uipath-langchain-client 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. uipath_langchain_client/__init__.py +50 -0
  2. uipath_langchain_client/__version__.py +3 -0
  3. uipath_langchain_client/base_client.py +277 -0
  4. uipath_langchain_client/clients/anthropic/__init__.py +3 -0
  5. uipath_langchain_client/clients/anthropic/chat_models.py +157 -0
  6. uipath_langchain_client/clients/azure/__init__.py +4 -0
  7. uipath_langchain_client/clients/azure/chat_models.py +46 -0
  8. uipath_langchain_client/clients/azure/embeddings.py +46 -0
  9. uipath_langchain_client/clients/bedrock/__init__.py +7 -0
  10. uipath_langchain_client/clients/bedrock/chat_models.py +63 -0
  11. uipath_langchain_client/clients/bedrock/embeddings.py +33 -0
  12. uipath_langchain_client/clients/bedrock/utils.py +90 -0
  13. uipath_langchain_client/clients/google/__init__.py +4 -0
  14. uipath_langchain_client/clients/google/chat_models.py +203 -0
  15. uipath_langchain_client/clients/google/embeddings.py +45 -0
  16. uipath_langchain_client/clients/normalized/__init__.py +4 -0
  17. uipath_langchain_client/clients/normalized/chat_models.py +419 -0
  18. uipath_langchain_client/clients/normalized/embeddings.py +31 -0
  19. uipath_langchain_client/clients/openai/__init__.py +15 -0
  20. uipath_langchain_client/clients/openai/chat_models.py +102 -0
  21. uipath_langchain_client/clients/openai/embeddings.py +82 -0
  22. uipath_langchain_client/clients/vertexai/__init__.py +3 -0
  23. uipath_langchain_client/clients/vertexai/chat_models.py +48 -0
  24. uipath_langchain_client/factory.py +217 -0
  25. uipath_langchain_client/settings.py +32 -0
  26. uipath_langchain_client-1.0.0.dist-info/METADATA +276 -0
  27. uipath_langchain_client-1.0.0.dist-info/RECORD +28 -0
  28. uipath_langchain_client-1.0.0.dist-info/WHEEL +4 -0
@@ -0,0 +1,48 @@
1
+ from typing import Self
2
+
3
+ from pydantic import model_validator
4
+ from uipath_langchain_client.base_client import UiPathBaseLLMClient
5
+ from uipath_langchain_client.settings import UiPathAPIConfig
6
+
7
+ try:
8
+ from anthropic import AnthropicVertex, AsyncAnthropicVertex
9
+ from langchain_google_vertexai.model_garden import ChatAnthropicVertex
10
+ except ImportError as e:
11
+ raise ImportError(
12
+ "The 'vertexai' extra is required to use UiPathChatAnthropicVertex. "
13
+ "Install it with: uv add uipath-langchain-client[vertexai]"
14
+ ) from e
15
+
16
+
17
+ class UiPathChatAnthropicVertex(UiPathBaseLLMClient, ChatAnthropicVertex): # type: ignore[override]
18
+ api_config: UiPathAPIConfig = UiPathAPIConfig(
19
+ api_type="completions",
20
+ client_type="passthrough",
21
+ vendor_type="vertexai",
22
+ api_flavor="anthropic-claude",
23
+ freeze_base_url=True,
24
+ )
25
+
26
+ @model_validator(mode="after")
27
+ def setup_uipath_client(self) -> Self:
28
+ self.client = AnthropicVertex(
29
+ region="PLACEHOLDER",
30
+ project_id="PLACEHOLDER",
31
+ access_token="PLACEHOLDER",
32
+ base_url=str(self.uipath_sync_client.base_url),
33
+ default_headers=self.uipath_sync_client.headers,
34
+ timeout=None, # handled by the UiPath client
35
+ max_retries=1, # handled by the UiPath client
36
+ http_client=self.uipath_sync_client,
37
+ )
38
+ self.async_client = AsyncAnthropicVertex(
39
+ region="PLACEHOLDER",
40
+ project_id="PLACEHOLDER",
41
+ access_token="PLACEHOLDER",
42
+ base_url=str(self.uipath_async_client.base_url),
43
+ default_headers=self.uipath_async_client.headers,
44
+ timeout=None, # handled by the UiPath client
45
+ max_retries=1, # handled by the UiPath client
46
+ http_client=self.uipath_async_client,
47
+ )
48
+ return self
@@ -0,0 +1,217 @@
1
+ """
2
+ Factory Module for UiPath LangChain Client
3
+
4
+ This module provides factory functions that automatically detect the appropriate
5
+ LangChain model class based on the model name and vendor. This simplifies usage
6
+ by eliminating the need to manually import provider-specific classes.
