uipath-langchain 0.1.34__py3-none-any.whl → 0.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- uipath_langchain/_cli/_templates/langgraph.json.template +2 -4
- uipath_langchain/_cli/cli_new.py +1 -2
- uipath_langchain/agent/guardrails/actions/escalate_action.py +252 -108
- uipath_langchain/agent/guardrails/actions/filter_action.py +247 -12
- uipath_langchain/agent/guardrails/guardrail_nodes.py +47 -12
- uipath_langchain/agent/guardrails/guardrails_factory.py +40 -15
- uipath_langchain/agent/guardrails/utils.py +64 -33
- uipath_langchain/agent/react/agent.py +4 -2
- uipath_langchain/agent/react/file_type_handler.py +123 -0
- uipath_langchain/agent/react/guardrails/guardrails_subgraph.py +67 -12
- uipath_langchain/agent/react/init_node.py +16 -1
- uipath_langchain/agent/react/job_attachments.py +125 -0
- uipath_langchain/agent/react/json_utils.py +183 -0
- uipath_langchain/agent/react/jsonschema_pydantic_converter.py +76 -0
- uipath_langchain/agent/react/llm_with_files.py +76 -0
- uipath_langchain/agent/react/types.py +4 -0
- uipath_langchain/agent/react/utils.py +29 -3
- uipath_langchain/agent/tools/__init__.py +5 -1
- uipath_langchain/agent/tools/context_tool.py +151 -1
- uipath_langchain/agent/tools/escalation_tool.py +46 -15
- uipath_langchain/agent/tools/integration_tool.py +20 -16
- uipath_langchain/agent/tools/internal_tools/__init__.py +5 -0
- uipath_langchain/agent/tools/internal_tools/analyze_files_tool.py +113 -0
- uipath_langchain/agent/tools/internal_tools/internal_tool_factory.py +54 -0
- uipath_langchain/agent/tools/process_tool.py +8 -1
- uipath_langchain/agent/tools/static_args.py +18 -40
- uipath_langchain/agent/tools/tool_factory.py +13 -5
- uipath_langchain/agent/tools/tool_node.py +133 -4
- uipath_langchain/agent/tools/utils.py +31 -0
- uipath_langchain/agent/wrappers/__init__.py +6 -0
- uipath_langchain/agent/wrappers/job_attachment_wrapper.py +62 -0
- uipath_langchain/agent/wrappers/static_args_wrapper.py +34 -0
- uipath_langchain/chat/mapper.py +60 -42
- uipath_langchain/runtime/factory.py +10 -5
- uipath_langchain/runtime/runtime.py +38 -35
- uipath_langchain/runtime/storage.py +178 -71
- {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/METADATA +5 -4
- {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/RECORD +41 -30
- {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/WHEEL +0 -0
- {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/entry_points.txt +0 -0
- {uipath_langchain-0.1.34.dist-info → uipath_langchain-0.3.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
"""Factory for creating internal agent tools.
|
|
2
|
+
|
|
3
|
+
This module provides a factory pattern for creating internal tools used by agents.
|
|
4
|
+
Internal tools are built-in tools that provide core functionality for agents, such as
|
|
5
|
+
file analysis, data processing, or other utilities that don't require external integrations.
|
|
6
|
+
|
|
7
|
+
Supported Internal Tools:
|
|
8
|
+
- ANALYZE_FILES: Tool for analyzing file contents and extracting information
|
|
9
|
+
|
|
10
|
+
Example:
|
|
11
|
+
>>> from uipath.agent.models.agent import AgentInternalToolResourceConfig
|
|
12
|
+
>>> resource = AgentInternalToolResourceConfig(...)
