ucon 0.3.1rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,143 @@
1
+
2
+
3
+ from unittest import TestCase
4
+
5
+ from ucon.dimension import Dimension
6
+ from ucon.unit import Unit
7
+
8
+
9
+ class TestUnit(TestCase):
10
+
11
+ unit_name = 'second'
12
+ unit_type = 'time'
13
+ unit_aliases = ('seconds', 'secs', 's', 'S')
14
+ unit = Unit(*unit_aliases, name=unit_name, dimension=Dimension.time)
15
+
16
+ def test___repr__(self):
17
+ self.assertEqual(f'<{self.unit_type} | {self.unit_name}>', str(self.unit))
18
+
19
+
20
+ class TestUnitEdgeCases(TestCase):
21
+
22
+ # --- Initialization & representation -----------------------------------
23
+
24
+ def test_default_unit_is_dimensionless(self):
25
+ u = Unit()
26
+ self.assertEqual(u.dimension, Dimension.none)
27
+ self.assertEqual(u.name, '')
28
+ self.assertEqual(u.aliases, ())
29
+ self.assertEqual(u.shorthand, '')
30
+ self.assertEqual(repr(u), '<none>')
31
+
32
+ def test_unit_with_aliases_and_name(self):
33
+ u = Unit('m', 'M', name='meter', dimension=Dimension.length)
34
+ self.assertEqual(u.shorthand, 'm')
35
+ self.assertIn('m', u.aliases)
36
+ self.assertIn('M', u.aliases)
37
+ self.assertIn('length', repr(u))
38
+ self.assertIn('meter', repr(u))
39
+
40
+ def test_hash_and_equality_consistency(self):
41
+ u1 = Unit('m', name='meter', dimension=Dimension.length)
42
+ u2 = Unit('m', name='meter', dimension=Dimension.length)
43
+ u3 = Unit('s', name='second', dimension=Dimension.time)
44
+ self.assertEqual(u1, u2)
45
+ self.assertEqual(hash(u1), hash(u2))
46
+ self.assertNotEqual(u1, u3)
47
+ self.assertNotEqual(hash(u1), hash(u3))
48
+
49
+ def test_units_with_same_name_but_different_dimension_not_equal(self):
50
+ u1 = Unit(name='amp', dimension=Dimension.current)
51
+ u2 = Unit(name='amp', dimension=Dimension.time)
52
+ self.assertNotEqual(u1, u2)
53
+
54
+ # --- generate_name edge cases -----------------------------------------
55
+
56
+ def test_generate_name_both_have_shorthand(self):
57
+ u1 = Unit('m', name='meter', dimension=Dimension.length)
58
+ u2 = Unit('s', name='second', dimension=Dimension.time)
59
+ result = u1.generate_name(u2, '*')
60
+ self.assertEqual(result, '(m*s)')
61
+
62
+ def test_generate_name_missing_left_shorthand(self):
63
+ u1 = Unit(name='unitless', dimension=Dimension.none)
64
+ u2 = Unit('s', name='second', dimension=Dimension.time)
65
+ self.assertEqual(u1.generate_name(u2, '/'), 'second')
66
+
67
+ def test_generate_name_missing_right_shorthand(self):
68
+ u1 = Unit('m', name='meter', dimension=Dimension.length)
69
+ u2 = Unit(name='none', dimension=Dimension.none)
70
+ self.assertEqual(u1.generate_name(u2, '*'), 'meter')
71
+
72
+ def test_generate_name_no_aliases_on_either_side(self):
73
+ u1 = Unit(name='foo', dimension=Dimension.length)
74
+ u2 = Unit(name='bar', dimension=Dimension.time)
75
+ self.assertEqual(u1.generate_name(u2, '*'), '(foo*bar)')
76
+
77
+ # --- arithmetic behavior ----------------------------------------------
78
+
79
+ def test_multiplication_produces_composite_unit(self):
80
+ m = Unit('m', name='meter', dimension=Dimension.length)
81
+ s = Unit('s', name='second', dimension=Dimension.time)
82
+ v = m / s
83
+ self.assertIsInstance(v, Unit)
84
+ self.assertEqual(v.dimension, Dimension.velocity)
85
+ self.assertIn('/', v.name)
86
+
87
