txt2stix 1.1.8__py3-none-any.whl → 1.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- txt2stix/includes/extractions/ai/config.yaml +20 -0
- txt2stix/includes/extractions/lookup/config.yaml +33 -15
- txt2stix/includes/lookups/_generate_lookups.py +39 -30
- txt2stix/includes/lookups/{disarm_id_v1_5.txt → disarm_id_v1_6.txt} +95 -32
- txt2stix/includes/lookups/{disarm_name_v1_5.txt → disarm_name_v1_6.txt} +380 -317
- txt2stix/includes/lookups/{mitre_atlas_id_v4_5_2.txt → mitre_atlas_id_v4_9_0.txt} +41 -1
- txt2stix/includes/lookups/mitre_atlas_name_v4_9_0.txt +157 -0
- txt2stix/includes/lookups/{mitre_attack_enterprise_aliases_v16_0.txt → mitre_attack_enterprise_aliases_v18_0.txt} +679 -531
- txt2stix/includes/lookups/mitre_attack_enterprise_id_v18_0.txt +4293 -0
- txt2stix/includes/lookups/mitre_attack_enterprise_name_v18_0.txt +4295 -0
- txt2stix/includes/lookups/{mitre_attack_ics_aliases_v16_0.txt → mitre_attack_ics_aliases_v18_0.txt} +7 -3
- txt2stix/includes/lookups/mitre_attack_ics_id_v18_0.txt +410 -0
- txt2stix/includes/lookups/{mitre_attack_ics_name_v16_0.txt → mitre_attack_ics_name_v18_0.txt} +172 -53
- txt2stix/includes/lookups/{mitre_attack_mobile_aliases_v16_0.txt → mitre_attack_mobile_aliases_v18_0.txt} +33 -0
- txt2stix/includes/lookups/mitre_attack_mobile_id_v18_0.txt +643 -0
- txt2stix/includes/lookups/mitre_attack_mobile_name_v18_0.txt +645 -0
- txt2stix/includes/lookups/mitre_capec_name_v3_9.txt +522 -522
- txt2stix/includes/lookups/{mitre_cwe_id_v4_15.txt → mitre_cwe_id_v4_18.txt} +5 -0
- txt2stix/includes/lookups/{mitre_cwe_name_v4_15.txt → mitre_cwe_name_v4_18.txt} +889 -884
- txt2stix/includes/lookups/sector_aliases_v1_0.txt +751 -0
- txt2stix/includes/tests/test_cases.yaml +8 -0
- txt2stix/retriever.py +6 -0
- {txt2stix-1.1.8.dist-info → txt2stix-1.1.9.dist-info}/METADATA +1 -1
- {txt2stix-1.1.8.dist-info → txt2stix-1.1.9.dist-info}/RECORD +27 -26
- txt2stix/includes/lookups/mitre_atlas_name_v4_5_2.txt +0 -117
- txt2stix/includes/lookups/mitre_attack_enterprise_id_v16_0.txt +0 -1656
- txt2stix/includes/lookups/mitre_attack_enterprise_name_v16_0.txt +0 -1765
- txt2stix/includes/lookups/mitre_attack_ics_id_v16_0.txt +0 -254
- txt2stix/includes/lookups/mitre_attack_mobile_id_v16_0.txt +0 -277
- txt2stix/includes/lookups/mitre_attack_mobile_name_v16_0.txt +0 -296
- {txt2stix-1.1.8.dist-info → txt2stix-1.1.9.dist-info}/WHEEL +0 -0
- {txt2stix-1.1.8.dist-info → txt2stix-1.1.9.dist-info}/entry_points.txt +0 -0
