tunned-geobr 0.2.8__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tunned_geobr/__init__.py CHANGED
@@ -125,3 +125,6 @@ from .read_natural_gas_processing_hub import read_natural_gas_processing_hub
125
125
  from .read_compression_stations import read_compression_stations
126
126
  from .read_natural_gas_delivery_points import read_natural_gas_delivery_points
127
127
  from .read_quilombola_areas import read_quilombola_areas
128
+ from .read_icmbio_embargoes import read_icmbio_embargoes
129
+ from .read_icmbio_infractions import read_icmbio_infractions
130
+ from .read_ibama_embargoes import read_ibama_embargoes
@@ -168,7 +168,12 @@ def list_geobr():
168
168
  {"Function": "read_og_basement", "Geography": "Oil and Gas Basement", "Years": "All", "Source": "EPE"},
169
169
  {"Function": "read_hydroelectric_feasibility_studies", "Geography": "Hydroelectric Feasibility Studies", "Years": "All", "Source": "EPE"},
170
170
  {"Function": "read_hydroelectric_inventory_aai_studies", "Geography": "Hydroelectric Inventory and AAI Studies", "Years": "All", "Source": "EPE"},
171
- {"Function": "read_ama_anemometric_towers", "Geography": "AMA Anemometric Towers", "Years": "All", "Source": "EPE"}
171
+ {"Function": "read_ama_anemometric_towers", "Geography": "AMA Anemometric Towers", "Years": "All", "Source": "EPE"},
172
+
173
+ # Environmental Enforcement Data
174
+ {"Function": "read_icmbio_embargoes", "Geography": "ICMBio Embargoed Areas", "Years": "All", "Source": "ICMBio"},
175
+ {"Function": "read_icmbio_infractions", "Geography": "ICMBio Infraction Notices", "Years": "All", "Source": "ICMBio"},
176
+ {"Function": "read_ibama_embargoes", "Geography": "IBAMA Embargoed Areas", "Years": "All", "Source": "IBAMA"}
172
177
  ]
173
178
 
174
179
  # Create DataFrame
@@ -1,7 +1,7 @@
1
1
  from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
- def read_amazon(year=2012, simplified=True, verbose=False):
4
+ def read_amazon(year=2012, simplified=False, verbose=False):
5
5
  """ Download official data of Brazil's Legal Amazon as an sf object.
6
6
 
7
7
  This data set covers the whole of Brazil's Legal Amazon as defined in the federal law n. 12.651/2012). The original
@@ -85,8 +85,9 @@ def read_gnl_terminals(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_gnl_terminals(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_gnl_terminals(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_gnl_terminals(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing GNL terminals data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -0,0 +1,85 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ from io import BytesIO
4
+
5
+ def read_ibama_embargoes(simplified=False, verbose=False):
6
+ """Download IBAMA Embargoes data.
7
+
8
+ This function downloads and processes embargoes data from the Brazilian Institute
9
+ of Environment and Renewable Natural Resources (IBAMA) through their WFS service.
10
+ Original source: IBAMA SISCOM
11
+
12
+ Parameters
13
+ ----------
14
+ simplified : boolean, by default False
15
+ If True, returns a simplified version of the dataset with fewer columns
16
+ verbose : boolean, by default False
17
+ If True, prints detailed information about the download process
18
+
19
+ Returns
20
+ -------
21
+ gpd.GeoDataFrame
22
+ Geodataframe with IBAMA Embargoes data
23
+
24
+ Example
25
+ -------
26
+ >>> from tunned_geobr import read_ibama_embargoes
27
+
28
+ # Read IBAMA Embargoes data
29
+ >>> embargoes = read_ibama_embargoes()
30
+ """
31
+
32
+ url = "https://siscom.ibama.gov.br/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=publica:vw_brasil_adm_embargo_a&outputFormat=application/json"
33
+
34
+ if verbose:
35
+ print("Downloading IBAMA Embargoes data...")
36
+
37
+ try:
38
+ # Download the JSON data
39
+ response = requests.get(url)
40
+ if response.status_code != 200:
41
+ raise Exception(f"Failed to download data from IBAMA WFS service. Status code: {response.status_code}")
42
+
43
+ if verbose:
44
+ print("Data downloaded successfully. Processing...")
