentGraphState
13
+ from uipath_langchain.agent.tools.tool_node import AsyncToolWrapperType
14
+
15
+
16
+ def get_job_attachment_wrapper() -> AsyncToolWrapperType:
17
+ """Create a tool wrapper that validates and replaces job attachment IDs with full attachment objects.
18
+
19
+ This wrapper extracts job attachment paths from the tool's schema, validates that all
20
+ referenced attachments exist in the agent state, and replaces attachment IDs with complete
21
+ attachment objects before invoking the tool.
22
+
23
+ Args:
24
+ resource: The agent tool resource configuration
25
+
26
+ Returns:
27
+ An async tool wrapper function that handles job attachment validation and replacement
28
+ """
29
+
30
+ async def job_attachment_wrapper(
31
+ tool: BaseTool,
32
+ call: ToolCall,
33
+ state: AgentGraphState,
34
+ ) -> dict[str, Any] | Command[Any] | None:
35
+ """Validate and replace job attachments in tool arguments before invocation.
36
+
37
+ Args:
38
+ tool: The tool to wrap
39
+ call: The tool call containing arguments
40
+ state: The agent graph state containing job attachments
41
+
42
+ Returns:
43
+ Tool invocation result, or error dict if attachment validation fails
44
+ """
45
+ input_args = call["args"]
46
+ modified_input_args = input_args
47
+
48
+ if isinstance(tool.args_schema, type) and issubclass(
49
+ tool.args_schema, BaseModel
50
+ ):
51
+ errors: list[str] = []
52
+ paths = get_job_attachment_paths(tool.args_schema)
53
+ modified_input_args = replace_job_attachment_ids(
54
+ paths, input_args, state.job_attachments, errors
55
+ )
56
+
57
+ if errors:
58
+ return {"error": "\n".join(errors)}
59
+
60
+ return await tool.ainvoke(modified_input_args)
61
+
62
+ return job_attachment_wrapper
@@ -0,0 +1,34 @@
1
+ from typing import Any
2
+
3
+ from langchain_core.messages.tool import ToolCall
4
+ from langchain_core.tools import BaseTool
5
+ from langgraph.types import Command
6
+ from uipath.agent.models.agent import BaseAgentResourceConfig
7
+
8
+ from uipath_langchain.agent.react.types import AgentGraphState
9
+ from uipath_langchain.agent.tools.static_args import handle_static_args
10
+ from uipath_langchain.agent.tools.tool_node import AsyncToolWrapperType
11
+
12
+
13
+ def get_static_args_wrapper(
14
+ resource: BaseAgentResourceConfig,
15
+ ) -> AsyncToolWrapperType:
16
+ """Returns an asynchronous tool wrapper that applies static arguments.
17
+
18
+ Args:
19
+ resource: The agent resource configuration.
20
+
21
+ Returns:
22
+ An asynchronous tool wrapper function.
23
+ """
24
+
25
+ async def static_args_wrapper(
26
+ tool: BaseTool,
27
+ call: ToolCall,
28
+ state: AgentGraphState,
29
+ ) -> dict[str, Any] | Command[Any] | None:
30
+ input_args = call["args"]
31
+ merged_args = handle_static_args(resource, state, input_args)
32
+ return await tool.ainvoke(merged_args)
33
+
34
+ return static_args_wrapper