- {txt2stix-1.1.8.dist-info → txt2stix-1.1.9.dist-info}/licenses/LICENSE +0 -0
|
@@ -18,6 +18,12 @@ AML.M0016
|
|
|
18
18
|
AML.M0017
|
|
19
19
|
AML.M0018
|
|
20
20
|
AML.M0019
|
|
21
|
+
AML.M0020
|
|
22
|
+
AML.M0021
|
|
23
|
+
AML.M0022
|
|
24
|
+
AML.M0023
|
|
25
|
+
AML.M0024
|
|
26
|
+
AML.M0025
|
|
21
27
|
AML.T0000
|
|
22
28
|
AML.T0000.000
|
|
23
29
|
AML.T0000.001
|
|
@@ -37,13 +43,18 @@ AML.T0007
|
|
|
37
43
|
AML.T0008
|
|
38
44
|
AML.T0008.000
|
|
39
45
|
AML.T0008.001
|
|
46
|
+
AML.T0008.002
|
|
47
|
+
AML.T0008.003
|
|
48
|
+
AML.T0008.004
|
|
40
49
|
AML.T0010
|
|
41
50
|
AML.T0010.000
|
|
42
51
|
AML.T0010.001
|
|
43
52
|
AML.T0010.002
|
|
44
53
|
AML.T0010.003
|
|
54
|
+
AML.T0010.004
|
|
45
55
|
AML.T0011
|
|
46
56
|
AML.T0011.000
|
|
57
|
+
AML.T0011.001
|
|
47
58
|
AML.T0012
|
|
48
59
|
AML.T0013
|
|
49
60
|
AML.T0014
|
|
@@ -51,11 +62,13 @@ AML.T0015
|
|
|
51
62
|
AML.T0016
|
|
52
63
|
AML.T0016.000
|
|
53
64
|
AML.T0016.001
|
|
65
|
+
AML.T0016.002
|
|
54
66
|
AML.T0017
|
|
55
67
|
AML.T0017.000
|
|
56
68
|
AML.T0018
|
|
57
69
|
AML.T0018.000
|
|
58
70
|
AML.T0018.001
|
|
71
|
+
AML.T0018.002
|
|
59
72
|
AML.T0019
|
|
60
73
|
AML.T0020
|
|
61
74
|
AML.T0021
|
|
@@ -100,6 +113,32 @@ AML.T0054
|
|
|
100
113
|
AML.T0055
|
|
101
114
|
AML.T0056
|
|
102
115
|
AML.T0057
|
|
116
|
+
AML.T0058
|
|
117
|
+
AML.T0059
|
|
118
|
+
AML.T0060
|
|
119
|
+
AML.T0061
|
|
120
|
+
AML.T0062
|
|
121
|
+
AML.T0063
|
|
122
|
+
AML.T0064
|
|
123
|
+
AML.T0065
|
|
124
|
+
AML.T0066
|
|
125
|
+
AML.T0067
|
|
126
|
+
AML.T0067.000
|
|
127
|
+
AML.T0068
|
|
128
|
+
AML.T0069
|
|
129
|
+
AML.T0069.000
|
|
130
|
+
AML.T0069.001
|
|
131
|
+
AML.T0069.002
|
|
132
|
+
AML.T0070
|
|
133
|
+
AML.T0071
|
|
134
|
+
AML.T0072
|
|
135
|
+
AML.T0073
|
|
136
|
+
AML.T0074
|
|
137
|
+
AML.T0075
|
|
138
|
+
AML.T0076
|
|
139
|
+
AML.T0077
|
|
140
|
+
AML.T0078
|
|
141
|
+
AML.T0079
|
|
103
142
|
AML.TA0000
|
|
104
143
|
AML.TA0001
|
|
105
144
|
AML.TA0002
|
|
@@ -113,4 +152,5 @@ AML.TA0009
|
|
|
113
152
|
AML.TA0010
|
|
114
153
|
AML.TA0011
|
|
115
154
|
AML.TA0012
|
|
116
|
-
AML.TA0013
|
|
155
|
+
AML.TA0013
|
|
156
|
+
AML.TA0014
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
LLM Prompt Obfuscation
|
|
2
|
+
Black-Box Optimization
|
|
3
|
+
Acquire Infrastructure
|
|
4
|
+
Journals and Conference Proceedings
|
|
5
|
+
Erode AI Model Integrity
|
|
6
|
+
Pre-Print Repositories
|
|
7
|
+
LLM Prompt Crafting
|
|
8
|
+