|
|
13
|
+
>>> tool = create_internal_tool(resource)
|
|
14
|
+
>>> # Use the tool in your agent workflow
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
from typing import Callable
|
|
18
|
+
|
|
19
|
+
from langchain_core.language_models import BaseChatModel
|
|
20
|
+
from langchain_core.tools import StructuredTool
|
|
21
|
+
from uipath.agent.models.agent import (
|
|
22
|
+
AgentInternalToolResourceConfig,
|
|
23
|
+
AgentInternalToolType,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
from .analyze_files_tool import create_analyze_file_tool
|
|
27
|
+
|
|
28
|
+
_INTERNAL_TOOL_HANDLERS: dict[
|
|
29
|
+
AgentInternalToolType,
|
|
30
|
+
Callable[[AgentInternalToolResourceConfig, BaseChatModel], StructuredTool],
|
|
31
|
+
] = {
|
|
32
|
+
AgentInternalToolType.ANALYZE_FILES: create_analyze_file_tool,
|
|
33
|
+
}
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def create_internal_tool(
|
|
37
|
+
resource: AgentInternalToolResourceConfig, llm: BaseChatModel
|
|
38
|
+
) -> StructuredTool:
|
|
39
|
+
"""Create an internal tool based on the resource configuration.
|
|
40
|
+
|
|
41
|
+
Raises:
|
|
42
|
+
ValueError: If the tool type is not supported (no handler exists for it).
|
|
43
|
+
|
|
44
|
+
"""
|
|
45
|
+
tool_type = resource.properties.tool_type
|
|
46
|
+
|
|
47
|
+
handler = _INTERNAL_TOOL_HANDLERS.get(tool_type)
|
|
48
|
+
if handler is None:
|
|
49
|
+
raise ValueError(
|
|
50
|
+
f"Unsupported internal tool type: {tool_type}. "
|
|
51
|
+
f"Supported types: {list[AgentInternalToolType](_INTERNAL_TOOL_HANDLERS.keys())}"
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
return handler(resource, llm)
|
|
@@ -2,13 +2,14 @@
|
|
|
2
2
|
|
|
3
3
|
from typing import Any
|
|
4
4
|
|
|
5
|
-
from jsonschema_pydantic_converter import transform as create_model
|
|
6
5
|
from langchain_core.tools import StructuredTool
|
|
7
6
|
from langgraph.types import interrupt
|
|
8
7
|
from uipath.agent.models.agent import AgentProcessToolResourceConfig
|
|
9
8
|
from uipath.eval.mocks import mockable
|
|
10
9
|
from uipath.platform.common import InvokeProcess
|
|
11
10
|
|
|
11
|
+
from uipath_langchain.agent.react.jsonschema_pydantic_converter import create_model
|
|
12
|
+
|
|
12
13
|
from .structured_tool_with_output_type import StructuredToolWithOutputType
|
|
13
14
|
from .utils import sanitize_tool_name
|
|
14
15
|
|
|
@@ -27,6 +28,7 @@ def create_process_tool(resource: AgentProcessToolResourceConfig) -> StructuredT
|
|
|
27
28
|
description=resource.description,
|
|
28
29
|
input_schema=input_model.model_json_schema(),
|
|
29
30
|
output_schema=output_model.model_json_schema(),
|
|
31
|
+
example_calls=resource.properties.example_calls,
|
|
30
32
|
)
|
|
31
33
|
async def process_tool_fn(**kwargs: Any):
|
|
32
34
|
return interrupt(
|
|
@@ -44,6 +46,11 @@ def create_process_tool(resource: AgentProcessToolResourceConfig) -> StructuredT
|
|
|
44
46
|
args_schema=input_model,
|
|
45
47
|
coroutine=process_tool_fn,
|
|
46
48
|
output_type=output_model,
|
|
49
|
+
metadata={
|
|
50
|
+
"tool_type": "process",
|
|
51
|
+
"display_name": process_name,
|
|
52
|
+
"folder_path": folder_path,
|
|
53
|
+
},
|
|
47
54
|
)
|
|
48
55
|
|
|
49
56
|
return tool
|
|
@@ -1,25 +1,27 @@
|
|
|
1
1
|
"""Handles static arguments for tool calls."""