+ def test_division_with_dimensionless_denominator_returns_self(self):
88
+ m = Unit('m', name='meter', dimension=Dimension.length)
89
+ none = Unit(name='none', dimension=Dimension.none)
90
+ result = m / none
91
+ self.assertEqual(result, m)
92
+
93
+ def test_division_of_identical_units_returns_dimensionless(self):
94
+ m1 = Unit('m', name='meter', dimension=Dimension.length)
95
+ m2 = Unit('m', name='meter', dimension=Dimension.length)
96
+ result = m1 / m2
97
+ self.assertEqual(result.dimension, Dimension.none)
98
+ self.assertEqual(result.name, '')
99
+
100
+ def test_multiplying_with_dimensionless_returns_self(self):
101
+ m = Unit('m', name='meter', dimension=Dimension.length)
102
+ none = Unit(name='none', dimension=Dimension.none)
103
+ result = m * none
104
+ self.assertEqual(result.dimension, Dimension.length)
105
+ self.assertIn('m', result.name)
106
+
107
+ def test_invalid_dimension_combinations_raise_value_error(self):
108
+ m = Unit('m', name='meter', dimension=Dimension.length)
109
+ c = Unit('C', name='coulomb', dimension=Dimension.charge)
110
+ # The result of dividing these is undefined (no such Dimension)
111
+ with self.assertRaises(ValueError):
112
+ _ = m / c
113
+ with self.assertRaises(ValueError):
114
+ _ = c * m
115
+
116
+ # --- equality, hashing, immutability ----------------------------------
117
+
118
+ def test_equality_with_non_unit(self):
119
+ with self.assertRaises(TypeError):
120
+ Unit('m', name='meter', dimension=Dimension.length) == 'meter'
121
+
122
+ def test_hash_stability_in_collections(self):
123
+ m1 = Unit('m', name='meter', dimension=Dimension.length)
124
+ s = set([m1])
125
+ self.assertIn(Unit('m', name='meter', dimension=Dimension.length), s)
126
+
127
+ def test_operations_do_not_mutate_operands(self):
128
+ m = Unit('m', name='meter', dimension=Dimension.length)
129
+ s = Unit('s', name='second', dimension=Dimension.time)
130
+ _ = m / s
131
+ self.assertEqual(m.dimension, Dimension.length)
132
+ self.assertEqual(s.dimension, Dimension.time)
133
+
134
+ # --- operator edge cases ----------------------------------------------
135
+
136
+ def test_generate_name_handles_empty_names_and_aliases(self):
137
+ a = Unit()
138
+ b = Unit()
139
+ self.assertEqual(a.generate_name(b, '*'), '')
140
+
141
+ def test_repr_contains_dimension_name_even_without_name(self):
142
+ u = Unit(dimension=Dimension.force)
143
+ self.assertIn('force', repr(u))
@@ -0,0 +1,21 @@
1
+
2
+
3
+ from unittest import TestCase
4
+
5
+ from ucon import units
6
+ from ucon.dimension import Dimension
7
+ from ucon.unit import Unit
8
+
9
+
10
+ class TestUnits(TestCase):
11
+
12
+ def test_has_expected_basic_units(self):
13
+ expected_basic_units = {'none', 'volt', 'liter', 'gram', 'second', 'kelvin', 'mole', 'coulomb'}
14
+ missing = {name for name in expected_basic_units if not units.have(name)}
15
+ assert not missing, f"Missing expected units: {missing}"
16
+
17
+ def test___truediv__(self):
18
+ self.assertEqual(units.none, units.gram / units.gram)
19
+ self.assertEqual(units.gram, units.gram / units.none)
20
+
21
+ self.assertEqual(Unit(name='(g/L)', dimension=Dimension.density), units.gram / units.liter)
ucon/__init__.py ADDED
@@ -0,0 +1,49 @@
1
+ """
2
+ ucon
3
+ ====
4
+
5
+ *ucon* (Unit Conversion & Dimensional Analysis) is a lightweight,
6
+ introspective library for reasoning about physical quantities.
