uipath-langchain 0.0.133__py3-none-any.whl → 0.1.28__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (83) hide show
  1. uipath_langchain/_cli/cli_init.py +130 -191
  2. uipath_langchain/_cli/cli_new.py +2 -3
  3. uipath_langchain/_resources/AGENTS.md +21 -0
  4. uipath_langchain/_resources/REQUIRED_STRUCTURE.md +92 -0
  5. uipath_langchain/_tracing/__init__.py +3 -2
  6. uipath_langchain/_tracing/_instrument_traceable.py +11 -12
  7. uipath_langchain/_utils/_request_mixin.py +327 -51
  8. uipath_langchain/_utils/_settings.py +2 -2
  9. uipath_langchain/agent/exceptions/__init__.py +6 -0
  10. uipath_langchain/agent/exceptions/exceptions.py +11 -0
  11. uipath_langchain/agent/guardrails/__init__.py +21 -0
  12. uipath_langchain/agent/guardrails/actions/__init__.py +11 -0
  13. uipath_langchain/agent/guardrails/actions/base_action.py +24 -0
  14. uipath_langchain/agent/guardrails/actions/block_action.py +42 -0
  15. uipath_langchain/agent/guardrails/actions/escalate_action.py +499 -0
  16. uipath_langchain/agent/guardrails/actions/log_action.py +58 -0
  17. uipath_langchain/agent/guardrails/guardrail_nodes.py +173 -0
  18. uipath_langchain/agent/guardrails/guardrails_factory.py +70 -0
  19. uipath_langchain/agent/guardrails/guardrails_subgraph.py +283 -0
  20. uipath_langchain/agent/guardrails/types.py +20 -0
  21. uipath_langchain/agent/react/__init__.py +14 -0
  22. uipath_langchain/agent/react/agent.py +117 -0
  23. uipath_langchain/agent/react/constants.py +2 -0
  24. uipath_langchain/agent/react/init_node.py +20 -0
  25. uipath_langchain/agent/react/llm_node.py +43 -0
  26. uipath_langchain/agent/react/router.py +97 -0
  27. uipath_langchain/agent/react/terminate_node.py +82 -0
  28. uipath_langchain/agent/react/tools/__init__.py +7 -0
  29. uipath_langchain/agent/react/tools/tools.py +50 -0
  30. uipath_langchain/agent/react/types.py +39 -0
  31. uipath_langchain/agent/react/utils.py +49 -0
  32. uipath_langchain/agent/tools/__init__.py +17 -0
  33. uipath_langchain/agent/tools/context_tool.py +53 -0
  34. uipath_langchain/agent/tools/escalation_tool.py +111 -0
  35. uipath_langchain/agent/tools/integration_tool.py +181 -0
  36. uipath_langchain/agent/tools/process_tool.py +49 -0
  37. uipath_langchain/agent/tools/static_args.py +138 -0
  38. uipath_langchain/agent/tools/structured_tool_with_output_type.py +14 -0
  39. uipath_langchain/agent/tools/tool_factory.py +45 -0
  40. uipath_langchain/agent/tools/tool_node.py +22 -0
  41. uipath_langchain/agent/tools/utils.py +11 -0
  42. uipath_langchain/chat/__init__.py +4 -0
  43. uipath_langchain/chat/bedrock.py +187 -0
  44. uipath_langchain/chat/mapper.py +309 -0
  45. uipath_langchain/chat/models.py +248 -35
  46. uipath_langchain/chat/openai.py +133 -0
  47. uipath_langchain/chat/supported_models.py +42 -0
  48. uipath_langchain/chat/vertex.py +255 -0
  49. uipath_langchain/embeddings/embeddings.py +131 -34
  50. uipath_langchain/middlewares.py +0 -6
  51. uipath_langchain/retrievers/context_grounding_retriever.py +7 -9
  52. uipath_langchain/runtime/__init__.py +36 -0
  53. uipath_langchain/runtime/_serialize.py +46 -0
  54. uipath_langchain/runtime/config.py +61 -0
  55. uipath_langchain/runtime/errors.py +43 -0