|
|
2
2
|
|
|
3
|
-
from typing import Any
|
|
3
|
+
from typing import Any
|
|
4
4
|
|
|
5
5
|
from jsonpath_ng import parse # type: ignore[import-untyped]
|
|
6
|
-
from
|
|
6
|
+
from pydantic import BaseModel
|
|
7
7
|
from uipath.agent.models.agent import (
|
|
8
8
|
AgentIntegrationToolParameter,
|
|
9
9
|
AgentIntegrationToolResourceConfig,
|
|
10
10
|
BaseAgentResourceConfig,
|
|
11
11
|
)
|
|
12
12
|
|
|
13
|
+
from .utils import sanitize_dict_for_serialization
|
|
14
|
+
|
|
13
15
|
|
|
14
16
|
def resolve_static_args(
|
|
15
17
|
resource: BaseAgentResourceConfig,
|
|
16
|
-
agent_input:
|
|
17
|
-
) ->
|
|
18
|
+
agent_input: dict[str, Any],
|
|
19
|
+
) -> dict[str, Any]:
|
|
18
20
|
"""Resolves static arguments for a given resource with a given input.
|
|
19
21
|
|
|
20
22
|
Args:
|
|
21
23
|
resource: The agent resource configuration.
|
|
22
|
-
input:
|
|
24
|
+
input: The input arguments passed to the agent.
|
|
23
25
|
|
|
24
26
|
Returns:
|
|
25
27
|
A dictionary of expanded arguments to be used in the tool call.
|
|
@@ -35,9 +37,9 @@ def resolve_static_args(
|
|
|
35
37
|
|
|
36
38
|
|
|
37
39
|
def resolve_integration_static_args(
|
|
38
|
-
parameters:
|
|
39
|
-
agent_input:
|
|
40
|
-
) ->
|
|
40
|
+
parameters: list[AgentIntegrationToolParameter],
|
|
41
|
+
agent_input: dict[str, Any],
|
|
42
|
+
) -> dict[str, Any]:
|
|
41
43
|
"""Resolves static arguments for an integration tool resource.
|
|
42
44
|
|
|
43
45
|
Args:
|
|
@@ -48,7 +50,7 @@ def resolve_integration_static_args(
|
|
|
48
50
|
A dictionary of expanded static arguments for the integration tool.
|
|
49
51
|
"""
|
|
50
52
|
|
|
51
|
-
static_args:
|
|
53
|
+
static_args: dict[str, Any] = {}
|
|
52
54
|
for param in parameters:
|
|
53
55
|
value = None
|
|
54
56
|
|
|
@@ -75,34 +77,10 @@ def resolve_integration_static_args(
|
|
|
75
77
|
return static_args
|
|
76
78
|
|
|
77
79
|
|
|
78
|
-
def sanitize_for_serialization(args: Dict[str, Any]) -> Dict[str, Any]:
|
|
79
|
-
"""Convert Pydantic models in args to dicts."""
|
|
80
|
-
converted_args: Dict[str, Any] = {}
|
|
81
|
-
for key, value in args.items():
|
|
82
|
-
# handle Pydantic model
|
|
83
|
-
if hasattr(value, "model_dump"):
|
|
84
|
-
converted_args[key] = value.model_dump()
|
|
85
|
-
|
|
86
|
-
elif isinstance(value, list):
|
|
87
|
-
# handle list of Pydantic models
|
|
88
|
-
converted_list = []
|
|
89
|
-
for item in value:
|
|
90
|
-
if hasattr(item, "model_dump"):
|
|
91
|
-
converted_list.append(item.model_dump())
|
|
92
|
-
else:
|
|
93
|
-
converted_list.append(item)
|
|
94
|
-
converted_args[key] = converted_list
|
|
95
|
-
|
|
96
|
-
# handle regular value or unexpected type
|
|
97
|
-
else:
|
|
98
|
-
converted_args[key] = value
|
|
99
|
-
return converted_args
|
|
100
|
-
|
|
101
|
-
|
|
102
80
|
def apply_static_args(
|
|
103
|
-
static_args:
|
|
104
|
-
kwargs:
|
|
105
|
-
) ->
|
|
81
|
+
static_args: dict[str, Any],
|
|
82
|
+
kwargs: dict[str, Any],
|
|
83
|
+
) -> dict[str, Any]:
|
|
106
84
|
"""Applies static arguments to the given input arguments.