7
+
8
+ The factory queries UiPath's discovery endpoint to determine which vendor
9
+ (OpenAI, Google, Anthropic, etc.) provides a given model, then instantiates
10
+ the correct LangChain wrapper class.
11
+
12
+ Example:
13
+ >>> from uipath_langchain_client import get_chat_model, get_embedding_model
14
+ >>> from uipath_langchain_client.settings import get_default_client_settings
15
+ >>>
16
+ >>> settings = get_default_client_settings()
17
+ >>>
18
+ >>> # Auto-detect vendor from model name
19
+ >>> chat = get_chat_model("gpt-4o-2024-11-20", settings)
20
+ >>> embeddings = get_embedding_model("text-embedding-3-large", settings)
21
+ """
22
+
23
+ from typing import Any, Literal
24
+
25
+ from langchain_core.embeddings import Embeddings
26
+ from langchain_core.language_models.chat_models import BaseChatModel
27
+
28
+ from uipath_langchain_client.settings import UiPathBaseSettings, get_default_client_settings
29
+
30
+
31
+ def _get_model_info(
32
+ model_name: str,
33
+ client_settings: UiPathBaseSettings,
34
+ byo_connection_id: str | None = None,
35
+ ) -> dict[str, Any]:
36
+ available_models = client_settings.get_available_models()
37
+
38
+ matching_models = [m for m in available_models if m["modelName"].lower() == model_name.lower()]
39
+
40
+ if byo_connection_id:
41
+ matching_models = [
42
+ m
43
+ for m in matching_models
44
+ if (byom_details := m.get("byomDetails"))
45
+ and byom_details.get("integrationServiceConnectionId", "").lower()
46
+ == byo_connection_id.lower()
47
+ ]
48
+
49
+ if not byo_connection_id and len(matching_models) > 1:
50
+ matching_models = [m for m in matching_models if m.get("byomDetails") is None]
51
+
52
+ if not matching_models:
53
+ raise ValueError(
54
+ f"Model {model_name} not found in available models the available models are: {[m['modelName'] for m in available_models]}"
55
+ )
56
+
57
+ return matching_models[0]
58
+
59
+
60
+ def get_chat_model(
61
+ model_name: str,
62
+ byo_connection_id: str | None = None,
63
+ client_settings: UiPathBaseSettings | None = None,
64
+ client_type: Literal["passthrough", "normalized"] = "passthrough",
65
+ **model_kwargs: Any,
66
+ ) -> BaseChatModel:
67
+ """Factory function to create the appropriate LangChain chat model for a given model name.
68
+
69
+ Automatically detects the model vendor and returns the correct LangChain model class.