7
+
8
+ Unlike conventional unit libraries that focus purely on arithmetic convenience,
9
+ *ucon* models the **semantics** of measurement-—exposing the algebra of
10
+ dimensions and the structure of compound units.
11
+
12
+ Overview
13
+ --------
14
+ *ucon* is organized into a small set of composable modules:
15
+
16
+ - :mod:`ucon.dimension` — defines the algebra of physical dimensions using
17
+ exponent vectors. Provides the foundation for all dimensional reasoning.
18
+ - :mod:`ucon.unit` — defines the :class:`Unit` abstraction, representing a
19
+ measurable quantity with an associated dimension, factor, and offset.
20
+ - :mod:`ucon.core` — implements numeric handling via :class:`Number`,
21
+ :class:`Scale`, and :class:`Ratio`, along with unified conversion logic.
22
+ - :mod:`ucon.units` — declares canonical SI base and derived units for immediate use.
23
+
24
+ Design Philosophy
25
+ -----------------
26
+ *ucon* treats unit conversion not as a lookup problem but as an **algebra**:
27
+
28
+ - **Dimensional Algebra** — all physical quantities are represented as
29
+ exponent vectors over the seven SI bases, ensuring strict composability.
30
+ - **Explicit Semantics** — units, dimensions, and scales are first-class
31
+ objects, not strings or tokens.
32
+ - **Unified Conversion Model** — all conversions are expressed through one
33
+ data-driven framework that is generalizable to arbitrary unit systems.
34
+ """
35
+ from ucon import units
36
+ from ucon.unit import Unit
37
+ from ucon.core import Exponent, Number, Scale, Ratio
38
+ from ucon.dimension import Dimension
39
+
40
+
41
+ __all__ = [
42
+ 'Exponent',
43
+ 'Dimension',
44
+ 'Number',
45
+ 'Ratio',
46
+ 'Scale',
47
+ 'Unit',
48
+ 'units',
49
+ ]
ucon/core.py ADDED
@@ -0,0 +1,293 @@
1
+ """
2
+ ucon.core
3
+ ==========
4
+
5
+ Implements the **quantitative core** of the *ucon* system — the machinery that
6
+ manages numeric quantities, scaling prefixes, and dimensional relationships.
7
+
8
+ Classes
9
+ -------
10
+ - :class:`Exponent` — Represents an exponential base/power pair (e.g., 10³).
11
+ - :class:`Scale` — Enumerates SI and binary magnitude prefixes (kilo, milli, etc.).
12
+ - :class:`Number` — Couples a numeric value with a unit and scale.
13
+ - :class:`Ratio` — Represents a ratio between two :class:`Number` objects.
14
+
15
+ Together, these classes allow full arithmetic, conversion, and introspection
16
+ of physical quantities with explicit dimensional semantics.
17
+ """
18
+ from enum import Enum
19
+ from functools import reduce, total_ordering
20
+ from math import log2
21
+ from math import log10
22
+ from typing import Tuple, Union
23
+
24
+ from ucon import units
25
+ from ucon.unit import Unit
26
+
27
+
28
+ # TODO -- consider using a dataclass
29
+ @total_ordering
30
+ class Exponent:
31
+ """
32
+ Represents a **base–exponent pair** (e.g., 10³ or 2¹⁰).
33
+
34
+ Provides comparison and division semantics used internally to represent
35
+ magnitude prefixes (e.g., kilo, mega, micro).
36
+ """
37
+ bases = {2: log2, 10: log10}
38
+
39
+ __slots__ = ("base", "power")
40
+
41
+ def __init__(self, base: int, power: Union[int, float]):
42
+ if base not in self.bases.keys():
43
+ raise ValueError(f'Only the following bases are supported: {reduce(lambda a,b: f"{a}, {b}", self.bases.keys())}')
44
+ self.base = base
45
+ self.power = power
46
+
47
+ @property
48
+ def evaluated(self) -> float:
49
+ """Return the numeric value of base ** power."""