|
|
107
85
|
|
|
108
86
|
Args:
|
|
@@ -113,7 +91,7 @@ def apply_static_args(
|
|
|
113
91
|
Merged input arguments with static arguments applied.
|
|
114
92
|
"""
|
|
115
93
|
|
|
116
|
-
sanitized_args =
|
|
94
|
+
sanitized_args = sanitize_dict_for_serialization(kwargs)
|
|
117
95
|
for json_path, value in static_args.items():
|
|
118
96
|
expr = parse(json_path)
|
|
119
97
|
expr.update_or_create(sanitized_args, value)
|
|
@@ -122,8 +100,8 @@ def apply_static_args(
|
|
|
122
100
|
|
|
123
101
|
|
|
124
102
|
def handle_static_args(
|
|
125
|
-
resource: BaseAgentResourceConfig,
|
|
126
|
-
) ->
|
|
103
|
+
resource: BaseAgentResourceConfig, state: BaseModel, input_args: dict[str, Any]
|
|
104
|
+
) -> dict[str, Any]:
|
|
127
105
|
"""Resolves and applies static arguments for a tool call.
|
|
128
106
|
Args:
|
|
129
107
|
resource: The agent resource configuration.
|
|
@@ -133,6 +111,6 @@ def handle_static_args(
|
|
|
133
111
|
A dictionary of input arguments with static arguments applied.
|
|
134
112
|
"""
|
|
135
113
|
|
|
136
|
-
static_args = resolve_static_args(resource, dict(
|
|
114
|
+
static_args = resolve_static_args(resource, dict(state))
|
|
137
115
|
merged_args = apply_static_args(static_args, input_args)
|
|
138
116
|
return merged_args
|
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
"""Factory functions for creating tools from agent resources."""
|
|
2
2
|
|
|
3
|
-
from langchain_core.
|
|
3
|
+
from langchain_core.language_models import BaseChatModel
|
|
4
|
+
from langchain_core.tools import BaseTool
|
|
4
5
|
from uipath.agent.models.agent import (
|
|
5
6
|
AgentContextResourceConfig,
|
|
6
7
|
AgentEscalationResourceConfig,
|
|
7
8
|
AgentIntegrationToolResourceConfig,
|
|
9
|
+
AgentInternalToolResourceConfig,
|
|
8
10
|
AgentProcessToolResourceConfig,
|
|
9
11
|
BaseAgentResourceConfig,
|
|
10
12
|
LowCodeAgentDefinition,
|
|
@@ -13,14 +15,17 @@ from uipath.agent.models.agent import (
|
|
|
13
15
|
from .context_tool import create_context_tool
|
|
14
16
|
from .escalation_tool import create_escalation_tool
|
|
15
17
|
from .integration_tool import create_integration_tool
|
|
18
|
+
from .internal_tools import create_internal_tool
|
|
16
19
|
from .process_tool import create_process_tool
|
|
17
20
|
|
|
18
21
|
|
|
19
|
-
async def create_tools_from_resources(
|
|
22
|
+
async def create_tools_from_resources(
|
|
23
|
+
agent: LowCodeAgentDefinition, llm: BaseChatModel
|
|
24
|
+
) -> list[BaseTool]:
|
|
20
25
|
tools: list[BaseTool] = []
|
|
21
26
|
|
|
22
27
|
for resource in agent.resources:
|
|
23
|
-
tool = await _build_tool_for_resource(resource)
|
|
28
|
+
tool = await _build_tool_for_resource(resource, llm)
|
|
24
29
|
if tool is not None:
|
|
25
30
|
tools.append(tool)
|
|
26
31
|
|
|
@@ -28,8 +33,8 @@ async def create_tools_from_resources(agent: LowCodeAgentDefinition) -> list[Bas
|
|
|
28
33
|
|
|
29
34
|
|
|
30
35
|
async def _build_tool_for_resource(
|
|
31
|
-
resource: BaseAgentResourceConfig,
|
|
32
|
-
) ->
|
|
36
|
+
resource: BaseAgentResourceConfig, llm: BaseChatModel
|
|
37
|
+
) -> BaseTool | None:
|
|
33
38
|
if isinstance(resource, AgentProcessToolResourceConfig):
|
|
34
39
|
return create_process_tool(resource)
|
|
35
40
|
|
|
@@ -42,4 +47,7 @@ async def _build_tool_for_resource(
|
|
|
42
47
|
elif isinstance(resource, AgentIntegrationToolResourceConfig):
|
|
43
48
|
return create_integration_tool(resource)
|
|
44
49
|
|
|
50
|
+
elif isinstance(resource, AgentInternalToolResourceConfig):
|
|
51
|
+
return create_internal_tool(resource, llm)
|
|
52
|
+
|
|
45
53
|
return None
|
|
@@ -1,22 +1,151 @@
|
|
|
1
1
|
"""Tool node factory wiring directly to LangGraph's ToolNode."""