  56. uipath_langchain/runtime/factory.py +315 -0
  57. uipath_langchain/runtime/graph.py +159 -0
  58. uipath_langchain/runtime/runtime.py +453 -0
  59. uipath_langchain/runtime/schema.py +386 -0
  60. uipath_langchain/runtime/storage.py +115 -0
  61. uipath_langchain/vectorstores/context_grounding_vectorstore.py +90 -110
  62. {uipath_langchain-0.0.133.dist-info → uipath_langchain-0.1.28.dist-info}/METADATA +44 -23
  63. uipath_langchain-0.1.28.dist-info/RECORD +76 -0
  64. {uipath_langchain-0.0.133.dist-info → uipath_langchain-0.1.28.dist-info}/WHEEL +1 -1
  65. uipath_langchain-0.1.28.dist-info/entry_points.txt +5 -0
  66. uipath_langchain/_cli/_runtime/_context.py +0 -21
  67. uipath_langchain/_cli/_runtime/_conversation.py +0 -298
  68. uipath_langchain/_cli/_runtime/_exception.py +0 -17
  69. uipath_langchain/_cli/_runtime/_input.py +0 -139
  70. uipath_langchain/_cli/_runtime/_output.py +0 -234
  71. uipath_langchain/_cli/_runtime/_runtime.py +0 -379
  72. uipath_langchain/_cli/_utils/_graph.py +0 -199
  73. uipath_langchain/_cli/cli_dev.py +0 -44
  74. uipath_langchain/_cli/cli_eval.py +0 -78
  75. uipath_langchain/_cli/cli_run.py +0 -82
  76. uipath_langchain/_tracing/_oteladapter.py +0 -222
  77. uipath_langchain/_tracing/_utils.py +0 -28
  78. uipath_langchain/builder/agent_config.py +0 -191
  79. uipath_langchain/tools/preconfigured.py +0 -191
  80. uipath_langchain-0.0.133.dist-info/RECORD +0 -41
  81. uipath_langchain-0.0.133.dist-info/entry_points.txt +0 -2
  82. /uipath_langchain/{tools/__init__.py → py.typed} +0 -0
  83. {uipath_langchain-0.0.133.dist-info → uipath_langchain-0.1.28.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,43 @@
1
+ """LLM node implementation for LangGraph."""
2
+
3
+ from typing import Sequence
4
+
5
+ from langchain_core.language_models import BaseChatModel
6
+ from langchain_core.messages import AIMessage, AnyMessage
7
+ from langchain_core.tools import BaseTool
8
+
9
+ from .constants import MAX_SUCCESSIVE_COMPLETIONS
10
+ from .types import AgentGraphState
11
+ from .utils import count_successive_completions
12
+
13
+
14
+ def create_llm_node(
15
+ model: BaseChatModel,
16
+ tools: Sequence[BaseTool] | None = None,
17
+ ):
18
+ """Invoke LLM with tools and dynamically control tool_choice based on successive completions.
19
+
20
+ When successive completions reach the limit, tool_choice is set to "required" to force
21
+ the LLM to use a tool and prevent infinite reasoning loops.
22
+ """
23
+ bindable_tools = list(tools) if tools else []
24
+ base_llm = model.bind_tools(bindable_tools) if bindable_tools else model
25
+
26
+ async def llm_node(state: AgentGraphState):
27
+ messages: list[AnyMessage] = state.messages
28
+
29
+ successive_completions = count_successive_completions(messages)
30
+ if successive_completions >= MAX_SUCCESSIVE_COMPLETIONS:
31
+ llm = base_llm.bind(tool_choice="required")
32
+ else:
33
+ llm = base_llm
34
+
35
+ response = await llm.ainvoke(messages)
36
+ if not isinstance(response, AIMessage):
37
+ raise TypeError(
38
+ f"LLM returned {type(response).__name__} instead of AIMessage"
39
+ )
40
+
41
+ return {"messages": [response]}
42
+
43
+ return llm_node
@@ -0,0 +1,97 @@
1
+ """Routing functions for conditional edges in the agent graph."""
