ucon 0.3.3rc2__py3-none-any.whl → 0.3.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,363 @@
1
+
2
+
3
+ import unittest
4
+
5
+ from ucon import units
6
+ from ucon.core import CompositeUnit, Dimension, Scale, Unit
7
+ from ucon.quantity import Number, Ratio
8
+
9
+
10
+ class TestNumber(unittest.TestCase):
11
+
12
+ number = Number(unit=units.gram, quantity=1)
13
+
14
+ def test_as_ratio(self):
15
+ ratio = self.number.as_ratio()
16
+ self.assertIsInstance(ratio, Ratio)
17
+ self.assertEqual(ratio.numerator, self.number)
18
+ self.assertEqual(ratio.denominator, Number())
19
+
20
+ @unittest.skip("Requires ConversionGraph implementation")
21
+ def test_simplify(self):
22
+ decagram = Unit(dimension=Dimension.mass, name='gram', scale=Scale.deca)
23
+ kibigram = Unit(dimension=Dimension.mass, name='gram', scale=Scale.kibi)
24
+
25
+ ten_decagrams = Number(unit=decagram, quantity=10)
26
+ point_one_decagrams = Number(unit=decagram, quantity=0.1)
27
+ two_kibigrams = Number(unit=kibigram, quantity=2)
28
+
29
+ self.assertEqual(Number(unit=units.gram, quantity=100), ten_decagrams.simplify())
30
+ self.assertEqual(Number(unit=units.gram, quantity=1), point_one_decagrams.simplify())
31
+ self.assertEqual(Number(unit=units.gram, quantity=2048), two_kibigrams.simplify())
32
+
33
+ @unittest.skip("Requires ConversionGraph implementation")
34
+ def test_to(self):
35
+ kg = Unit(dimension=Dimension.mass, name='gram', scale=Scale.kilo)
36
+ mg = Unit(dimension=Dimension.mass, name='gram', scale=Scale.milli)
37
+ kibigram = Unit(dimension=Dimension.mass, name='gram', scale=Scale.kibi)
38
+
39
+ thousandth_of_a_kilogram = Number(unit=kg, quantity=0.001)
40
+ thousand_milligrams = Number(unit=mg, quantity=1000)
41
+ kibigram_fraction = Number(unit=kibigram, quantity=0.0009765625)
42
+
43
+ self.assertEqual(thousandth_of_a_kilogram, self.number.to(Scale.kilo))
44
+ self.assertEqual(thousand_milligrams, self.number.to(Scale.milli))
45
+ self.assertEqual(kibigram_fraction, self.number.to(Scale.kibi))
46
+
47
+ def test___repr__(self):
48
+ self.assertIn(str(self.number.quantity), str(self.number))
49
+ self.assertIn(str(self.number.unit.scale.value.evaluated), str(self.number))
50
+ self.assertIn(self.number.unit.shorthand, str(self.number))
51
+
52
+ def test___truediv__(self):
53
+ dal = Scale.deca * units.gram
54
+ mg = Scale.milli * units.gram
55
+ kibigram = Scale.kibi * units.gram
56
+
57
+ some_number = Number(unit=dal, quantity=10)
58
+ another_number = Number(unit=mg, quantity=10)
59
+ that_number = Number(unit=kibigram, quantity=10)
60
+
61
+ some_quotient = self.number / some_number
62
+ another_quotient = self.number / another_number
63
+ that_quotient = self.number / that_number
64
+
65
+ self.assertEqual(some_quotient.value, 0.01)
66
+ self.assertEqual(another_quotient.value, 100.0)
67
+ self.assertEqual(that_quotient.value, 0.00009765625)
68
+
69
+ def test___eq__(self):
70
+ self.assertEqual(self.number, Ratio(self.number)) # 1 gram / 1
71
+ with self.assertRaises(TypeError):
72
+ self.number == 1
73
+
74
+
75
+ class TestNumberEdgeCases(unittest.TestCase):
76
+
77
+ def test_density_times_volume_preserves_user_scale(self):
78
+ mL = Scale.milli * units.liter
79
+ density = Ratio(Number(unit=units.gram, quantity=3.119),
80
+ Number(unit=mL, quantity=1))
81
+ two_mL = Number(unit=mL, quantity=2)
82
+
83
+ result = density.evaluate() * two_mL
84
+ self.assertIsInstance(result.unit, CompositeUnit)