70
+
71
+ Args:
72
+ model: Name of the model to use (e.g., "gpt-4", "claude-3-opus")
73
+ client_type: Use "normalized" for provider-agnostic API or "passthrough" for vendor-specific
74
+ **model_kwargs: Additional keyword arguments to pass to the model constructor
75
+
76
+ Returns:
77
+ A LangChain BaseChatModel instance configured for the specified model
78
+
79
+ Raises:
80
+ ValueError: If the model is not found in available models or vendor is not supported
81
+ """
82
+ client_settings = client_settings or get_default_client_settings()
83
+ model_info = _get_model_info(model_name, client_settings, byo_connection_id)
84
+
85
+ if client_type == "normalized":
86
+ from uipath_langchain_client.clients.normalized.chat_models import (
87
+ UiPathNormalizedChatModel,
88
+ )
89
+
90
+ return UiPathNormalizedChatModel(model=model_name, **model_kwargs)
91
+
92
+ vendor_type = model_info["vendor"].lower()
93
+ match vendor_type:
94
+ case "openai":
95
+ if "gpt" in model_name:
96
+ from uipath_langchain_client.clients.openai.chat_models import (
97
+ UiPathAzureChatOpenAI,
98
+ )
99
+
100
+ return UiPathAzureChatOpenAI(
101
+ model=model_name,
102
+ client_settings=client_settings,
103
+ **model_kwargs,
104
+ )
105
+ else:
106
+ raise ValueError(f"Invalid model name: {model_name} for vendor: {vendor_type}")
107
+ case "vertexai":
108
+ if "gemini" in model_name:
109
+ from uipath_langchain_client.clients.google.chat_models import (
110
+ UiPathChatGoogleGenerativeAI,
111
+ )
112
+
113
+ return UiPathChatGoogleGenerativeAI(
114
+ model=model_name,
115
+ client_settings=client_settings,
116
+ **model_kwargs,
117
+ )
118
+ elif "claude" in model_name:
119
+ from uipath_langchain_client.clients.anthropic.chat_models import (
120
+ UiPathChatAnthropic,
121
+ )
122
+
123
+ return UiPathChatAnthropic(
124
+ model=model_name,
125
+ client_settings=client_settings,
126
+ vendor_type="vertexai",
127
+ **model_kwargs,
128
+ )
129
+ else:
130
+ raise ValueError(f"Invalid model name: {model_name} for vendor: {vendor_type}")
131
+ case "awsbedrock":
132
+ if "claude" in model_name:
133
+ from uipath_langchain_client.clients.anthropic.chat_models import (
134
+ UiPathChatAnthropic,
135
+ )
136
+
137
+ return UiPathChatAnthropic(
138
+ model=model_name,
139
+ client_settings=client_settings,
140
+ vendor_type="awsbedrock",
141
+ **model_kwargs,
142
+ )
143
+ else:
144
+ raise ValueError(f"Invalid model name: {model_name} for vendor: {vendor_type}")
145
+ case _:
146
+ raise ValueError(f"Invalid UiPath vendor type: {vendor_type}")
147
+
148
+
149
+ def get_embedding_model(
150
+ model: str,
151
+ byo_connection_id: str | None = None,
152
+ client_settings: UiPathBaseSettings | None = None,
153
+ client_type: Literal["passthrough", "normalized"] = "passthrough",
154
+ **model_kwargs: Any,
155
+ ) -> Embeddings:
156
+ """Factory function to create the appropriate LangChain embeddings model.
157
+
158
+ Automatically detects the model vendor and returns the correct LangChain embeddings class.
159
+
160
+ Args:
161
+ model: Name of the embeddings model (e.g., "text-embedding-3-large").
162
+ client_settings: Client settings for authentication and routing.
163
+ client_type: API mode - "normalized" for provider-agnostic API or
164
+ "passthrough" for vendor-specific APIs.
165
+ **model_kwargs: Additional arguments passed to the embeddings constructor.
166
+
167
+ Returns:
168
+ A LangChain Embeddings instance configured for the specified model.
169
+
170
+ Raises:
171
+ ValueError: If the model is not found or the vendor is not supported.