2
+
3
+ from typing import Literal
4
+
5
+ from langchain_core.messages import AIMessage, AnyMessage, ToolCall
6
+ from uipath.agent.react import END_EXECUTION_TOOL, RAISE_ERROR_TOOL
7
+
8
+ from ..exceptions import AgentNodeRoutingException
9
+ from .constants import MAX_SUCCESSIVE_COMPLETIONS
10
+ from .types import AgentGraphNode, AgentGraphState
11
+ from .utils import count_successive_completions
12
+
13
+ FLOW_CONTROL_TOOLS = [END_EXECUTION_TOOL.name, RAISE_ERROR_TOOL.name]
14
+
15
+
16
+ def __filter_control_flow_tool_calls(
17
+ tool_calls: list[ToolCall],
18
+ ) -> list[ToolCall]:
19
+ """Remove control flow tools when multiple tool calls exist."""
20
+ if len(tool_calls) <= 1:
21
+ return tool_calls
22
+
23
+ return [tc for tc in tool_calls if tc.get("name") not in FLOW_CONTROL_TOOLS]
24
+
25
+
26
+ def __has_control_flow_tool(tool_calls: list[ToolCall]) -> bool:
27
+ """Check if any tool call is of a control flow tool."""
28
+ return any(tc.get("name") in FLOW_CONTROL_TOOLS for tc in tool_calls)
29
+
30
+
31
+ def __validate_last_message_is_AI(messages: list[AnyMessage]) -> AIMessage:
32
+ """Validate and return last message from state.
33
+
34
+ Raises:
35
+ AgentNodeRoutingException: If messages are empty or last message is not AIMessage
36
+ """
37
+ if not messages:
38
+ raise AgentNodeRoutingException(
39
+ "No messages in state - cannot route after agent"
40
+ )
41
+
42
+ last_message = messages[-1]
43
+ if not isinstance(last_message, AIMessage):
44
+ raise AgentNodeRoutingException(
45
+ f"Last message is not AIMessage (type: {type(last_message).__name__}) - cannot route after agent"
46
+ )
47
+
48
+ return last_message
49
+
50
+
51
+ def route_agent(
52
+ state: AgentGraphState,
53
+ ) -> list[str] | Literal[AgentGraphNode.AGENT, AgentGraphNode.TERMINATE]:
54
+ """Route after agent: handles all routing logic including control flow detection.
55
+
56
+ Routing logic:
57
+ 1. If multiple tool calls exist, filter out control flow tools (EndExecution, RaiseError)
58
+ 2. If control flow tool(s) remain, route to TERMINATE
59
+ 3. If regular tool calls remain, route to specific tool nodes (return list of tool names)
60
+ 4. If no tool calls, handle successive completions
61
+
62
+ Returns:
63
+ - list[str]: Tool node names for parallel execution
64
+ - AgentGraphNode.AGENT: For successive completions
65
+ - AgentGraphNode.TERMINATE: For control flow termination
66
+
67
+ Raises:
68
+ AgentNodeRoutingException: When encountering unexpected state (empty messages, non-AIMessage, or excessive completions)
69
+ """
70
+ messages = state.messages
71
+ last_message = __validate_last_message_is_AI(messages)
72
+
73
+ tool_calls = list(last_message.tool_calls) if last_message.tool_calls else []
74
+ tool_calls = __filter_control_flow_tool_calls(tool_calls)
75
+
76
+ if tool_calls and __has_control_flow_tool(tool_calls):
77
+ return AgentGraphNode.TERMINATE
78
+
79
+ if tool_calls:
80
+ return [tc["name"] for tc in tool_calls]
81
+
82
+ successive_completions = count_successive_completions(messages)
83
+
84
+ if successive_completions > MAX_SUCCESSIVE_COMPLETIONS:
85
+ raise AgentNodeRoutingException(
86
+ f"Agent exceeded successive completions limit without producing tool calls "
87
+ f"(completions: {successive_completions}, max: {MAX_SUCCESSIVE_COMPLETIONS}). "
88
+ f"This should not happen as tool_choice='required' is enforced at the limit."