50
+ return self.base ** self.power
51
+
52
+ def parts(self) -> Tuple[int, Union[int, float]]:
53
+ """Return (base, power) tuple, used for Scale lookups."""
54
+ return self.base, self.power
55
+
56
+ def __eq__(self, other: 'Exponent'):
57
+ if not isinstance(other, Exponent):
58
+ raise TypeError(f'Cannot compare Exponent to non-Exponent type: {type(other)}')
59
+ return self.evaluated == other.evaluated
60
+
61
+ def __lt__(self, other: 'Exponent'):
62
+ if not isinstance(other, Exponent):
63
+ return NotImplemented
64
+ return self.evaluated < other.evaluated
65
+
66
+ def __hash__(self):
67
+ # Hash by rounded numeric equivalence to maintain cross-base consistency
68
+ return hash(round(self.evaluated, 15))
69
+
70
+ # ---------- Arithmetic Semantics ----------
71
+
72
+ def __truediv__(self, other: 'Exponent'):
73
+ """
74
+ Divide two Exponents.
75
+ - If bases match, returns a relative Exponent.
76
+ - If bases differ, returns a numeric ratio (float).
77
+ """
78
+ if not isinstance(other, Exponent):
79
+ return NotImplemented
80
+ if self.base == other.base:
81
+ return Exponent(self.base, self.power - other.power)
82
+ return self.evaluated / other.evaluated
83
+
84
+ def __mul__(self, other: 'Exponent'):
85
+ if not isinstance(other, Exponent):
86
+ return NotImplemented
87
+ if self.base == other.base:
88
+ return Exponent(self.base, self.power + other.power)
89
+ return float(self.evaluated * other.evaluated)
90
+
91
+ # ---------- Conversion Utilities ----------
92
+
93
+ def to_base(self, new_base: int) -> "Exponent":
94
+ """
95
+ Convert this Exponent to another base representation.
96
+
97
+ Example:
98
+ Exponent(2, 10).to_base(10)
99
+ # → Exponent(base=10, power=3.010299956639812)
100
+ """
101
+ if new_base not in self.bases:
102
+ supported = ", ".join(map(str, self.bases))
103
+ raise ValueError(f"Unsupported base {new_base!r}. Supported bases: {supported}")
104
+ new_power = self.bases[new_base](self.evaluated)
105
+ return Exponent(new_base, new_power)
106
+
107
+ # ---------- Numeric Interop ----------
108
+
109
+ def __float__(self) -> float:
110
+ return float(self.evaluated)
111
+
112
+ def __int__(self) -> int:
113
+ return int(self.evaluated)
114
+
115
+ # ---------- Representation ----------
116
+
117
+ def __repr__(self) -> str:
118
+ return f"Exponent(base={self.base}, power={self.power})"
119
+
120
+ def __str__(self) -> str:
121
+ return f"{self.base}^{self.power}"
122
+
123
+
124
+ class Scale(Enum):
125
+ """
126
+ Enumerates common **magnitude prefixes** for units and quantities.
127
+
128
+ Examples include:
129
+ - Binary prefixes (kibi, mebi)
130
+ - Decimal prefixes (milli, kilo, mega)
131
+
132
+ Each entry stores its numeric scaling factor (e.g., `kilo = 10³`).