|
|
2
2
|
|
|
3
3
|
from collections.abc import Sequence
|
|
4
|
+
from inspect import signature
|
|
5
|
+
from typing import Any, Awaitable, Callable, Literal
|
|
4
6
|
|
|
7
|
+
from langchain_core.messages.ai import AIMessage
|
|
8
|
+
from langchain_core.messages.tool import ToolCall, ToolMessage
|
|
9
|
+
from langchain_core.runnables.config import RunnableConfig
|
|
5
10
|
from langchain_core.tools import BaseTool
|
|
6
|
-
from langgraph.
|
|
11
|
+
from langgraph._internal._runnable import RunnableCallable
|
|
12
|
+
from langgraph.types import Command
|
|
13
|
+
from pydantic import BaseModel
|
|
7
14
|
|
|
15
|
+
# the type safety can be improved with generics
|
|
16
|
+
ToolWrapperType = Callable[
|
|
17
|
+
[BaseTool, ToolCall, Any], dict[str, Any] | Command[Any] | None
|
|
18
|
+
]
|
|
19
|
+
AsyncToolWrapperType = Callable[
|
|
20
|
+
[BaseTool, ToolCall, Any],
|
|
21
|
+
Awaitable[dict[str, Any] | Command[Any] | None],
|
|
22
|
+
]
|
|
23
|
+
OutputType = dict[Literal["messages"], list[ToolMessage]] | Command[Any] | None
|
|
8
24
|
|
|
9
|
-
|
|
25
|
+
|
|
26
|
+
class UiPathToolNode(RunnableCallable):
|
|
27
|
+
"""
|
|
28
|
+
A ToolNode that can be used in a React agent graph.
|
|
29
|
+
It extracts the tool call from the state messages and invokes the tool.
|
|
30
|
+
It supports optional synchronous and asynchronous wrappers for custom processing.
|
|
31
|
+
Generic over the state model.
|
|
32
|
+
Args:
|
|
33
|
+
tool: The tool to invoke.
|
|
34
|
+
wrapper: An optional synchronous wrapper for custom processing.
|
|
35
|
+
awrapper: An optional asynchronous wrapper for custom processing.