89
+ )
90
+
91
+ if last_message.content:
92
+ return AgentGraphNode.AGENT
93
+
94
+ raise AgentNodeRoutingException(
95
+ f"Agent produced empty response without tool calls "
96
+ f"(completions: {successive_completions}, has_content: False)"
97
+ )
@@ -0,0 +1,82 @@
1
+ """Termination node for the Agent graph."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from typing import Any, NoReturn
6
+
7
+ from langchain_core.messages import AIMessage
8
+ from pydantic import BaseModel
9
+ from uipath.agent.react import END_EXECUTION_TOOL, RAISE_ERROR_TOOL
10
+ from uipath.runtime.errors import UiPathErrorCode
11
+
12
+ from ..exceptions import (
13
+ AgentNodeRoutingException,
14
+ AgentTerminationException,
15
+ )
16
+ from .types import AgentGraphState, AgentTermination
17
+
18
+
19
+ def _handle_end_execution(
20
+ args: dict[str, Any], response_schema: type[BaseModel] | None
21
+ ) -> dict[str, Any]:
22
+ """Handle LLM-initiated termination via END_EXECUTION_TOOL."""
23
+ output_schema = response_schema or END_EXECUTION_TOOL.args_schema
24
+ validated = output_schema.model_validate(args)
25
+ return validated.model_dump()
26
+
27
+
28
+ def _handle_raise_error(args: dict[str, Any]) -> NoReturn:
29
+ """Handle LLM-initiated error via RAISE_ERROR_TOOL."""
30
+ error_message = args.get("message", "The LLM did not set the error message")
31
+ detail = args.get("details", "")
32
+ raise AgentTerminationException(
33
+ code=UiPathErrorCode.EXECUTION_ERROR,
34
+ title=error_message,
35
+ detail=detail,
36
+ )
37
+
38
+
39
+ def _handle_agent_termination(termination: AgentTermination) -> NoReturn:
40
+ """Handle Command-based termination."""
41
+ raise AgentTerminationException(
42
+ code=UiPathErrorCode.EXECUTION_ERROR,
43
+ title=termination.title,
44
+ detail=termination.detail,
45
+ )
46
+
47
+
48
+ def create_terminate_node(
49
+ response_schema: type[BaseModel] | None = None,
50
+ ):
51
+ """Handles Agent Graph termination for multiple sources and output or error propagation to Orchestrator.
52
+
53
+ Termination scenarios:
54
+ 1. Command based termination with information in state (e.g: escalation)
55
+ 2. LLM-initiated termination (END_EXECUTION_TOOL)
56
+ 3. LLM-initiated error (RAISE_ERROR_TOOL)
57
+ """
58
+
59
+ def terminate_node(state: AgentGraphState):
60
+ if state.termination:
61
+ _handle_agent_termination(state.termination)
62
+
63
+ last_message = state.messages[-1]
64
+ if not isinstance(last_message, AIMessage):
65
+ raise AgentNodeRoutingException(
66
+ f"Expected last message to be AIMessage, got {type(last_message).__name__}"
67
+ )
68
+
69
+ for tool_call in last_message.tool_calls:
70
+ tool_name = tool_call["name"]
71
+
72
+ if tool_name == END_EXECUTION_TOOL.name:
73
+ return _handle_end_execution(tool_call["args"], response_schema)
74
+
75
+ if tool_name == RAISE_ERROR_TOOL.name:
76
+ _handle_raise_error(tool_call["args"])
77
+
78
+ raise AgentNodeRoutingException(
79
+ "No control flow tool call found in terminate node. Unexpected state."