Denial of AI Service
|
|
9
|
+
Extract AI Model
|
|
10
|
+
Generative AI
|
|
11
|
+
Direct
|
|
12
|
+
Impersonation
|
|
13
|
+
Extract LLM System Prompt
|
|
14
|
+
Create Proxy AI Model
|
|
15
|
+
Malicious Package
|
|
16
|
+
Discover LLM System Information
|
|
17
|
+
AI Development Workspaces
|
|
18
|
+
LLM Trusted Output Components Manipulation
|
|
19
|
+
Train Proxy via Gathered AI Artifacts
|
|
20
|
+
Modify AI Model Architecture
|
|
21
|
+
Obtain Capabilities
|
|
22
|
+
Special Character Sets
|
|
23
|
+
Publish Poisoned Datasets
|
|
24
|
+
Model
|
|
25
|
+
Financial Harm
|
|
26
|
+
Search Open AI Vulnerability Analysis
|
|
27
|
+
Search Victim-Owned Websites
|
|
28
|
+
System Prompt
|
|
29
|
+
Spearphishing via Social Engineering LLM
|
|
30
|
+
Physical Countermeasures
|
|
31
|
+
Search Application Repositories
|
|
32
|
+
Data from Information Repositories
|
|
33
|
+
Poison Training Data
|
|
34
|
+
Use Pre-Trained Model
|
|
35
|
+
Technical Blogs
|
|
36
|
+
False RAG Entry Injection
|
|
37
|
+
External Harms
|
|
38
|
+
AI Intellectual Property Theft
|
|
39
|
+
Drive-by Compromise
|
|
40
|
+
Acquire Public AI Artifacts
|
|
41
|
+
Masquerading
|
|
42
|
+
Discover LLM Hallucinations
|
|
43
|
+
Manual Modification
|
|
44
|
+
Unsecured Credentials
|
|
45
|
+
Establish Accounts
|
|
46
|
+
Infer Training Data Membership
|
|
47
|
+
Societal Harm
|
|
48
|
+
Publish Hallucinated Entities
|
|
49
|
+
Black-Box Transfer
|
|
50
|
+
LLM Response Rendering
|
|
51
|
+
User Harm
|
|
52
|
+
Reverse Shell
|
|
53
|
+
RAG Poisoning
|
|
54
|
+
User Execution
|
|
55
|
+
Physical Environment Access
|
|
56
|
+
Evade AI Model
|
|
57
|
+
Cost Harvesting
|
|
58
|
+
Discover AI Artifacts
|
|
59
|
+
Insert Backdoor Trigger
|
|
60
|
+
Consumer Hardware
|
|
61
|
+
Gather RAG-Indexed Targets
|
|
62
|
+
Hardware
|
|
63
|
+
Domains
|
|
64
|
+
Indirect
|
|
65
|
+
Full AI Model Access
|
|
66
|
+
LLM Prompt Self-Replication
|
|
67
|
+
AI Supply Chain Compromise
|
|
68
|
+
System Instruction Keywords
|
|
69
|
+
Spamming AI System with Chaff Data
|
|
70
|
+
Poison AI Model
|
|
71
|
+
Discover AI Model Family
|
|
72
|
+
Reputational Harm
|
|
73
|
+
Serverless
|
|
74
|
+
Adversarial AI Attack Implementations
|
|
75
|
+
LLM Prompt Injection
|
|
76
|
+
Unsafe AI Artifacts
|
|
77
|
+
Cloud Service Discovery
|
|
78
|
+
Manipulate AI Model
|
|
79
|
+
Discover AI Model Ontology
|
|
80
|
+
Embed Malware
|
|
81
|
+
Software Tools
|
|
82
|
+
Data from Local System
|
|
83
|
+