85
+ self.assertDictEqual(result.unit.components, {units.gram: 1})
86
+ self.assertAlmostEqual(result.quantity, 6.238, places=12)
87
+
88
+ mg = Scale.milli * units.gram
89
+ mg_density = Ratio(Number(unit=mg, quantity=3119), Number(unit=mL, quantity=1))
90
+
91
+ mg_result = mg_density.evaluate() * two_mL
92
+ self.assertIsInstance(mg_result.unit, CompositeUnit)
93
+ self.assertDictEqual(mg_result.unit.components, {mg: 1})
94
+ self.assertAlmostEqual(mg_result.quantity, 6238, places=12)
95
+
96
+ def test_number_mul_asymmetric_density_volume(self):
97
+ g = units.gram
98
+ mL = Scale.milli * units.liter
99
+
100
+ density = Number(unit=g, quantity=3.119) / Number(unit=mL, quantity=1)
101
+ two_mL = Number(unit=mL, quantity=2)
102
+
103
+ result = density * two_mL
104
+
105
+ assert result.unit == g
106
+ assert abs(result.quantity - 6.238) < 1e-12
107
+
108
+ def test_number_mul_retains_scale_when_scaling_lengths(self):
109
+ km = Scale.kilo * units.meter
110
+ m = units.meter
111
+
112
+ n1 = Number(unit=km, quantity=2) # 2 km
113
+ n2 = Number(unit=m, quantity=500) # 500 m
114
+
115
+ result = n1 * n2
116
+
117
+ assert result.unit.dimension == Dimension.area
118
+ # scale stays on unit expression, not folded into numeric
119
+ assert "km" in result.unit.shorthand or "m" in result.unit.shorthand
120
+
121
+ def test_number_mul_mixed_scales_do_not_auto_cancel(self):
122
+ km = Scale.kilo * units.meter
123
+ m = units.meter
124
+
125
+ result = Number(unit=km, quantity=1) * Number(unit=m, quantity=1)
126
+
127
+ # Should remain composite rather than collapsing to base m^2
128
+ assert isinstance(result.unit, CompositeUnit)
129
+ assert "km" in result.unit.shorthand
130
+ assert "m" in result.unit.shorthand
131
+
132
+ def test_number_div_uses_canonical_rhs_value(self):
133
+ dal = Scale.deca * units.gram # 10 g
134
+ n = Number(unit=units.gram, quantity=1)
135
+
136
+ quotient = n / Number(unit=dal, quantity=10)
137
+
138
+ # 1 g / (10 × 10 g) = 0.01
139
+ assert abs(quotient.value - 0.01) < 1e-12
140
+
141
+ def test_ratio_times_number_preserves_user_scale(self):
142
+ mL = Scale.milli * units.liter
143
+ density = Ratio(Number(unit=units.gram, quantity=3.119),
144
+ Number(unit=mL, quantity=1))
145
+ two_mL = Number(unit=mL, quantity=2)
146
+
147
+ result = density * two_mL.as_ratio()
148
+ evaluated = result.evaluate()
149
+
150
+ assert evaluated.unit == units.gram
151
+ assert abs(evaluated.quantity - 6.238) < 1e-12
152
+
153
+ def test_default_number_is_dimensionless_one(self):
154
+ n = Number()
155
+ self.assertEqual(n.unit, units.none)
156
+ self.assertEqual(n.unit.scale, Scale.one)
157
+ self.assertEqual(n.quantity, 1)
158
+ self.assertAlmostEqual(n.value, 1.0)
159
+ self.assertIn("1", repr(n))
160
+
161
+ @unittest.skip("Requires ConversionGraph implementation")
162
+ def test_to_new_scale_changes_value(self):
163
+ thousand = Unit(dimension=Dimension.none, name='', scale=Scale.kilo)
164
+ n = Number(quantity=1000, unit=thousand)
165
+ converted = n.to(Scale.one)
166
+ self.assertNotEqual(n.value, converted.value)
167
+ self.assertAlmostEqual(converted.value, 1000)
168
+
169
+ @unittest.skip("Requires ConversionGraph implementation")
170
+ def test_simplify_uses_value_as_quantity(self):
171
+ thousand = Unit(dimension=Dimension.none, name='', scale=Scale.kilo)
172
+ n = Number(quantity=2, unit=thousand)
173
+ simplified = n.simplify()
174