133
+ """
134
+ mebi = Exponent(2, 20)
135
+ kibi = Exponent(2, 10)
136
+ mega = Exponent(10, 6)
137
+ kilo = Exponent(10, 3)
138
+ hecto = Exponent(10, 2)
139
+ deca = Exponent(10, 1)
140
+ one = Exponent(10, 0)
141
+ deci = Exponent(10,-1)
142
+ centi = Exponent(10,-2)
143
+ milli = Exponent(10,-3)
144
+ micro = Exponent(10,-6)
145
+ _kibi = Exponent(2,-10)
146
+ _mebi = Exponent(2,-20)
147
+
148
+ @staticmethod
149
+ def all():
150
+ return dict(map(lambda x: ((x.value.base, x.value.power), x.name), Scale))
151
+
152
+ @staticmethod
153
+ def by_value():
154
+ return dict(map(lambda x: (x.value.evaluated, x.name), Scale))
155
+
156
+ def __truediv__(self, another_scale):
157
+ power_diff = self.value.power - another_scale.value.power
158
+ if self.value == another_scale.value:
159
+ return Scale.one
160
+ if self.value.base == another_scale.value.base:
161
+ return Scale[Scale.all()[Exponent(self.value.base, power_diff).parts()]]
162
+
163
+ base_quotient = self.value.base / another_scale.value.base
164
+ exp_quotient = round((base_quotient ** another_scale.value.power) * (self.value.base ** power_diff), 15)
165
+
166
+ if Scale.one in [self, another_scale]:
167
+ power = Exponent.bases[2](exp_quotient)
168
+ return Scale[Scale.all()[Exponent(2, int(power)).parts()]]
169
+ else:
170
+ scale_exp_values = [Scale[Scale.all()[pair]].value.evaluated for pair in Scale.all().keys()]
171
+ closest_val = min(scale_exp_values, key=lambda val: abs(val - exp_quotient))
172
+ return Scale[Scale.by_value()[closest_val]]
173
+
174
+ def __lt__(self, another_scale):
175
+ return self.value < another_scale.value
176
+
177
+ def __gt__(self, another_scale):
178
+ return self.value > another_scale.value
179
+
180
+ def __eq__(self, another_scale):
181
+ return self.value == another_scale.value
182
+
183
+
184
+ # TODO -- consider using a dataclass
185
+ class Number:
186
+ """
187
+ Represents a **numeric quantity** with an associated :class:`Unit` and :class:`Scale`.
188
+
189
+ Combines magnitude, unit, and scale into a single, composable object that
190
+ supports dimensional arithmetic and conversion:
191
+
192
+ >>> from ucon import core, units
193
+ >>> length = core.Number(unit=units.meter, quantity=5)
194
+ >>> time = core.Number(unit=units.second, quantity=2)
195
+ >>> speed = length / time
196
+ >>> speed
197
+ <2.5 (m/s)>
198
+ """
199
+ def __init__(self, unit: Unit = units.none, scale: Scale = Scale.one, quantity = 1):
200
+ self.unit = unit
201
+ self.scale = scale
202
+ self.quantity = quantity
203
+ self.value = round(self.quantity * self.scale.value.evaluated, 15)
204
+
205
+ def simplify(self):
206
+ return Number(unit=self.unit, quantity=self.value)
207
+
208
+ def to(self, new_scale: Scale):
209
+ new_quantity = self.quantity / new_scale.value.evaluated
210
+ return Number(unit=self.unit, scale=new_scale, quantity=new_quantity)
211
+
212
+ def as_ratio(self):
213
+ return Ratio(self)
214
+
215
+ def __mul__(self, another_number: 'Number') -> 'Number':
216
+ return Number(
217
+ unit=self.unit * another_number.unit,
218
+ scale=self.scale,
219
+ quantity=self.quantity * another_number.quantity,
220
+ )
221
+
222
+ def __truediv__(self, another_number: 'Number') -> 'Number':
223
+ unit = self.unit / another_number.unit
224
+ scale = self.scale / another_number.scale
225
+ quantity = self.quantity / another_number.quantity
226
+ return Number(unit, scale, quantity)
227
+
228
+ def __eq__(self, another_number):
229
+ if isinstance(another_number, Number):
230
+ return (self.unit == another_number.unit) and \
231
+ (self.quantity == another_number.quantity) and \
232
+ (self.value == another_number.value)
233
+ elif isinstance(another_number, Ratio):
234
+ return self == another_number.evaluate()
235
+ else:
236
+ raise ValueError(f'"{another_number}" is not a Number or Ratio. Comparison not possible.')