80
+ )
81
+
82
+ return terminate_node
@@ -0,0 +1,7 @@
1
+ from .tools import (
2
+ create_flow_control_tools,
3
+ )
4
+
5
+ __all__ = [
6
+ "create_flow_control_tools",
7
+ ]
@@ -0,0 +1,50 @@
1
+ """Control flow tools for agent execution."""
2
+
3
+ from typing import Any
4
+
5
+ from langchain_core.tools import BaseTool, StructuredTool
6
+ from pydantic import BaseModel
7
+ from uipath.agent.react import (
8
+ END_EXECUTION_TOOL,
9
+ RAISE_ERROR_TOOL,
10
+ )
11
+
12
+
13
+ def create_end_execution_tool(
14
+ agent_output_schema: type[BaseModel] | None = None,
15
+ ) -> StructuredTool:
16
+ """Never executed - routing intercepts and extracts args for successful termination."""
17
+ input_schema = agent_output_schema or END_EXECUTION_TOOL.args_schema
18
+
19
+ async def end_execution_fn(**kwargs: Any) -> dict[str, Any]:
20
+ return kwargs
21
+
22
+ return StructuredTool(
23
+ name=END_EXECUTION_TOOL.name,
24
+ description=END_EXECUTION_TOOL.description,
25
+ args_schema=input_schema,
26
+ coroutine=end_execution_fn,
27
+ )
28
+
29
+
30
+ def create_raise_error_tool() -> StructuredTool:
31
+ """Never executed - routing intercepts and raises AgentTerminationException."""
32
+
33
+ async def raise_error_fn(**kwargs: Any) -> dict[str, Any]:
34
+ return kwargs
35
+
36
+ return StructuredTool(
37
+ name=RAISE_ERROR_TOOL.name,
38
+ description=RAISE_ERROR_TOOL.description,
39
+ args_schema=RAISE_ERROR_TOOL.args_schema,
40
+ coroutine=raise_error_fn,
41
+ )
42
+
43
+
44
+ def create_flow_control_tools(
45
+ agent_output_schema: type[BaseModel] | None = None,
46
+ ) -> list[BaseTool]:
47
+ return [
48
+ create_end_execution_tool(agent_output_schema),
49
+ create_raise_error_tool(),
50
+ ]
@@ -0,0 +1,39 @@
1
+ from enum import StrEnum
2
+ from typing import Annotated
3
+
4
+ from langchain_core.messages import AnyMessage
5
+ from langgraph.graph.message import add_messages
6
+ from pydantic import BaseModel, Field
7
+
8
+
9
+ class AgentTerminationSource(StrEnum):
10
+ ESCALATION = "escalation"
11
+
12
+
13
+ class AgentTermination(BaseModel):
14
+ """Agent Graph Termination model."""
15
+
16
+ source: AgentTerminationSource
17
+ title: str
18
+ detail: str = ""
19
+
20
+
21
+ class AgentGraphState(BaseModel):
22
+ """Agent Graph state for standard loop execution."""
23
+
24
+ messages: Annotated[list[AnyMessage], add_messages] = []
25
+ termination: AgentTermination | None = None
26
+
27
+
28
+ class AgentGraphNode(StrEnum):
29
+ INIT = "init"
30
+ AGENT = "agent"
31
+ LLM = "llm"
32
+ TOOLS = "tools"
33
+ TERMINATE = "terminate"
34
+
35
+
36
+ class AgentGraphConfig(BaseModel):
37
+ recursion_limit: int = Field(
38
+ default=50, ge=1, description="Maximum recursion limit for the agent graph"
39
+ )
@@ -0,0 +1,49 @@
1
+ """ReAct Agent loop utilities."""
2
+
3
+ from typing import Any, Sequence
4
+
5
+ from langchain_core.messages import AIMessage, BaseMessage
6
+ from pydantic import BaseModel
7
+ from uipath.agent.react import END_EXECUTION_TOOL
8
+ from uipath.utils.dynamic_schema import jsonschema_to_pydantic
9
+
10
+
11
+ def resolve_input_model(
12
+ input_schema: dict[str, Any] | None,
13
+ ) -> type[BaseModel]:
14
+ """Resolve the input model from the input schema."""