|
|
36
|
+
|
|
37
|
+
Returns:
|
|
38
|
+
A dict with ToolMessage or a Command.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
tool: BaseTool,
|
|
44
|
+
wrapper: ToolWrapperType | None = None,
|
|
45
|
+
awrapper: AsyncToolWrapperType | None = None,
|
|
46
|
+
):
|
|
47
|
+
super().__init__(func=self._func, afunc=self._afunc, name=tool.name)
|
|
48
|
+
self.tool = tool
|
|
49
|
+
self.wrapper = wrapper
|
|
50
|
+
self.awrapper = awrapper
|
|
51
|
+
|
|
52
|
+
def _func(self, state: Any, config: RunnableConfig | None = None) -> OutputType:
|
|
53
|
+
call = self._extract_tool_call(state)
|
|
54
|
+
if call is None:
|
|
55
|
+
return None
|
|
56
|
+
if self.wrapper:
|
|
57
|
+
filtered_state = self._filter_state(state, self.wrapper)
|
|
58
|
+
result = self.wrapper(self.tool, call, filtered_state)
|
|
59
|
+
else:
|
|
60
|
+
result = self.tool.invoke(call["args"])
|
|
61
|
+
return self._process_result(call, result)
|
|
62
|
+
|
|
63
|
+
async def _afunc(
|
|
64
|
+
self, state: Any, config: RunnableConfig | None = None
|
|
65
|
+
) -> OutputType:
|
|
66
|
+
call = self._extract_tool_call(state)
|
|
67
|
+
if call is None:
|
|
68
|
+
return None
|
|
69
|
+
if self.awrapper:
|
|
70
|
+
filtered_state = self._filter_state(state, self.awrapper)
|
|
71
|
+
result = await self.awrapper(self.tool, call, filtered_state)
|
|
72
|
+
else:
|
|
73
|
+
result = await self.tool.ainvoke(call["args"])
|
|
74
|
+
return self._process_result(call, result)
|
|
75
|
+
|
|
76
|
+
def _extract_tool_call(self, state: Any) -> ToolCall | None:
|
|
77
|
+
"""Extract the tool call from the state messages."""
|
|
78
|
+
|
|
79
|
+
if not hasattr(state, "messages"):
|
|
80
|
+
raise ValueError("State does not have messages key")
|
|
81
|
+
|
|
82
|
+
last_message = state.messages[-1]
|
|
83
|
+
if not isinstance(last_message, AIMessage):
|
|
84
|
+
raise ValueError("Last message in message stack is not an AIMessage.")
|
|
85
|
+
|
|
86
|
+
for tool_call in last_message.tool_calls:
|
|
87
|
+
if tool_call["name"] == self.tool.name:
|
|
88
|
+
return tool_call
|
|
89
|
+
return None
|
|
90
|
+
|
|
91
|
+
def _process_result(
|
|
92
|
+
self, call: ToolCall, result: dict[str, Any] | Command[Any] | None
|
|
93
|
+
) -> OutputType:
|
|
94
|
+
"""Process the tool result into a message format or return a Command."""
|
|
95
|
+
if isinstance(result, Command):
|
|
96
|
+
return result
|
|
97
|
+
else:
|
|
98
|
+
message = ToolMessage(
|
|
99
|
+
content=str(result), name=call["name"], tool_call_id=call["id"]
|
|
100
|
+
)
|
|
101
|
+
return {"messages": [message]}
|
|
102
|
+
|
|
103
|
+
def _filter_state(
|
|
104
|
+
self, state: Any, wrapper: ToolWrapperType | AsyncToolWrapperType
|
|
105
|
+
) -> BaseModel:
|
|
106
|
+
"""Filter the state to the expected model type."""
|
|
107
|
+
model_type = list(signature(wrapper).parameters.values())[2].annotation
|
|
108
|
+
if not issubclass(model_type, BaseModel):
|
|
109
|
+
raise ValueError(
|
|
110
|
+
"Wrapper state parameter must be a pydantic BaseModel subclass."
|
|
111
|
+
)
|
|
112
|
+
return model_type.model_validate(state, from_attributes=True)
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class ToolWrapperMixin:
|
|
116
|
+
wrapper: ToolWrapperType | None = None
|
|
117
|
+
awrapper: AsyncToolWrapperType | None = None
|
|
118
|
+
|
|
119
|
+
def set_tool_wrappers(
|
|
120
|
+
self,
|
|
121
|
+
wrapper: ToolWrapperType | None = None,
|
|
122
|
+
awrapper: AsyncToolWrapperType | None = None,
|
|
123
|
+
) -> None:
|
|
124
|
+
"""Define wrappers for the tool execution."""
|
|
125
|
+
self.wrapper = wrapper
|
|
126
|
+
self.awrapper = awrapper
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
def create_tool_node(tools: Sequence[BaseTool]) -> dict[str, UiPathToolNode]:
|
|
10
130
|
"""Create individual ToolNode for each tool.
|
|
11
131
|
|
|
12
132
|
Args:
|
|
13
133
|
tools: Sequence of tools to create nodes for.