172
+
173
+ Example:
174
+ >>> settings = get_default_client_settings()
175
+ >>> embeddings = get_embedding_model("text-embedding-3-large", settings)
176
+ >>> vectors = embeddings.embed_documents(["Hello world"])
177
+ """
178
+ client_settings = client_settings or get_default_client_settings()
179
+ model_info = _get_model_info(model, client_settings, byo_connection_id)
180
+
181
+ if client_type == "normalized":
182
+ from uipath_langchain_client.clients.normalized.embeddings import (
183
+ UiPathNormalizedEmbeddings,
184
+ )
185
+
186
+ return UiPathNormalizedEmbeddings(
187
+ model=model, client_settings=client_settings, **model_kwargs
188
+ )
189
+
190
+ vendor_type = model_info["vendor"].lower()
191
+ match vendor_type:
192
+ case "openai":
193
+ from uipath_langchain_client.clients.openai.embeddings import (
194
+ UiPathAzureOpenAIEmbeddings,
195
+ )
196
+
197
+ return UiPathAzureOpenAIEmbeddings(
198
+ model=model, client_settings=client_settings, **model_kwargs
199
+ )
200
+ case "vertexai":
201
+ from uipath_langchain_client.clients.google.embeddings import (
202
+ UiPathGoogleGenerativeAIEmbeddings,
203
+ )
204
+
205
+ return UiPathGoogleGenerativeAIEmbeddings(
206
+ model=model, client_settings=client_settings, **model_kwargs
207
+ )
208
+ case "awsbedrock":
209
+ from uipath_langchain_client.clients.bedrock.embeddings import (
210
+ UiPathBedrockEmbeddings,
211
+ )
212
+
213
+ return UiPathBedrockEmbeddings(
214
+ model=model, client_settings=client_settings, **model_kwargs
215
+ )
216
+ case _:
217
+ raise ValueError(f"Invalid UiPath Embeddings provider: {vendor_type}")
@@ -0,0 +1,32 @@
1
+ """
2
+ Settings re-exports for UiPath LangChain Client.
3
+
4
+ This module re-exports the settings classes from uipath_llm_client for convenience,
5
+ allowing users to configure authentication without importing from the base package.
6
+
7
+ Example:
8
+ >>> from uipath_langchain_client.settings import get_default_client_settings
9
+ >>>
10
+ >>> # Auto-detect backend from environment (defaults to AgentHub)
11
+ >>> settings = get_default_client_settings()
12
+ >>>
13
+ >>> # Or explicitly use LLMGateway
14
+ >>> from uipath_langchain_client.settings import LLMGatewaySettings
15
+ >>> settings = LLMGatewaySettings()
16
+ """
17
+
18
+ from uipath_llm_client.settings import (
19
+ AgentHubSettings,
20
+ LLMGatewaySettings,
21
+ UiPathAPIConfig,
22
+ UiPathBaseSettings,
23
+ get_default_client_settings,
24
+ )
25
+
26
+ __all__ = [
27
+ "get_default_client_settings",
28
+ "LLMGatewaySettings",
29
+ "AgentHubSettings",
30
+ "UiPathAPIConfig",
31
+ "UiPathBaseSettings",
32
+ ]
@@ -0,0 +1,276 @@
1
+ Metadata-Version: 2.4
2
+ Name: uipath-langchain-client
3
+ Version: 1.0.0
4
+ Summary: LangChain-compatible chat models and embeddings for UiPath's LLM services
5
+ Requires-Python: >=3.11
6
+ Requires-Dist: langchain>=1.2.7
7
+ Requires-Dist: uipath-llm-client>=1.0.0
8
+ Provides-Extra: all
9
+ Requires-Dist: langchain-anthropic>=1.3.1; extra == 'all'
10
+ Requires-Dist: langchain-aws>=1.2.1; extra == 'all'
11
+ Requires-Dist: langchain-azure-ai>=1.0.0; extra == 'all'
12
+ Requires-Dist: langchain-google-genai>=4.2.0; extra == 'all'
13
+ Requires-Dist: langchain-google-vertexai>=3.2.1; extra == 'all'
14
+ Requires-Dist: langchain-openai>=1.1.7; extra == 'all'
15
+ Provides-Extra: anthropic
16
+ Requires-Dist: langchain-anthropic>=1.3.1; extra == 'anthropic'
17
+ Provides-Extra: aws
18
+ Requires-Dist: langchain-aws>=1.2.1; extra == 'aws'
19
+ Provides-Extra: azure
20
+ Requires-Dist: langchain-azure-ai>=1.0.0; extra == 'azure'
21
+ Provides-Extra: google
22
+ Requires-Dist: langchain-google-genai>=4.2.0; extra == 'google'
23
+ Provides-Extra: openai
24
+ Requires-Dist: langchain-openai>=1.1.7; extra == 'openai'
25
+ Provides-Extra: vertexai
26
+ Requires-Dist: langchain-google-vertexai>=3.2.1; extra == 'vertexai'
27
+ Description-Content-Type: text/markdown
28
+
29
+ # UiPath LangChain Client
30
+
31
+ LangChain-compatible chat models and embeddings for accessing LLMs through UiPath's infrastructure.