15
+ if input_schema:
16
+ return jsonschema_to_pydantic(input_schema)
17
+
18
+ return BaseModel
19
+
20
+
21
+ def resolve_output_model(
22
+ output_schema: dict[str, Any] | None,
23
+ ) -> type[BaseModel]:
24
+ """Fallback to default end_execution tool schema when no agent output schema is provided."""
25
+ if output_schema:
26
+ return jsonschema_to_pydantic(output_schema)
27
+
28
+ return END_EXECUTION_TOOL.args_schema
29
+
30
+
31
+ def count_successive_completions(messages: Sequence[BaseMessage]) -> int:
32
+ """Count consecutive AIMessages without tool calls at end of message history."""
33
+ if not messages:
34
+ return 0
35
+
36
+ count = 0
37
+ for message in reversed(messages):
38
+ if not isinstance(message, AIMessage):
39
+ break
40
+
41
+ if message.tool_calls:
42
+ break
43
+
44
+ if not message.content:
45
+ break
46
+
47
+ count += 1
48
+
49
+ return count
@@ -0,0 +1,17 @@
1
+ """Tool creation and management for LowCode agents."""
2
+
3
+ from .context_tool import create_context_tool
4
+ from .integration_tool import create_integration_tool
5
+ from .process_tool import create_process_tool
6
+ from .tool_factory import (
7
+ create_tools_from_resources,
8
+ )
9
+ from .tool_node import create_tool_node
10
+
11
+ __all__ = [
12
+ "create_tools_from_resources",
13
+ "create_tool_node",
14
+ "create_context_tool",
15
+ "create_process_tool",
16
+ "create_integration_tool",
17
+ ]
@@ -0,0 +1,53 @@
1
+ """Context tool creation for semantic index retrieval."""
2
+
3
+ from typing import Any
4
+
5
+ from langchain_core.documents import Document
6
+ from langchain_core.tools import StructuredTool
7
+ from pydantic import BaseModel, Field
8
+ from uipath.agent.models.agent import AgentContextResourceConfig
9
+ from uipath.eval.mocks import mockable
10
+
11
+ from uipath_langchain.retrievers import ContextGroundingRetriever
12
+
13
+ from .structured_tool_with_output_type import StructuredToolWithOutputType
14
+ from .utils import sanitize_tool_name
15
+
16
+
17
+ def create_context_tool(resource: AgentContextResourceConfig) -> StructuredTool:
18
+ tool_name = sanitize_tool_name(resource.name)
19
+ retriever = ContextGroundingRetriever(
20
+ index_name=resource.index_name,
21
+ folder_path=resource.folder_path,
22
+ number_of_results=resource.settings.result_count,
23
+ )
24
+
25
+ class ContextInputSchemaModel(BaseModel):
26
+ query: str = Field(
27
+ ..., description="The query to search for in the knowledge base"
28
+ )
29
+
30
+ class ContextOutputSchemaModel(BaseModel):
31
+ documents: list[Document] = Field(
32
+ ..., description="List of retrieved documents."
33
+ )
34
+
35
+ input_model = ContextInputSchemaModel
36
+ output_model = ContextOutputSchemaModel
37
+
38
+ @mockable(
39
+ name=resource.name,
40
+ description=resource.description,
41
+ input_schema=input_model.model_json_schema(),
42
+ output_schema=output_model.model_json_schema(),
43
+ )
44
+ async def context_tool_fn(query: str) -> dict[str, Any]:
45
+ return {"documents": await retriever.ainvoke(query)}
46
+
47
+ return StructuredToolWithOutputType(
48
+ name=tool_name,
49
+ description=resource.description,
50
+ args_schema=input_model,
51
+ coroutine=context_tool_fn,
52
+ output_type=output_model,
53
+ )
@@ -0,0 +1,111 @@
1
+ """Escalation tool creation for Action Center integration."""