+ self.assertEqual(simplified.quantity, n.value)
175
+ self.assertNotEqual(simplified.unit.scale, n.unit.scale)
176
+ self.assertEqual(simplified.value, n.value)
177
+
178
+ def test_multiplication_combines_units_and_quantities(self):
179
+ n1 = Number(unit=units.joule, quantity=2)
180
+ n2 = Number(unit=units.second, quantity=3)
181
+ result = n1 * n2
182
+ self.assertEqual(result.quantity, 6)
183
+ self.assertEqual(result.unit.dimension, Dimension.energy * Dimension.time)
184
+
185
+ @unittest.skip("Requires ConversionGraph implementation")
186
+ def test_division_combines_units_scales_and_quantities(self):
187
+ km = Unit('m', name='meter', dimension=Dimension.length, scale=Scale.kilo)
188
+ n1 = Number(unit=km, quantity=1000)
189
+ n2 = Number(unit=units.second, quantity=2)
190
+
191
+ result = n1 / n2 # should yield <500 km/s>
192
+
193
+ cu = result.unit
194
+ self.assertIsInstance(cu, CompositeUnit)
195
+
196
+ # --- quantity check ---
197
+ self.assertAlmostEqual(result.quantity, 500)
198
+
199
+ # --- dimension check ---
200
+ self.assertEqual(cu.dimension, Dimension.velocity)
201
+
202
+ # --- scale check: km/s should have a kilo-scaled meter in the numerator ---
203
+ # find the meter-like unit in the components
204
+ meter_like = next(u for u, exp in cu.components.items() if u.dimension == Dimension.length)
205
+ self.assertEqual(meter_like.scale, Scale.kilo)
206
+ self.assertEqual(cu.components[meter_like], 1) # exponent = 1 in numerator
207
+
208
+ # --- symbolic shorthand ---
209
+ self.assertEqual(cu.shorthand, "km/s")
210
+
211
+ # --- optional canonicalization ---
212
+ canonical = result.to(Scale.one)
213
+ self.assertAlmostEqual(canonical.quantity, 500000)
214
+ self.assertEqual(canonical.unit.shorthand, "m/s")
215
+
216
+ def test_equality_with_non_number_raises_value_error(self):
217
+ n = Number()
218
+ with self.assertRaises(TypeError):
219
+ n == '5'
220
+
221
+ def test_equality_between_numbers_and_ratios(self):
222
+ n1 = Number(quantity=10)
223
+ n2 = Number(quantity=10)
224
+ r = Ratio(n1, n2)
225
+ self.assertTrue(r == Number())
226
+
227
+ def test_repr_includes_scale_and_unit(self):
228
+ kV = Unit('V', name='volt', dimension=Dimension.voltage, scale=Scale.kilo)
229
+ n = Number(unit=kV, quantity=5)
230
+ rep = repr(n)
231
+ self.assertIn("kV", rep)
232
+
233
+
234
+ class TestRatio(unittest.TestCase):
235
+
236
+ point_five = Number(quantity=0.5)
237
+ one = Number()
238
+ two = Number(quantity=2)
239
+ three = Number(quantity=3)
240
+ four = Number(quantity=4)
241
+
242
+ one_half = Ratio(numerator=one, denominator=two)
243
+ three_fourths = Ratio(numerator=three, denominator=four)
244
+ one_ratio = Ratio(numerator=one)
245
+ three_halves = Ratio(numerator=three, denominator=two)
246
+ two_ratio = Ratio(numerator=two, denominator=one)
247
+
248
+ def test_evaluate(self):
249
+ self.assertEqual(self.one_ratio.numerator, self.one)
250
+ self.assertEqual(self.one_ratio.denominator, self.one)
251
+ self.assertEqual(self.one_ratio.evaluate(), self.one)
252
+ self.assertEqual(self.two_ratio.evaluate(), self.two)
253
+
254
+ def test_reciprocal(self):
255
+ self.assertEqual(self.two_ratio.reciprocal().numerator, self.one)
256
+ self.assertEqual(self.two_ratio.reciprocal().denominator, self.two)
257
+ self.assertEqual(self.two_ratio.reciprocal().evaluate(), self.point_five)
258
+
259
+ def test___mul__commutivity(self):
260
+ # Does commutivity hold?