237
+
238
+ def __repr__(self):
239
+ return f'<{self.quantity} {"" if self.scale.name == "one" else self.scale.name}{self.unit.name}>'
240
+
241
+
242
+ # TODO -- consider using a dataclass
243
+ class Ratio:
244
+ """
245
+ Represents a **ratio of two Numbers**, preserving their unit semantics.
246
+
247
+ Useful for expressing physical relationships like efficiency, density,
248
+ or dimensionless comparisons:
249
+
250
+ >>> ratio = Ratio(length, time)
251
+ >>> ratio.evaluate()
252
+ <2.5 (m/s)>
253
+ """
254
+ def __init__(self, numerator: Number = Number(), denominator: Number = Number()):
255
+ self.numerator = numerator
256
+ self.denominator = denominator
257
+
258
+ def reciprocal(self) -> 'Ratio':
259
+ return Ratio(numerator=self.denominator, denominator=self.numerator)
260
+
261
+ def evaluate(self) -> Number:
262
+ return self.numerator / self.denominator
263
+
264
+ def __mul__(self, another_ratio: 'Ratio') -> 'Ratio':
265
+ if self.numerator.unit == another_ratio.denominator.unit:
266
+ factor = self.numerator / another_ratio.denominator
267
+ numerator, denominator = factor * another_ratio.numerator, self.denominator
268
+ elif self.denominator.unit == another_ratio.numerator.unit:
269
+ factor = another_ratio.numerator / self.denominator
270
+ numerator, denominator = factor * self.numerator, another_ratio.denominator
271
+ else:
272
+ factor = Number()
273
+ another_number = another_ratio.evaluate()
274
+ numerator, denominator = self.numerator * another_number, self.denominator
275
+ return Ratio(numerator=numerator, denominator=denominator)
276
+
277
+ def __truediv__(self, another_ratio: 'Ratio') -> 'Ratio':
278
+ return Ratio(
279
+ numerator=self.numerator * another_ratio.denominator,
280
+ denominator=self.denominator * another_ratio.numerator,
281
+ )
282
+
283
+ def __eq__(self, another_ratio: 'Ratio') -> bool:
284
+ if isinstance(another_ratio, Ratio):
285
+ return self.evaluate() == another_ratio.evaluate()
286
+ elif isinstance(another_ratio, Number):
287
+ return self.evaluate() == another_ratio
288
+ else:
289
+ raise ValueError(f'"{another_ratio}" is not a Ratio or Number. Comparison not possible.')
290
+
291
+ def __repr__(self):
292
+ # TODO -- resolve int/float inconsistency
293
+ return f'{self.evaluate()}' if self.numerator == self.denominator else f'{self.numerator} / {self.denominator}'
ucon/dimension.py ADDED
@@ -0,0 +1,172 @@
1
+ """
2
+ ucon.dimension
3
+ ===============
4
+
5
+ Defines the algebra of **physical dimensions**--the foundation of all unit
6
+ relationships and dimensional analysis in *ucon*.
7
+
8
+ Each :class:`Dimension` represents a physical quantity (time, mass, length, etc.)
9
+ expressed as a 7-element exponent vector following the SI base system:
10
+
11
+ (T, L, M, I, Θ, J, N) :: (s * m * kg * A * K * cd * mol)
12
+ time, length, mass, current, temperature, luminous intensity, substance
13
+
14
+ Derived dimensions are expressed as algebraic sums or differences of these base
15
+ vectors (e.g., `velocity = length / time`, `force = mass * acceleration`).
16
+
17
+ Classes
18
+ -------
19
+ - :class:`Vector` — Represents the exponent vector of a physical quantity.
20
+ - :class:`Dimension` — Enum of known physical quantities, each with a `Vector`
21
+ value and operator overloads for dimensional algebra.