32
+
33
+ ## Installation
34
+
35
+ ```bash
36
+ # Base installation (normalized API only)
37
+ pip install uipath-langchain-client
38
+
39
+ # With specific provider extras for passthrough mode
40
+ pip install "uipath-langchain-client[openai]" # OpenAI/Azure models
41
+ pip install "uipath-langchain-client[google]" # Google Gemini models
42
+ pip install "uipath-langchain-client[anthropic]" # Anthropic Claude models
43
+ pip install "uipath-langchain-client[azure]" # Azure AI models
44
+ pip install "uipath-langchain-client[aws]" # AWS Bedrock models
45
+ pip install "uipath-langchain-client[vertexai]" # Google VertexAI models
46
+ pip install "uipath-langchain-client[all]" # All providers
47
+ ```
48
+
49
+ ## Quick Start
50
+
51
+ ### Using Factory Functions (Recommended)
52
+
53
+ The factory functions automatically detect the model vendor and return the appropriate client:
54
+
55
+ ```python
56
+ from uipath_langchain_client import get_chat_model, get_embedding_model
57
+ from uipath_langchain_client.settings import get_default_client_settings
58
+
59
+ # Get default settings (uses UIPATH_LLM_BACKEND env var or defaults to AgentHub)
60
+ settings = get_default_client_settings()
61
+
62
+ # Chat model - vendor auto-detected from model name
63
+ chat_model = get_chat_model(
64
+ model_name="gpt-4o-2024-11-20",
65
+ client_settings=settings,
66
+ )
67
+ response = chat_model.invoke("Hello, how are you?")
68
+ print(response.content)
69
+
70
+ # Embeddings model
71
+ embeddings = get_embedding_model(
72
+ model="text-embedding-3-large",
73
+ client_settings=settings,
74
+ )
75
+ vectors = embeddings.embed_documents(["Hello world"])
76
+ print(f"Embedding dimension: {len(vectors[0])}")
77
+ ```
78
+
79
+ ### Using Direct Client Classes
80
+
81
+ For more control, instantiate provider-specific classes directly:
82
+
83
+ ```python
84
+ from uipath_langchain_client.openai.chat_models import UiPathAzureChatOpenAI
85
+ from uipath_langchain_client.google.chat_models import UiPathChatGoogleGenerativeAI
86
+ from uipath_langchain_client.anthropic.chat_models import UiPathChatAnthropic
87
+ from uipath_langchain_client.normalized.chat_models import UiPathNormalizedChatModel
88
+ from uipath_langchain_client.settings import get_default_client_settings
89
+
90
+ settings = get_default_client_settings()
91
+
92
+ # OpenAI/Azure
93
+ openai_chat = UiPathAzureChatOpenAI(model="gpt-4o-2024-11-20", client_settings=settings)
94
+
95
+ # Google Gemini
96
+ gemini_chat = UiPathChatGoogleGenerativeAI(model="gemini-2.5-flash", client_settings=settings)
97
+
98
+ # Anthropic Claude (via AWS Bedrock)
99
+ claude_chat = UiPathChatAnthropic(
100
+ model="anthropic.claude-sonnet-4-5-20250929-v1:0",
101
+ client_settings=settings,
102
+ vendor_type="awsbedrock",
103
+ )
104
+
105
+ # Normalized (provider-agnostic)
106
+ normalized_chat = UiPathNormalizedChatModel(model="gpt-4o-2024-11-20", client_settings=settings)
107
+ ```
108
+
109
+ ## Available Client Types
110
+
111
+ ### Passthrough Mode (Default)
112
+
113
+ Uses vendor-specific APIs through UiPath's gateway. Full feature parity with native SDKs.