261
+ self.assertEqual(self.three_halves * self.one_half, self.three_fourths)
262
+ self.assertEqual(self.one_half * self.three_halves, self.three_fourths)
263
+
264
+ def test___mul__(self):
265
+ mL = Unit('L', name='liter', dimension=Dimension.volume, scale=Scale.milli)
266
+ n1 = Number(unit=units.gram, quantity=3.119)
267
+ n2 = Number(unit=mL)
268
+ bromine_density = Ratio(n1, n2)
269
+
270
+ # How many grams of bromine are in 2 milliliters?
271
+ two_milliliters_bromine = Number(unit=mL, quantity=2)
272
+ ratio = two_milliliters_bromine.as_ratio() * bromine_density
273
+ answer = ratio.evaluate()
274
+ self.assertEqual(answer.unit.dimension, Dimension.mass)
275
+ self.assertEqual(answer.value, 6.238) # Grams
276
+
277
+ def test___truediv__(self):
278
+ seconds_per_hour = Ratio(
279
+ numerator=Number(unit=units.second, quantity=3600),
280
+ denominator=Number(unit=units.hour, quantity=1)
281
+ )
282
+
283
+ # How many Wh from 20 kJ?
284
+ twenty_kilojoules = Number(
285
+ unit=Unit('J', name='joule', dimension=Dimension.energy, scale=Scale.kilo),
286
+ quantity=20
287
+ )
288
+ ratio = twenty_kilojoules.as_ratio() / seconds_per_hour
289
+ answer = ratio.evaluate()
290
+ self.assertEqual(answer.unit.dimension, Dimension.energy)
291
+ # When the ConversionGraph is implemented, conversion to watt-hours will be possible.
292
+ self.assertEqual(round(answer.value, 5), 0.00556) # kilowatt * hours
293
+
294
+ def test___eq__(self):
295
+ self.assertEqual(self.one_half, self.point_five)
296
+ with self.assertRaises(ValueError):
297
+ self.one_half == 1/2
298
+
299
+ def test___repr__(self):
300
+ self.assertEqual(str(self.one_ratio), '<1.0>')
301
+ self.assertEqual(str(self.two_ratio), '<2> / <1.0>')
302
+ self.assertEqual(str(self.two_ratio.evaluate()), '<2.0>')
303
+
304
+
305
+ class TestRatioEdgeCases(unittest.TestCase):
306
+
307
+ def test_default_ratio_is_dimensionless_one(self):
308
+ r = Ratio()
309
+ self.assertEqual(r.numerator.unit, units.none)
310
+ self.assertEqual(r.denominator.unit, units.none)
311
+ self.assertAlmostEqual(r.evaluate().value, 1.0)
312
+
313
+ def test_reciprocal_swaps_numerator_and_denominator(self):
314
+ n1 = Number(quantity=10)
315
+ n2 = Number(quantity=2)
316
+ r = Ratio(n1, n2)
317
+ reciprocal = r.reciprocal()
318
+ self.assertEqual(reciprocal.numerator, r.denominator)
319
+ self.assertEqual(reciprocal.denominator, r.numerator)
320
+
321
+ def test_evaluate_returns_number_division_result(self):
322
+ r = Ratio(Number(unit=units.meter), Number(unit=units.second))
323
+ result = r.evaluate()
324
+ self.assertIsInstance(result, Number)
325
+ self.assertEqual(result.unit.dimension, Dimension.velocity)
326
+
327
+ def test_multiplication_between_compatible_ratios(self):
328
+ r1 = Ratio(Number(unit=units.meter), Number(unit=units.second))
329
+ r2 = Ratio(Number(unit=units.second), Number(unit=units.meter))
330
+ product = r1 * r2
331