|
|
134
|
+
agentState: The type of the agent state model.
|
|
14
135
|
|
|
15
136
|
Returns:
|
|
16
|
-
Dict mapping tool.name ->
|
|
137
|
+
Dict mapping tool.name -> ReactToolNode([tool]).
|
|
17
138
|
Each tool gets its own dedicated node for middleware composition.
|
|
18
139
|
|
|
19
140
|
Note:
|
|
20
141
|
handle_tool_errors=False delegates error handling to LangGraph's error boundary.
|
|
21
142
|
"""
|
|
22
|
-
|
|
143
|
+
dict_mapping: dict[str, UiPathToolNode] = {}
|
|
144
|
+
for tool in tools:
|
|
145
|
+
if isinstance(tool, ToolWrapperMixin):
|
|
146
|
+
dict_mapping[tool.name] = UiPathToolNode(
|
|
147
|
+
tool, wrapper=tool.wrapper, awrapper=tool.awrapper
|
|
148
|
+
)
|
|
149
|
+
else:
|
|
150
|
+
dict_mapping[tool.name] = UiPathToolNode(tool, wrapper=None, awrapper=None)
|
|
151
|
+
return dict_mapping
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
"""Tool-related utility functions."""
|
|
2
2
|
|
|
3
3
|
import re
|
|
4
|
+
from typing import Any
|
|
4
5
|
|
|
5
6
|
|
|
6
7
|
def sanitize_tool_name(name: str) -> str:
|
|
@@ -9,3 +10,33 @@ def sanitize_tool_name(name: str) -> str:
|
|
|
9
10
|
sanitized_tool_name = re.sub(r"[^a-zA-Z0-9_-]", "", trim_whitespaces)
|
|
10
11
|
sanitized_tool_name = sanitized_tool_name[:64]
|
|
11
12
|
return sanitized_tool_name
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def sanitize_dict_for_serialization(args: dict[str, Any]) -> dict[str, Any]:
|
|
16
|
+
"""Convert Pydantic models in args to dicts."""
|
|
17
|
+
converted_args: dict[str, Any] = {}
|
|
18
|
+
for key, value in args.items():
|
|
19
|
+
# handle Pydantic model
|
|
20
|
+
if hasattr(value, "model_dump"):
|
|
21
|
+
converted_args[key] = value.model_dump()
|
|
22
|
+
|
|
23
|
+
elif isinstance(value, list):
|
|
24
|
+
# handle list of Pydantic models
|
|
25
|
+
converted_list = []
|
|
26
|
+
for item in value:
|
|
27
|
+
if hasattr(item, "model_dump"):
|
|
28
|
+
converted_list.append(item.model_dump())
|
|
29
|
+
elif hasattr(item, "value"):
|
|
30
|
+
converted_list.append(item.value)
|
|
31
|
+
else:
|
|
32
|
+
converted_list.append(item)
|
|
33
|
+
converted_args[key] = converted_list
|
|
34
|
+
|
|
35
|
+
# handle enum-like objects with value attribute
|
|
36
|
+
elif hasattr(value, "value"):
|
|
37
|
+
converted_args[key] = value.value
|
|
38
|
+
|
|
39
|
+
# handle regular value or unexpected type
|
|
40
|
+
else:
|
|
41
|
+
converted_args[key] = value
|
|
42
|
+
return converted_args
|
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
"""Wrappers to add behavior to tools while keeping them graph agnostic."""
|
|
2
|
+
|
|
3
|
+
from .job_attachment_wrapper import get_job_attachment_wrapper
|
|
4
|
+
from .static_args_wrapper import get_static_args_wrapper
|
|
5
|
+
|
|
6
|
+
__all__ = ["get_static_args_wrapper", "get_job_attachment_wrapper"]
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
from langchain_core.messages.tool import ToolCall
|
|
4
|
+
from langchain_core.tools import BaseTool
|
|
5
|
+
from langgraph.types import Command
|
|
6
|
+
from pydantic import BaseModel
|
|
7
|
+
|
|
8
|
+
from uipath_langchain.agent.react.job_attachments import (
|
|
9
|
+
get_job_attachment_paths,
|
|
10
|
+
replace_job_attachment_ids,
|
|
11
|
+
)
|
|
12
|
+
from uipath_langchain.agent.react.types import AgentGraphState
|
|
13
|
+
from uipath_langchain.agent.tools.tool_node import AsyncToolWrapperType
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def get_job_attachment_wrapper() -> AsyncToolWrapperType:
|
|
17
|
+
"""Create a tool wrapper that validates and replaces job attachment IDs with full attachment objects.