114
+
115
+ | Class | Provider | Models |
116
+ |-------|----------|--------|
117
+ | `UiPathAzureChatOpenAI` | OpenAI/Azure | GPT-4o, GPT-4, GPT-3.5 |
118
+ | `UiPathChatOpenAI` | OpenAI | GPT-4o, GPT-4, GPT-3.5 |
119
+ | `UiPathChatGoogleGenerativeAI` | Google | Gemini 2.5, 2.0, 1.5 |
120
+ | `UiPathChatAnthropic` | Anthropic | Claude Sonnet 4.5, Opus, etc. |
121
+ | `UiPathChatAnthropicVertex` | Anthropic (via VertexAI) | Claude models |
122
+ | `UiPathAzureAIChatCompletionsModel` | Azure AI | Various |
123
+
124
+ ### Normalized Mode
125
+
126
+ Uses UiPath's normalized API for a consistent interface across all providers.
127
+
128
+ | Class | Description |
129
+ |-------|-------------|
130
+ | `UiPathNormalizedChatModel` | Provider-agnostic chat completions |
131
+ | `UiPathNormalizedEmbeddings` | Provider-agnostic embeddings |
132
+
133
+ ## Features
134
+
135
+ ### Streaming
136
+
137
+ ```python
138
+ from uipath_langchain_client import get_chat_model
139
+ from uipath_langchain_client.settings import get_default_client_settings
140
+
141
+ settings = get_default_client_settings()
142
+ chat_model = get_chat_model(model_name="gpt-4o-2024-11-20", client_settings=settings)
143
+
144
+ # Sync streaming
145
+ for chunk in chat_model.stream("Write a haiku about Python"):
146
+ print(chunk.content, end="", flush=True)
147
+
148
+ # Async streaming
149
+ async for chunk in chat_model.astream("Write a haiku about Python"):
150
+ print(chunk.content, end="", flush=True)
151
+ ```
152
+
153
+ ### Tool Calling
154
+
155
+ ```python
156
+ from langchain_core.tools import tool
157
+
158
+ @tool
159
+ def get_weather(city: str) -> str:
160
+ """Get the current weather for a city."""
161
+ return f"Sunny, 72°F in {city}"
162
+
163
+ chat_model = get_chat_model(model_name="gpt-4o-2024-11-20", client_settings=settings)
164
+ model_with_tools = chat_model.bind_tools([get_weather])
165
+
166
+ response = model_with_tools.invoke("What's the weather in Tokyo?")
167
+ print(response.tool_calls)
168
+ ```
169
+
170
+ ### LangGraph Agents
171
+
172
+ ```python
173
+ from langgraph.prebuilt import create_react_agent
174
+ from langchain_core.tools import tool
175
+
176
+ @tool
177
+ def search(query: str) -> str:
178
+ """Search the web."""