+ self.assertIsInstance(product, Ratio)
332
+ self.assertEqual(product.evaluate().unit.dimension, Dimension.none)
333
+
334
+ def test_multiplication_with_incompatible_units_fallback(self):
335
+ r1 = Ratio(Number(unit=units.meter), Number(unit=units.ampere))
336
+ r2 = Ratio(Number(unit=units.ampere), Number(unit=units.meter))
337
+ result = r1 * r2
338
+ self.assertIsInstance(result, Ratio)
339
+
340
+ def test_division_between_ratios_yields_new_ratio(self):
341
+ r1 = Ratio(Number(quantity=2), Number(quantity=1))
342
+ r2 = Ratio(Number(quantity=4), Number(quantity=2))
343
+ result = r1 / r2
344
+ self.assertIsInstance(result, Ratio)
345
+ self.assertAlmostEqual(result.evaluate().value, 1.0)
346
+
347
+ def test_equality_with_non_ratio_raises_value_error(self):
348
+ r = Ratio()
349
+ with self.assertRaises(ValueError):
350
+ _ = (r == "not_a_ratio")
351
+
352
+ def test_repr_handles_equal_numerator_denominator(self):
353
+ r = Ratio()
354
+ self.assertEqual(str(r.evaluate().value), "1.0")
355
+ rep = repr(r)
356
+ self.assertTrue(rep.startswith("<1"))
357
+
358
+ def test_repr_of_non_equal_ratio_includes_slash(self):
359
+ n1 = Number(quantity=2)
360
+ n2 = Number(quantity=1)
361
+ r = Ratio(n1, n2)
362
+ rep = repr(r)
363
+ self.assertIn("/", rep)
tests/ucon/test_units.py CHANGED
@@ -3,8 +3,8 @@
3
3
  from unittest import TestCase
4
4
 
5
5
  from ucon import units
6
- from ucon.dimension import Dimension
7
- from ucon.unit import Unit
6
+ from ucon.core import Dimension
7
+ from ucon.core import Unit
8
8
 
9
9
 
10
10
  class TestUnits(TestCase):
@@ -18,4 +18,6 @@ class TestUnits(TestCase):
18
18
  self.assertEqual(units.none, units.gram / units.gram)
19
19
  self.assertEqual(units.gram, units.gram / units.none)
20
20
 
21
- self.assertEqual(Unit(name='(g/L)', dimension=Dimension.density), units.gram / units.liter)
21
+ composite_unit = units.gram / units.liter
22
+ self.assertEqual("g/L", composite_unit.shorthand)
23
+ self.assertEqual(Dimension.density, composite_unit.dimension)
ucon/__init__.py CHANGED
@@ -33,9 +33,9 @@ Design Philosophy
33
33
  data-driven framework that is generalizable to arbitrary unit systems.
34
34
  """
35
35
  from ucon import units
36
- from ucon.unit import Unit
37
- from ucon.core import Exponent, Number, Scale, Ratio
38
- from ucon.dimension import Dimension
36
+ from ucon.algebra import Exponent
37
+ from ucon.core import Dimension, Scale, Unit
38
+ from ucon.quantity import Number, Ratio
39
39
 
40
40
 
41
41
  __all__ = [
ucon/algebra.py ADDED
@@ -0,0 +1,212 @@
1
+ """
2
+ ucon.algebra
3
+ ============
4
+
5
+ Provides the low-level algebraic primitives that power the rest of the *ucon*
6
+ stack. These building blocks model exponent vectors for physical dimensions and
7
+ numeric base-exponent pairs for scale prefixes, enabling higher-level modules to
8
+ compose dimensions, units, and quantities without reimplementing arithmetic.