22
+ """
23
+ from dataclasses import dataclass
24
+ from enum import Enum
25
+ from functools import partial, reduce
26
+ from operator import __sub__ as subtraction
27
+ from typing import Callable, Iterable, Iterator
28
+
29
+
30
+ diff: Callable[[Iterable], int] = partial(reduce, subtraction)
31
+
32
+ @dataclass
33
+ class Vector:
34
+ """
35
+ Represents the **exponent vector** of a physical quantity.
36
+
37
+ Each component corresponds to the power of a base dimension in the SI system:
38
+ time (T), length (L), mass (M), current (I), temperature (Θ),
39
+ luminous intensity (J), and amount of substance (N).
40
+
41
+ Arithmetic operations correspond to dimensional composition:
42
+ - Addition (`+`) → multiplication of quantities
43
+ - Subtraction (`-`) → division of quantities
44
+
45
+ e.g.
46
+ Vector(T=1, L=0, M=0, I=0, Θ=0, J=0, N=0) => "time"
47
+ Vector(T=0, L=2, M=0, I=0, Θ=0, J=0, N=0) => "area"
48
+ Vector(T=-2, L=1, M=1, I=0, Θ=0, J=0, N=0) => "force"
49
+ """
50
+ T: int = 0 # time
51
+ L: int = 0 # length
52
+ M: int = 0 # mass
53
+ I: int = 0 # current
54
+ Θ: int = 0 # temperature
55
+ J: int = 0 # luminous intensity
56
+ N: int = 0 # amount of substance
57
+
58
+ def __iter__(self) -> Iterator[int]:
59
+ yield self.T
60
+ yield self.L
61
+ yield self.M
62
+ yield self.I
63
+ yield self.Θ
64
+ yield self.J
65
+ yield self.N
66
+
67
+ def __len__(self) -> int:
68
+ return sum(tuple(1 for x in self))
69
+
70
+ def __add__(self, vector: 'Vector') -> 'Vector':
71
+ """
72
+ Addition, here, comes from the multiplication of base quantities
73
+
74
+ e.g. F = m * a
75
+ F =
76
+ (s^-2 * m^1 * kg * A * K * cd * mol) +
77
+ (s * m * kg^1 * A * K * cd * mol)
78
+ """
79
+ values = tuple(sum(pair) for pair in zip(tuple(self), tuple(vector)))
80
+ return Vector(*values)
81
+
82
+ def __sub__(self, vector: 'Vector') -> 'Vector':
83
+ """
84
+ Subtraction, here, comes from the division of base quantities
85
+ """
86
+ values = tuple(diff(pair) for pair in zip(tuple(self), tuple(vector)))
87
+ return Vector(*values)
88
+
89
+ def __eq__(self, vector: 'Vector') -> bool:
90
+ assert isinstance(vector, Vector), "Can only compare Vector to another Vector"
91
+ return tuple(self) == tuple(vector)
92
+
93
+ def __hash__(self) -> int:
94
+ # Hash based on the string because tuples have been shown to collide
95
+ # Not the most performant, but effective
96
+ return hash(str(tuple(self)))
97
+
98
+
99
+ class Dimension(Enum):
100
+ """
101
+ Represents a **physical dimension** defined by a :class:`Vector`.
102
+
103
+ Each dimension corresponds to a distinct combination of base exponents.
104
+ Dimensions are algebraically composable via multiplication and division:
105
+
106
+ >>> Dimension.length / Dimension.time
107
+ <Dimension.velocity: Vector(T=-1, L=1, M=0, I=0, Θ=0, J=0, N=0)>
108
+
109
+ This algebra forms the foundation for unit compatibility and conversion.