Develop Capabilities
|
|
84
|
+
Invert AI Model
|
|
85
|
+
Erode Dataset Integrity
|
|
86
|
+
Datasets
|
|
87
|
+
Container Registry
|
|
88
|
+
Active Scanning
|
|
89
|
+
Valid Accounts
|
|
90
|
+
Corrupt AI Model
|
|
91
|
+
Exfiltration via AI Inference API
|
|
92
|
+
Adversarial AI Attacks
|
|
93
|
+
AI Artifact Collection
|
|
94
|
+
AI Software
|
|
95
|
+
Search Open Technical Databases
|
|
96
|
+
LLM Data Leakage
|
|
97
|
+
Stage Capabilities
|
|
98
|
+
Models
|
|
99
|
+
Citations
|
|
100
|
+
Discover AI Model Outputs
|
|
101
|
+
LLM Plugin Compromise
|
|
102
|
+
Exploit Public-Facing Application
|
|
103
|
+
Exfiltration via Cyber Means
|
|
104
|
+
Phishing
|
|
105
|
+
White-Box Optimization
|
|
106
|
+
Publish Poisoned Models
|
|
107
|
+
Train Proxy via Replication
|
|
108
|
+
Data
|
|
109
|
+
Command and Scripting Interpreter
|
|
110
|
+
AI-Enabled Product or Service
|
|
111
|
+
LLM Jailbreak
|
|
112
|
+
Retrieval Content Crafting
|
|
113
|
+
Craft Adversarial Data
|
|
114
|
+
AI Model Inference API Access
|
|
115
|
+
Verify Attack
|
|
116
|
+
AI Model Distribution Methods
|
|
117
|
+
Input Restoration
|
|
118
|
+
Control Access to AI Models and Data at Rest
|
|
119
|
+
User Training
|
|
120
|
+
Passive AI Output Obfuscation
|
|
121
|
+
Validate AI Model
|
|
122
|
+
Restrict Library Loading
|
|
123
|
+
Maintain AI Dataset Provenance
|
|
124
|
+
Encrypt Sensitive Information
|
|
125
|
+
Restrict Number of AI Model Queries
|
|
126
|
+
Code Signing
|
|
127
|
+
Verify AI Artifacts
|
|
128
|
+
Use Multi-Modal Sensors
|
|
129
|
+
Control Access to AI Models and Data in Production
|
|
130
|
+
Adversarial Input Detection
|
|
131
|
+
Generative AI Model Alignment
|
|
132
|
+
Limit Public Release of Information
|
|
133
|
+
AI Telemetry Logging
|
|
134
|
+
Use Ensemble Methods
|
|
135
|
+
AI Bill of Materials
|
|
136
|
+
Model Hardening
|
|
137
|
+
Limit Model Artifact Release
|
|
138
|
+
Sanitize Training Data
|
|
139
|
+
Generative AI Guidelines
|
|
140
|
+
Generative AI Guardrails
|
|
141
|
+
Vulnerability Scanning
|
|
142
|
+
ATLAS
|
|
143
|
+
AI Model Access
|
|
144
|
+
Execution
|
|
145
|
+
Initial Access
|
|
146
|
+
AI Attack Staging
|
|
147
|
+
Credential Access
|
|
148
|
+
Impact
|
|
149
|
+
Reconnaissance
|
|
150
|
+
Collection
|
|
151
|
+
Command and Control
|
|
152
|
+
Defense Evasion
|
|
153
|
+
Exfiltration
|
|
154
|
+
Discovery
|
|
155
|
+
Privilege Escalation
|
|
156
|
+
Resource Development
|
|
157
|
+
Persistence
|