45
+
46
+ # Read the GeoJSON directly from the response content
47
+ gdf = gpd.read_file(BytesIO(response.content))
48
+
49
+ # Convert to SIRGAS 2000 (EPSG:4674) if needed
50
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
51
+ if verbose:
52
+ print(f"Converting CRS from {gdf.crs} to SIRGAS 2000 (EPSG:4674)")
53
+ gdf = gdf.to_crs(4674)
54
+
55
+ if simplified:
56
+ # Keep only the most relevant columns
57
+ # Adjust these based on the actual columns in the dataset
58
+ columns_to_keep = [
59
+ 'geometry',
60
+ 'nm_municipio', # Municipality name
61
+ 'sg_uf', # State abbreviation
62
+ 'nm_pessoa', # Person/entity name
63
+ 'nr_cpfcnpj', # CPF/CNPJ number
64
+ 'dt_embargo', # Embargo date
65
+ 'nr_processo', # Process number
66
+ 'nr_termo', # Term number
67
+ 'ar_embargada', # Embargoed area
68
+ 'tp_infracao', # Infraction type
69
+ 'ds_infracao' # Infraction description
70
+ ]
71
+
72
+ # Filter columns that actually exist in the dataset
73
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
74
+ gdf = gdf[existing_columns]
75
+
76
+ if verbose:
77
+ print(f"Simplified dataset with {len(existing_columns)} columns")
78
+
79
+ except Exception as e:
80
+ raise Exception(f"Error downloading IBAMA Embargoes data: {str(e)}")
81
+
82
+ if verbose:
83
+ print(f"Download completed. Returning GeoDataFrame with {len(gdf)} records")
84
+
85
+ return gdf
@@ -0,0 +1,83 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ from io import BytesIO
4
+
5
+ def read_icmbio_embargoes(simplified=False, verbose=False):
6
+ """Download ICMBio Embargoes data.
7
+
8
+ This function downloads and processes embargoes data from the Brazilian Institute
9
+ of Environment and Renewable Natural Resources (ICMBio) through the National Spatial
10
+ Data Infrastructure (INDE) WFS service.
11
+ Original source: ICMBio via INDE
12
+
13
+ Parameters
14
+ ----------
15
+ simplified : boolean, by default False
16
+ If True, returns a simplified version of the dataset with fewer columns
17
+ verbose : boolean, by default False
18
+ If True, prints detailed information about the download process
19
+
20
+ Returns
21
+ -------
22
+ gpd.GeoDataFrame
23
+ Geodataframe with ICMBio Embargoes data
24
+
25
+ Example
26
+ -------
27
+ >>> from tunned_geobr import read_icmbio_embargoes
28
+
29
+ # Read ICMBio Embargoes data
30
+ >>> embargoes = read_icmbio_embargoes()
31
+ """
32
+
33
+ url = "https://geoservicos.inde.gov.br/geoserver/ICMBio/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=embargos_icmbio&outputFormat=application/json"
34
+
35
+ if verbose:
36
+ print("Downloading ICMBio Embargoes data...")
37
+
38
+ try:
39
+ # Download the JSON data
40
+ response = requests.get(url)
41
+ if response.status_code != 200:
42
+ raise Exception(f"Failed to download data from ICMBio WFS service. Status code: {response.status_code}")
43
+
44
+ if verbose:
45
+ print("Data downloaded successfully. Processing...")
46
+
47
+ # Read the GeoJSON directly from the response content
48
+ gdf = gpd.read_file(BytesIO(response.content))
49
+
50
+ # Convert to SIRGAS 2000 (EPSG:4674) if needed
51
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
52
+ if verbose:
53
+ print(f"Converting CRS from {gdf.crs} to SIRGAS 2000 (EPSG:4674)")
54
+ gdf = gdf.to_crs(4674)
55
+
56
+ if simplified:
57
+ # Keep only the most relevant columns
58
+ # Adjust these based on the actual columns in the dataset
59
+ columns_to_keep = [
60
+ 'geometry',
61
+ 'NOME_AREA', # Area name
62
+ 'MUNICIPIO', # Municipality
63
+ 'UF', # State
64
+ 'AREA_HA', # Area in hectares
65
+ 'TIPO_INFRA', # Infraction type
66
+ 'DATA_EMBARG', # Embargo date
67
+ 'TERMO_EMBG' # Embargo term
68
+ ]
69
+
70
+ # Filter columns that actually exist in the dataset
71
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
72
+ gdf = gdf[existing_columns]
73
+
74
+ if verbose:
75
+ print(f"Simplified dataset with {len(existing_columns)} columns")
76
+
77
+ except Exception as e:
78
+ raise Exception(f"Error downloading ICMBio Embargoes data: {str(e)}")
79
+
80
+ if verbose:
81
+ print(f"Download completed. Returning GeoDataFrame with {len(gdf)} records")
82
+
83
+ return gdf
@@ -0,0 +1,83 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ from io import BytesIO
4
+
5
+ def read_icmbio_infractions(simplified=False, verbose=False):
6
+ """Download ICMBio Infraction Notices data.