2
+
3
+ from enum import Enum
4
+ from typing import Any
5
+
6
+ from jsonschema_pydantic_converter import transform as create_model
7
+ from langchain.tools import ToolRuntime
8
+ from langchain_core.messages import ToolMessage
9
+ from langchain_core.tools import StructuredTool
10
+ from langgraph.types import Command, interrupt
11
+ from uipath.agent.models.agent import (
12
+ AgentEscalationChannel,
13
+ AgentEscalationRecipientType,
14
+ AgentEscalationResourceConfig,
15
+ )
16
+ from uipath.eval.mocks import mockable
17
+ from uipath.platform.common import CreateEscalation
18
+
19
+ from ..react.types import AgentGraphNode, AgentTerminationSource
20
+ from .utils import sanitize_tool_name
21
+
22
+
23
+ class EscalationAction(str, Enum):
24
+ """Actions that can be taken after an escalation completes."""
25
+
26
+ CONTINUE = "continue"
27
+ END = "end"
28
+
29
+
30
+ def create_escalation_tool(resource: AgentEscalationResourceConfig) -> StructuredTool:
31
+ """Uses interrupt() for Action Center human-in-the-loop."""
32
+
33
+ tool_name: str = f"escalate_{sanitize_tool_name(resource.name)}"
34
+ channel: AgentEscalationChannel = resource.channels[0]
35
+
36
+ input_model: Any = create_model(channel.input_schema)
37
+ output_model: Any = create_model(channel.output_schema)
38
+
39
+ assignee: str | None = (
40
+ channel.recipients[0].value
41
+ if channel.recipients
42
+ and channel.recipients[0].type == AgentEscalationRecipientType.USER_EMAIL
43
+ else None
44
+ )
45
+
46
+ @mockable(
47
+ name=resource.name,
48
+ description=resource.description,
49
+ input_schema=input_model.model_json_schema(),
50
+ output_schema=output_model.model_json_schema(),
51
+ )
52
+ async def escalation_tool_fn(
53
+ runtime: ToolRuntime, **kwargs: Any
54
+ ) -> Command[Any] | Any:
55
+ task_title = channel.task_title or "Escalation Task"
56
+
57
+ result = interrupt(
58
+ CreateEscalation(
59
+ title=task_title,
60
+ data=kwargs,
61
+ assignee=assignee,
62
+ app_name=channel.properties.app_name,
63
+ app_folder_path=channel.properties.folder_name,
64
+ app_version=channel.properties.app_version,
65
+ priority=channel.priority,
66
+ labels=channel.labels,
67
+ is_actionable_message_enabled=channel.properties.is_actionable_message_enabled,
68
+ actionable_message_metadata=channel.properties.actionable_message_meta_data,
69
+ )
70
+ )
71
+
72
+ escalation_action = getattr(result, "action", None)
73
+ escalation_output = getattr(result, "data", {})
74
+
75
+ outcome = (
76
+ channel.outcome_mapping.get(escalation_action)
77
+ if channel.outcome_mapping and escalation_action
78
+ else None
79
+ )
80
+
81
+ if outcome == EscalationAction.END:
82
+ output_detail = f"Escalation output: {escalation_output}"
83
+ termination_title = f"Agent run ended based on escalation outcome {outcome} with directive {escalation_action}"
84
+
85
+ return Command(
86
+ update={
87
+ "messages": [
88
+ ToolMessage(
89
+ content=f"{termination_title}. {output_detail}",
90
+ tool_call_id=runtime.tool_call_id,
91
+ )
92
+ ],
93
+ "termination": {
94
+ "source": AgentTerminationSource.ESCALATION,
95
+ "title": termination_title,
96
+ "detail": output_detail,
97
+ },
98
+ },
99
+ goto=AgentGraphNode.TERMINATE,
100
+ )
101
+
102
+ return escalation_output
103
+
104
+ tool = StructuredTool(
105
+ name=tool_name,
106
+ description=resource.description,
107
+ args_schema=input_model,
108
+ coroutine=escalation_tool_fn,
109
+ )
110
+
111
+ return tool