179
+ return f"Results for: {query}"
180
+
181
+ chat_model = get_chat_model(model_name="gpt-4o-2024-11-20", client_settings=settings)
182
+ agent = create_react_agent(chat_model, [search])
183
+
184
+ result = agent.invoke({"messages": [("user", "Search for UiPath documentation")]})
185
+ ```
186
+
187
+ ### Extended Thinking (Model-Specific)
188
+
189
+ ```python
190
+ # OpenAI o1/o3 reasoning
191
+ chat_model = get_chat_model(
192
+ model_name="o3-mini",
193
+ client_settings=settings,
194
+ client_type="normalized",
195
+ reasoning_effort="medium", # "low", "medium", "high"
196
+ )
197
+
198
+ # Anthropic Claude thinking
199
+ chat_model = get_chat_model(
200
+ model_name="claude-sonnet-4-5",
201
+ client_settings=settings,
202
+ client_type="normalized",
203
+ thinking={"type": "enabled", "budget_tokens": 10000},
204
+ )
205
+
206
+ # Gemini thinking
207
+ chat_model = get_chat_model(
208
+ model_name="gemini-2.5-pro",
209
+ client_settings=settings,
210
+ client_type="normalized",
211
+ thinking_level="medium",
212
+ include_thoughts=True,
213
+ )
214
+ ```
215
+
216
+ ## Configuration
217
+
218
+ ### Retry Configuration
219
+
220
+ ```python
221
+ # RetryConfig is a TypedDict - all fields are optional with sensible defaults
222
+ retry_config = {
223
+ "initial_delay": 2.0, # Initial delay before first retry
224
+ "max_delay": 60.0, # Maximum delay between retries
225
+ "exp_base": 2.0, # Exponential backoff base
226
+ "jitter": 1.0, # Random jitter to add
227
+ }
228
+
229
+ chat_model = get_chat_model(
230
+ model_name="gpt-4o-2024-11-20",
231
+ client_settings=settings,
232
+ max_retries=3,
233
+ retry_config=retry_config,
234
+ )
235
+ ```
236
+
237
+ ### Request Timeout
238
+
239
+ ```python
240
+ chat_model = get_chat_model(
241
+ model_name="gpt-4o-2024-11-20",
242
+ client_settings=settings,
243
+ request_timeout=120, # Client-side timeout in seconds
244
+ )
245
+ ```
246
+
247
+ ## API Reference
248
+
249
+ ### `get_chat_model()`
250
+
251
+ Factory function to create a chat model.
252
+
253
+ **Parameters:**
254
+ - `model_name` (str): Name of the model (e.g., "gpt-4o-2024-11-20")
255
+ - `client_settings` (UiPathBaseSettings): Client settings for authentication
256
+ - `client_type` (Literal["passthrough", "normalized"]): API mode (default: "passthrough")
257
+ - `**model_kwargs`: Additional arguments passed to the model constructor
258
+
259
+ **Returns:** `BaseChatModel` - A LangChain-compatible chat model
260
+
261
+ ### `get_embedding_model()`
262
+
263
+ Factory function to create an embeddings model.
264
+
265
+ **Parameters:**
266
+ - `model` (str): Name of the model (e.g., "text-embedding-3-large")
267
+ - `client_settings` (UiPathBaseSettings): Client settings for authentication
268
+ - `client_type` (Literal["passthrough", "normalized"]): API mode (default: "passthrough")
269
+ - `**model_kwargs`: Additional arguments passed to the model constructor
270
+
271
+ **Returns:** `Embeddings` - A LangChain-compatible embeddings model
272
+
273
+ ## See Also
274
+
275
+ - [Main README](../../README.md) - Overview and core client documentation
276