110
+ """
111
+ none = Vector()
112
+
113
+ # -- BASIS ---------------------------------------
114
+ time = Vector(1, 0, 0, 0, 0, 0, 0)
115
+ length = Vector(0, 1, 0, 0, 0, 0, 0)
116
+ mass = Vector(0, 0, 1, 0, 0, 0, 0)
117
+ current = Vector(0, 0, 0, 1, 0, 0, 0)
118
+ temperature = Vector(0, 0, 0, 0, 1, 0, 0)
119
+ luminous_intensity = Vector(0, 0, 0, 0, 0, 1, 0)
120
+ amount_of_substance = Vector(0, 0, 0, 0, 0, 0, 1)
121
+ # ------------------------------------------------
122
+
123
+ acceleration = Vector(-2, 1, 0, 0, 0, 0, 0)
124
+ angular_momentum = Vector(-1, 2, 1, 0, 0, 0, 0)
125
+ area = Vector(0, 2, 0, 0, 0, 0, 0)
126
+ capacitance = Vector(4, -2, -1, 2, 0, 0, 0)
127
+ charge = Vector(1, 0, 0, 1, 0, 0, 0)
128
+ conductance = Vector(3, -2, -1, 2, 0, 0, 0)
129
+ conductivity = Vector(3, -3, -1, 2, 0, 0, 0)
130
+ density = Vector(0, -3, 1, 0, 0, 0, 0)
131
+ electric_field_strength = Vector(-3, 1, 1, -1, 0, 0, 0)
132
+ energy = Vector(-2, 2, 1, 0, 0, 0, 0)
133
+ entropy = Vector(-2, 2, 1, 0, -1, 0, 0)
134
+ force = Vector(-2, 1, 1, 0, 0, 0, 0)
135
+ frequency = Vector(-1, 0, 0, 0, 0, 0, 0)
136
+ gravitation = Vector(-2, 3, -1, 0, 0, 0, 0)
137
+ illuminance = Vector(0, -2, 0, 0, 0, 1, 0)
138
+ inductance = Vector(-2, 2, 1, -2, 0, 0, 0)
139
+ magnetic_flux = Vector(-2, 2, 1, -1, 0, 0, 0)
140
+ magnetic_flux_density = Vector(-2, 0, 1, -1, 0, 0, 0)
141
+ magnetic_permeability = Vector(-2, 1, 1, -2, 0, 0, 0)
142
+ molar_mass = Vector(0, 0, 1, 0, 0, 0, -1)
143
+ molar_volume = Vector(0, 3, 0, 0, 0, 0, -1)
144
+ momentum = Vector(-1, 1, 1, 0, 0, 0, 0)
145
+ permittivity = Vector(4, -3, -1, 2, 0, 0, 0)
146
+ power = Vector(-3, 2, 1, 0, 0, 0, 0)
147
+ pressure = Vector(-2, -1, 1, 0, 0, 0, 0)
148
+ resistance = Vector(-3, 2, 1, -2, 0, 0, 0)
149
+ resistivity = Vector(-3, 3, 1, -2, 0, 0, 0)
150
+ specific_heat_capacity = Vector(-2, 2, 0, 0, -1, 0, 0)
151
+ thermal_conductivity = Vector(-3, 1, 1, 0, -1, 0, 0)
152
+ velocity = Vector(-1, 1, 0, 0, 0, 0, 0)
153
+ voltage = Vector(-3, 2, 1, -1, 0, 0, 0)
154
+ volume = Vector(0, 3, 0, 0, 0, 0, 0)
155
+
156
+ def __truediv__(self, dimension: 'Dimension') -> 'Dimension':
157
+ if not isinstance(dimension, Dimension):
158
+ raise TypeError(f"Cannot divide Dimension by non-Dimension type: {type(dimension)}")
159
+ return Dimension(self.value - dimension.value)
160
+
161
+ def __mul__(self, dimension: 'Dimension') -> 'Dimension':
162
+ if not isinstance(dimension, Dimension):
163
+ raise TypeError(f"Cannot multiply Dimension by non-Dimension type: {type(dimension)}")
164
+ return Dimension(self.value + dimension.value)
165
+
166
+ def __eq__(self, dimension) -> bool:
167
+ if not isinstance(dimension, Dimension):
168
+ raise TypeError(f"Cannot compare Dimension with non-Dimension type: {type(dimension)}")
169
+ return self.value == dimension.value
170
+
171
+ def __hash__(self) -> int:
172
+ return hash(self.value)