9
+
10
+ Other modules depend on these structures to ensure dimensional calculations,
11
+ prefix handling, and unit simplification all share the same semantics.
12
+
13
+ Classes
14
+ -------
15
+ - :class:`Vector` — Exponent tuple representing a physical dimension basis.
16
+ - :class:`Exponent` — Base/power pair supporting prefix arithmetic.
17
+ """
18
+ import math
19
+ from dataclasses import dataclass
20
+ from functools import partial, reduce, total_ordering
21
+ from operator import __sub__ as subtraction
22
+ from typing import Callable, Iterable, Iterator, Tuple, Union
23
+
24
+
25
+ diff: Callable[[Iterable], int] = partial(reduce, subtraction)
26
+
27
+
28
+ @dataclass
29
+ class Vector:
30
+ """
31
+ Represents the **exponent vector** of a physical quantity.
32
+
33
+ Each component corresponds to the power of a base dimension in the SI system:
34
+ time (T), length (L), mass (M), current (I), temperature (Θ),
35
+ luminous intensity (J), and amount of substance (N).
36
+
37
+ Arithmetic operations correspond to dimensional composition:
38
+ - Addition (`+`) → multiplication of quantities
39
+ - Subtraction (`-`) → division of quantities
40
+
41
+ e.g.
42
+ Vector(T=1, L=0, M=0, I=0, Θ=0, J=0, N=0) => "time"
43
+ Vector(T=0, L=2, M=0, I=0, Θ=0, J=0, N=0) => "area"
44
+ Vector(T=-2, L=1, M=1, I=0, Θ=0, J=0, N=0) => "force"
45
+ """
46
+ T: int = 0 # time
47
+ L: int = 0 # length
48
+ M: int = 0 # mass
49
+ I: int = 0 # current
50
+ Θ: int = 0 # temperature
51
+ J: int = 0 # luminous intensity
52
+ N: int = 0 # amount of substance
53
+
54
+ def __iter__(self) -> Iterator[int]:
55
+ yield self.T
56
+ yield self.L
57
+ yield self.M
58
+ yield self.I
59
+ yield self.Θ
60
+ yield self.J
61
+ yield self.N
62
+
63
+ def __len__(self) -> int:
64
+ return sum(tuple(1 for x in self))
65
+
66
+ def __add__(self, vector: 'Vector') -> 'Vector':
67
+ """
68
+ Addition, here, comes from the multiplication of base quantities
69
+
70
+ e.g. F = m * a
71
+ F =
72
+ (s^-2 * m^1 * kg * A * K * cd * mol) +
73
+ (s * m * kg^1 * A * K * cd * mol)
74
+ """
75
+ values = tuple(sum(pair) for pair in zip(tuple(self), tuple(vector)))
76
+ return Vector(*values)
77
+
78
+ def __sub__(self, vector: 'Vector') -> 'Vector':
79
+ """
80
+ Subtraction, here, comes from the division of base quantities
81
+ """
82
+ values = tuple(diff(pair) for pair in zip(tuple(self), tuple(vector)))
83
+ return Vector(*values)
84
+
85
+ def __mul__(self, scalar: Union[int, float]) -> 'Vector':
86
+ """
87
+ Scalar multiplication of the exponent vector.
88
+
89
+ e.g., raising a dimension to a power:
90
+
91
+ >>> Dimension.length ** 2 # area
92
+ >>> Dimension.time ** -1 # frequency
93
+ """
94
+ values = tuple(component * scalar for component in tuple(self))
95
+ return Vector(*values)
96
+
97
+ def __eq__(self, vector: 'Vector') -> bool:
98
+ assert isinstance(vector, Vector), "Can only compare Vector to another Vector"
99
+ return tuple(self) == tuple(vector)
100
+
101
+ def __hash__(self) -> int:
102
+ # Hash based on the string because tuples have been shown to collide
103
+ # Not the most performant, but effective
104
+ return hash(str(tuple(self)))
105
+
106
+
107
+ # TODO -- consider using a dataclass
108
+ @total_ordering
109
+ class Exponent:
110
+ """
111
+ Represents a **base–exponent pair** (e.g., 10³ or 2¹⁰).