7
+
8
+ This function downloads and processes infraction notices data from the Brazilian Institute
9
+ of Environment and Renewable Natural Resources (ICMBio) through the National Spatial
10
+ Data Infrastructure (INDE) WFS service.
11
+ Original source: ICMBio via INDE
12
+
13
+ Parameters
14
+ ----------
15
+ simplified : boolean, by default False
16
+ If True, returns a simplified version of the dataset with fewer columns
17
+ verbose : boolean, by default False
18
+ If True, prints detailed information about the download process
19
+
20
+ Returns
21
+ -------
22
+ gpd.GeoDataFrame
23
+ Geodataframe with ICMBio Infraction Notices data
24
+
25
+ Example
26
+ -------
27
+ >>> from tunned_geobr import read_icmbio_infractions
28
+
29
+ # Read ICMBio Infraction Notices data
30
+ >>> infractions = read_icmbio_infractions()
31
+ """
32
+
33
+ url = "https://geoservicos.inde.gov.br/geoserver/ICMBio/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=autos_infracao_icmbio&outputFormat=application/json"
34
+
35
+ if verbose:
36
+ print("Downloading ICMBio Infraction Notices data...")
37
+
38
+ try:
39
+ # Download the JSON data
40
+ response = requests.get(url)
41
+ if response.status_code != 200:
42
+ raise Exception(f"Failed to download data from ICMBio WFS service. Status code: {response.status_code}")
43
+
44
+ if verbose:
45
+ print("Data downloaded successfully. Processing...")
46
+
47
+ # Read the GeoJSON directly from the response content
48
+ gdf = gpd.read_file(BytesIO(response.content))
49
+
50
+ # Convert to SIRGAS 2000 (EPSG:4674) if needed
51
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
52
+ if verbose:
53
+ print(f"Converting CRS from {gdf.crs} to SIRGAS 2000 (EPSG:4674)")
54
+ gdf = gdf.to_crs(4674)
55
+
56
+ if simplified:
57
+ # Keep only the most relevant columns
58
+ # Adjust these based on the actual columns in the dataset
59
+ columns_to_keep = [
60
+ 'geometry',
61
+ 'MUNICIPIO', # Municipality
62
+ 'UF', # State
63
+ 'DATA_AUTO', # Infraction date
64
+ 'TIPO_INFRA', # Infraction type
65
+ 'AREA_PROTE', # Protected area
66
+ 'VALOR_AUTO', # Fine value
67
+ 'NUM_AUTO' # Infraction number
68
+ ]
69
+
70
+ # Filter columns that actually exist in the dataset
71
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
72
+ gdf = gdf[existing_columns]
73
+
74
+ if verbose:
75
+ print(f"Simplified dataset with {len(existing_columns)} columns")
76
+
77
+ except Exception as e:
78
+ raise Exception(f"Error downloading ICMBio Infraction Notices data: {str(e)}")
79
+
80
+ if verbose:
81
+ print(f"Download completed. Returning GeoDataFrame with {len(gdf)} records")
82
+
83
+ return gdf
@@ -67,7 +67,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
67
67
  # Create a temporary directory to store the downloaded files
68
68
  with tempfile.TemporaryDirectory() as temp_dir:
69
69
  # Download the zip file
70
- zip_path = os.path.join(temp_dir, "gas_delivery_points.zip")
70
+ zip_path = os.path.join(temp_dir, "delivery_points.zip")
71
71
  if verbose:
72
72
  print("Downloading zip file")
73
73
 
@@ -85,8 +85,9 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing natural gas delivery points data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -67,7 +67,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
67
67
  # Create a temporary directory to store the downloaded files
68
68
  with tempfile.TemporaryDirectory() as temp_dir:
69
69
  # Download the zip file
70
- zip_path = os.path.join(temp_dir, "gas_processing_hubs.zip")
70
+ zip_path = os.path.join(temp_dir, "processing_hubs.zip")
71
71
  if verbose:
72
72
  print("Downloading zip file")
73
73
 
@@ -85,8 +85,9 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing natural gas processing hubs data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -85,8 +85,9 @@ def read_pio_ducts(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_pio_ducts(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_pio_ducts(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'EMPRESA', 'EXTENSAO', 'DIAMETRO', 'UF', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_pio_ducts(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing PIO ducts data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.2.8
3
+ Version: 1.0.0
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -1,13 +1,13 @@
1
- tunned_geobr-0.2.8.dist-info/METADATA,sha256=WyNXX7N8wjCerNL_UHfkABzK4KdkEEP3Lf7JcnUPHsw,5018
2