|
|
18
|
+
|
|
19
|
+
This wrapper extracts job attachment paths from the tool's schema, validates that all
|
|
20
|
+
referenced attachments exist in the agent state, and replaces attachment IDs with complete
|
|
21
|
+
attachment objects before invoking the tool.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
resource: The agent tool resource configuration
|
|
25
|
+
|
|
26
|
+
Returns:
|
|
27
|
+
An async tool wrapper function that handles job attachment validation and replacement
|
|
28
|
+
"""
|
|
29
|
+
|
|
30
|
+
async def job_attachment_wrapper(
|
|
31
|
+
tool: BaseTool,
|
|
32
|
+
call: ToolCall,
|
|
33
|
+
state: AgentGraphState,
|
|
34
|
+
) -> dict[str, Any] | Command[Any] | None:
|
|
35
|
+
"""Validate and replace job attachments in tool arguments before invocation.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
tool: The tool to wrap
|
|
39
|
+
call: The tool call containing arguments
|
|
40
|
+
state: The agent graph state containing job attachments
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
Tool invocation result, or error dict if attachment validation fails
|
|
44
|
+
"""
|
|
45
|
+
input_args = call["args"]
|
|
46
|
+
modified_input_args = input_args
|
|
47
|
+
|
|
48
|
+
if isinstance(tool.args_schema, type) and issubclass(
|
|
49
|
+
tool.args_schema, BaseModel
|
|
50
|
+
):
|
|
51
|
+
errors: list[str] = []
|
|
52
|
+
paths = get_job_attachment_paths(tool.args_schema)
|
|
53
|
+
modified_input_args = replace_job_attachment_ids(
|
|
54
|
+
paths, input_args, state.job_attachments, errors
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
if errors:
|
|
58
|
+
return {"error": "\n".join(errors)}
|
|
59
|
+
|
|
60
|
+
return await tool.ainvoke(modified_input_args)
|
|
61
|
+
|
|
62
|
+
return job_attachment_wrapper
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
from langchain_core.messages.tool import ToolCall
|
|
4
|
+
from langchain_core.tools import BaseTool
|
|
5
|
+
from langgraph.types import Command
|
|
6
|
+
from uipath.agent.models.agent import BaseAgentResourceConfig
|
|
7
|
+
|
|
8
|
+
from uipath_langchain.agent.react.types import AgentGraphState
|
|
9
|
+
from uipath_langchain.agent.tools.static_args import handle_static_args
|
|
10
|
+
from uipath_langchain.agent.tools.tool_node import AsyncToolWrapperType
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def get_static_args_wrapper(
|
|
14
|
+
resource: BaseAgentResourceConfig,
|
|
15
|
+
) -> AsyncToolWrapperType:
|
|
16
|
+
"""Returns an asynchronous tool wrapper that applies static arguments.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
resource: The agent resource configuration.
|
|
20
|
+
|
|
21
|
+
Returns:
|
|
22
|
+
An asynchronous tool wrapper function.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
async def static_args_wrapper(
|
|
26
|
+
tool: BaseTool,
|
|
27
|
+
call: ToolCall,
|
|
28
|
+
state: AgentGraphState,
|
|
29
|
+
) -> dict[str, Any] | Command[Any] | None:
|
|
30
|
+
input_args = call["args"]
|
|
31
|
+
merged_args = handle_static_args(resource, state, input_args)
|
|
32
|
+
return await tool.ainvoke(merged_args)
|
|
33
|
+
|
|
34
|
+
return static_args_wrapper
|