112
+
113
+ Provides comparison and division semantics used internally to represent
114
+ magnitude prefixes (e.g., kilo, mega, micro).
115
+
116
+ TODO (wittwemms): embrace fractional exponents for closure on multiplication/division.
117
+ """
118
+ bases = {2: math.log2, 10: math.log10}
119
+
120
+ __slots__ = ("base", "power")
121
+
122
+ def __init__(self, base: int, power: Union[int, float]):
123
+ if base not in self.bases.keys():
124
+ raise ValueError(f'Only the following bases are supported: {reduce(lambda a,b: f"{a}, {b}", self.bases.keys())}')
125
+ self.base = base
126
+ self.power = power
127
+
128
+ @property
129
+ def evaluated(self) -> float:
130
+ """Return the numeric value of base ** power."""
131
+ return self.base ** self.power
132
+
133
+ def parts(self) -> Tuple[int, Union[int, float]]:
134
+ """Return (base, power) tuple, used for Scale lookups."""
135
+ return self.base, self.power
136
+
137
+ def __eq__(self, other: 'Exponent'):
138
+ if not isinstance(other, Exponent):
139
+ raise TypeError(f'Cannot compare Exponent to non-Exponent type: {type(other)}')
140
+ return self.evaluated == other.evaluated
141
+
142
+ def __lt__(self, other: 'Exponent'):
143
+ if not isinstance(other, Exponent):
144
+ return NotImplemented
145
+ return self.evaluated < other.evaluated
146
+
147
+ def __hash__(self):
148
+ # Hash by rounded numeric equivalence to maintain cross-base consistency
149
+ return hash(round(self.evaluated, 15))
150
+
151
+ # ---------- Arithmetic Semantics ----------
152
+
153
+ def __truediv__(self, other: 'Exponent'):
154
+ """
155
+ Divide two Exponents.
156
+ - If bases match, returns a relative Exponent.
157
+ - If bases differ, returns a numeric ratio (float).
158
+ """
159
+ if not isinstance(other, Exponent):
160
+ return NotImplemented
161
+ if self.base == other.base:
162
+ return Exponent(self.base, self.power - other.power)
163
+ return self.evaluated / other.evaluated
164
+
165
+ def __mul__(self, other: 'Exponent'):
166
+ if not isinstance(other, Exponent):
167
+ return NotImplemented
168
+ if self.base == other.base:
169
+ return Exponent(self.base, self.power + other.power)
170
+ return float(self.evaluated * other.evaluated)
171
+
172
+ def __pow__(self, exponent: Union[int, float]) -> "Exponent":
173
+ """
174
+ Raise this Exponent to a numeric power.
175
+
176
+ Example:
177
+ Exponent(10, 3) ** 2
178
+ # → Exponent(base=10, power=6)
179
+ """
180
+ return Exponent(self.base, self.power * exponent)
181
+
182
+ # ---------- Conversion Utilities ----------
183
+
184
+ def to_base(self, new_base: int) -> "Exponent":
185
+ """
186
+ Convert this Exponent to another base representation.
187
+
188
+ Example:
189
+ Exponent(2, 10).to_base(10)
190
+ # → Exponent(base=10, power=3.010299956639812)
191
+ """
192
+ if new_base not in self.bases:
193
+ supported = ", ".join(map(str, self.bases))
194
+ raise ValueError(f"Unsupported base {new_base!r}. Supported bases: {supported}")
195
+ new_power = self.bases[new_base](self.evaluated)
196
+ return Exponent(new_base, new_power)
197
+
198
+ # ---------- Numeric Interop ----------
199
+
200
+ def __float__(self) -> float:
201
+ return float(self.evaluated)
202
+
203
+ def __int__(self) -> int:
204
+ return int(self.evaluated)
205
+
206
+ # ---------- Representation ----------
207
+
208
+ def __repr__(self) -> str:
209
+ return f"Exponent(base={self.base}, power={self.power})"
210
+
211
+ def __str__(self) -> str:
212
+ return f"{self.base}^{self.power}"