- tunned_geobr-0.2.8.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.2.8.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.2.8.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=6PWQAn9Swox7mMNRrwD42BX04qfR11_Vm1599EOQnP0,7281
1
+ tunned_geobr-1.0.0.dist-info/METADATA,sha256=4vI9Jp2a5SZS9G4UG-9bOrPPwbxrUx-OLvueEql-c9s,5018
2
+ tunned_geobr-1.0.0.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-1.0.0.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-1.0.0.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=RP_fInq17ZOJxZOIVtkWeYDBUIr2lR4QbbHbvMqr5K4,7454
6
6
  tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
7
- tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
7
+ tunned_geobr/list_geobr.py,sha256=6rsdtSZUvFrS-n5KXLOSQ34P1AK_yMFAj_MVZRvvZmQ,17278
8
8
  tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
9
9
  tunned_geobr/read_ama_anemometric_towers.py,sha256=M3qKBTBYdqHzTuWtRrBiLA88Ymt6g0cf7sakJd5mTRo,4686
10
- tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
10
+ tunned_geobr/read_amazon.py,sha256=HiwKnYebWe3nDMDRUqHpKJIO76bA4ERm4iJlCPhagQg,1286
11
11
  tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
12
  tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
13
13
  tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
@@ -56,12 +56,15 @@ tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZX
56
56
  tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
57
57
  tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
58
58
  tunned_geobr/read_glp_bases.py,sha256=4-cgL0NU9bkKMTddMfaTedjzV5OnzEVr4iWglACU7x4,5190
59
- tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
59
+ tunned_geobr/read_gnl_terminals.py,sha256=7pPyTPv8RRN-gvujbwwm-gw5j8N69MMbrIB91Lps2sA,5259
60
60
  tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
61
61
  tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i_tQgU,1843
62
62
  tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
63
63
  tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=tyCD-VyYW1paJLoN8woO_sR4aFC8NIIRj_As0jrQSLE,4770
64
64
  tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=GWnSzsnMJSDjSpXFHyQbYL3d8xTwqh9ilxxi2r61idE,4814
65
+ tunned_geobr/read_ibama_embargoes.py,sha256=hzbWiifgoCgq7TP4X3H4TWFFkLnE5Y9969KUd3aJsek,3251
66
+ tunned_geobr/read_icmbio_embargoes.py,sha256=Xn3oxt4yK8wE6sAKWsU91EyU2h0yLysIbtQk2VUuJ5A,3107
67
+ tunned_geobr/read_icmbio_infractions.py,sha256=Heolqhuxc3sUby4RhxJZ88djIBWRcXkFbubhXgkpYos,3182
65
68
  tunned_geobr/read_immediate_region.py,sha256=K-i5UBdxB1ZQw2R8fGMp1GqX5sXJwUkjVHqC84QtJtc,2555
66
69
  tunned_geobr/read_indigenous_land.py,sha256=ZyHcJ93cDNjUcc5CyBKiWHjlrt9owDv993IFKUlEPZ4,1460
67
70
  tunned_geobr/read_intermediate_region.py,sha256=PipeQFGVpZf6a_J7OrttPOnE7o6E5IJHJXLKvzYjoEY,2186
@@ -74,8 +77,8 @@ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juo
74
77
  tunned_geobr/read_municipality.py,sha256=dZM1BVi3U9ZvasLADV-ciKVr9R4o92dRowpEVdVkvYw,5651
75
78
  tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdnmJp-QgdkmFg,5658
76
79
  tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
77
- tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
78
- tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
80
+ tunned_geobr/read_natural_gas_delivery_points.py,sha256=nJJmqbJJ5Xx2P2wVL9yXdGLuPI0O8pCCL9zDkHQtZOs,5387
81
+ tunned_geobr/read_natural_gas_processing_hub.py,sha256=qI5o-4TmPfi3h0gYNWjeMR5GsRAq-fsXoB62llqt9RA,5367
79
82
  tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
80
83
  tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
81
84
  tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
@@ -95,7 +98,7 @@ tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=-BzLd9WpWWgH1pUaz9y16rg
95
98
  tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
96
99
  tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
97
100
  tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
98
- tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
101
+ tunned_geobr/read_pio_ducts.py,sha256=L_lDeDU4VrSnUISoQ7afe5biseja0R6xQFMkZMTQJIc,5214
99
102
  tunned_geobr/read_pio_terminals.py,sha256=uslr1Zy2bNaxAHbsieMkyWND8zLvJpWOkdey3-4i1Xc,5246
100
103
  tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
101
104
  tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
@@ -135,4 +138,4 @@ tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz
135
138
  tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
136
139
  tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
137
140
  tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
138
- tunned_geobr-0.2.8.dist-info/RECORD,,
141
+ tunned_geobr-1.0.0.dist-info/RECORD,,