+ - [UiPath LLM Client](../../src/uipath_llm_client/) - Low-level HTTP client
@@ -0,0 +1,28 @@
1
+ uipath_langchain_client/__init__.py,sha256=3rOLh-mBT_DWUNShlnOzzcU9OxT98V7i_fQPcFRAGuQ,1605
2
+ uipath_langchain_client/__version__.py,sha256=n7mSkMnVmsou1wB3oAqSDg6W0Wlr4Jo4fhedKAjOf-o,154
3
+ uipath_langchain_client/base_client.py,sha256=ZOv51sfGpJLS0fQq0kUIy0v0BA_WF6jEFky9EgO7fpQ,10911
4
+ uipath_langchain_client/factory.py,sha256=6KKAQqtdtDS8cwsZ5MUoChiqnDye41svbZ5CeUaggYg,8312
5
+ uipath_langchain_client/settings.py,sha256=mcSXWzZ_jkG_y-1XJOJpDZH9YVHZd6MMbNMMHXujGjw,920
6
+ uipath_langchain_client/clients/anthropic/__init__.py,sha256=cU7tkL3WYQXFZhdkZsQn_sgDQRx9wWzde3Amq0ts94U,121
7
+ uipath_langchain_client/clients/anthropic/chat_models.py,sha256=STj3V_OUORSZ5nKX0BluLxkBDg0VL293fq2ou6hh1Hg,6947
8
+ uipath_langchain_client/clients/azure/__init__.py,sha256=TDeEtcanZNqqqpjPWY8vFOLmKjVIyLXyv4l8VYKlpfY,267
9
+ uipath_langchain_client/clients/azure/chat_models.py,sha256=BvMgDYRGwHhHLbS24aBL0Esp0NOOyf9wP3OkAWLpYEM,1727
10
+ uipath_langchain_client/clients/azure/embeddings.py,sha256=VNxzMNROa9ZIAXUhWsIKgZeRjXj0rNn0wWZlFyZnjZk,1628
11
+ uipath_langchain_client/clients/bedrock/__init__.py,sha256=TDHsmYfsnYHCl7q2UwbABRio-0CfAMP__ry4bjMDVeI,298
12
+ uipath_langchain_client/clients/bedrock/chat_models.py,sha256=F1LuKnwWjiZSeV1ZbsvkusWC10MtCowVJuBpO9S7luc,2149
13
+ uipath_langchain_client/clients/bedrock/embeddings.py,sha256=rLv2bWG46i3CJDfd7X9dB3acASQwTNfcxksZ7TRQjtg,1141
14
+ uipath_langchain_client/clients/bedrock/utils.py,sha256=YYWyerreQj4X2iR-Lsg1i7ELLUi9HLk63AXuzuHp4KM,3129
15
+ uipath_langchain_client/clients/google/__init__.py,sha256=oWzq3pprWR-si-mZt40VrQ5f53f-O7AKSWzqP60VDHE,271
16
+ uipath_langchain_client/clients/google/chat_models.py,sha256=OinMNzBZkmNWUcIqX1wu2EyjZmrbyCyss5H_ijKBJg0,7668
17
+ uipath_langchain_client/clients/google/embeddings.py,sha256=jx2TmzvcxIcKA0iitm5-iqSIj0hqy5RmLnNXMXbkXns,1705
18
+ uipath_langchain_client/clients/normalized/__init__.py,sha256=r0tJ3QvhZPcbNjZJz8ADVCVTcyV1nb0zluwhb-tAAMg,257
19
+ uipath_langchain_client/clients/normalized/chat_models.py,sha256=kIs8kyW5OKWiNWnxn7o8hz6W-yizaFVvd3V7KZAC8Sw,16639
20
+ uipath_langchain_client/clients/normalized/embeddings.py,sha256=CXIuqKZKSa663b0dOubAvp1zHmW6-CgM1M6i7-FcgTA,1275
21
+ uipath_langchain_client/clients/openai/__init__.py,sha256=f6O7otwFkSc5CxVOHpZ1GHEW9g9K2rDg5P_R7cxTrXs,376
22
+ uipath_langchain_client/clients/openai/chat_models.py,sha256=fAaDeR5bQ6FFgufP0Qq8Hs3f-1QKHvLNvghGw18pGzQ,4029
23
+ uipath_langchain_client/clients/openai/embeddings.py,sha256=qMuXmuv2G4WWtEeOGqEpz27DnEPKED3e3M4LOGGTwgw,3226
24
+ uipath_langchain_client/clients/vertexai/__init__.py,sha256=g_rPq14ij0DPxUC4tX7vNDB5KVvfULxOUXyReM97PZw,132
25
+ uipath_langchain_client/clients/vertexai/chat_models.py,sha256=K1yG_uXnjryFz6tg4UZepNnRVB6IQd6zhdDo4Sp9ubQ,1880
26
+ uipath_langchain_client-1.0.0.dist-info/METADATA,sha256=OD-1MZCwNjYriN3U4RwM0S4nG-ER6-fxQSvT7wGpwX4,8762
27
+ uipath_langchain_client-1.0.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
28
+ uipath_langchain_client-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.28.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any